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Abstract

In contextual memories, an association between a positive or negative reinforcement and the contextual cues where the
reinforcement occurs is formed. The re-exposure to the context without reinforcement can lead to memory extinction or
reconsolidation, depending on the number of events or duration of a single event of context re-exposure. Extinction
involves the temporary waning of the previously acquired conditioned response. The molecular processes underlying
extinction and the mechanisms which determine if memory will reconsolidate or extinguish after retrieval are not well
characterized, particularly the role of transcription factors and gene expression. Here we studied the participation of a
transcription factor, NF-kB, in memory extinction. In the crab context-signal memory, the activation of NF-kB plays a critical
role in consolidation and reconsolidation, memory processes that are well characterized in this model. The administration of
a NF-kB inhibitor, sulfasalazine prior to extinction session impeded spontaneous recovery. Moreover, reinstatement
experiments showed that the original memory was not affected and that NF-kB inhibition by sulfasalazine impaired
spontaneous recovery strengthening the ongoing memory extinction process. Interestingly, in animals with fully
consolidated memory, a brief re-exposure to the training context induced neuronal NF-kB activation and reconsolidation,
while prolonged re-exposure induced NF-kB inhibition and memory extinction. These data constitutes a novel insight into
the molecular mechanisms involved in the switch between memory reconsolidation and extinction. Moreover, we propose
the inhibition of NF-kB as the engaged mechanism underlying extinction, supporting a novel approach for the
pharmacological enhancement of this memory process. The accurate description of the molecular mechanisms that support
memory extinction is potentially useful for developing new strategies and drug candidates for therapeutic treatments of the
maladaptive memory disorders such as post-traumatic stress, phobias, and drug addiction.
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Introduction

Since the original interpretation by Pavlov [1], extinction of an

associative memory was considered a new process that impedes the

expression of the original association. Under this interpretation,

the original memory is not abolished by extinction and, in most

cases, can be recovered spontaneously or after behavioural or

pharmacological treatments [2–5]. Such hypothesis suggests the

formation of new neuronal circuits underlying the newly acquired

behavioural outcome. Several drugs, acting in a limited period

after extinction induction, interfere with this process and allow the

original long-term memory to be expressed [4,6]. The fact that

protein synthesis inhibitors and NMDA-type glutamate receptors

(NMDAR) antagonists are effective drugs affecting extinction led

to the hypothesis that this process required consolidation-like

mechanisms similar to the consolidation of the original memory

[7–11]. However, beyond the requirement of de novo protein

synthesis and NMDAR, some research data point out differences

between the molecular mechanisms involved in memory consol-

idation and extinction, as the participation of protein phosphatases

[12,13] and endocanabinoids [14]. Interestingly, both molecular

mechanisms, as well as NMDAR [15], are involved in long-term

depression (LTD), a neural plasticity model that induces a

reversible reduction of synaptic efficacy, suggesting that synaptic

weakening of the original consolidated memory trace can explain

in part the neural process involved in memory extinction.

In the core of the molecular mechanisms involved in the long-

term persistence of memory trace is the regulation of gene

expression, conducted via the activation of specific transcription

factors (TFs). These mechanisms are considered key molecular

processes in consolidation [16–18] and reconsolidation [19–22].

Related to the role of gene transcription during LTM extinction

there is indirect evidences provided by the use of in vivo protein

synthesis inhibition and the inhibition of protein kinases that are

involved in gene regulation. At our knowledge, only two reports

evaluate the hypothesis by direct blockade of the transcriptional

machinery [23,24]. One of these reports studied the effect of

intrahippocampal injection of the transcription inhibitors alpha-

amanitin and DRB on inhibitory avoidance in rats [23]. In that

report, the drug infusions impaired memory extinction when

administered before the extinction protocol, suggesting that the

transcriptional activity is required for consolidation of extinction.

Conversely, Lin and colleagues reported that memory extinction is

insensitive to actinomycin-D and depends upon calcineurin
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activity that induces dephosphorylation of cAMP response element

binding protein (CREB) [24]. This last finding suggests that CREB

inhibition by calcineurin and the consequent gene transcription

inhibition could be part of the molecular mechanisms involved in

extinction.

In the context-signal memory in crabs [25], the presentation of

a danger stimulus (an opaque screen passing over the animal)

provokes an escape response that is actively replaced in successive

events by a freezing response as a consequence of the repetition of

the stimulation [26]. As a consequence of a training session of 15

or more spaced trials, an associative LTM is formed linking the

environmental cues (the ‘‘context’’) with the danger stimulus

episode [27]. This context-dependent memory is defined at testing

as a significantly lower response to the danger stimulus by a

trained group of animals than by an untrained control group.

Animals with fully consolidated LTM that are exposed to the

training context would either reconsolidate or extinguish LTM

depending on the length of the context exposure session [10].

While a brief presentation (5 min) induces reconsolidation, a long

period (.1h) induces extinction [10,28]. In Chasmagnathus, LTM

consolidation and reconsolidation depends upon de novo protein

synthesis and the activity of the TF Nuclear Factor kappa B (NF-

kB) activity [29–31]. Crab’s LTM extinction is blocked by protein

synthesis inhibitors [10].

The participation of NF-kB in memory consolidation and

reconsolidation processes constitutes an evolutionary conserved

feature, since it was shown that its activation is a necessary

mechanism in crabs and mice [18,21,22,33,34]. All these evidence

locate NF-kB as a key partner among the molecular mechanisms

involved in LTM formation and persistence.

In this report we study the role of the TF NF-kB in memory

extinction in the crab Chasmagnathus. We analyze: 1) the state of

activity of NF-kB in the brain during extinction session, and 2) the

effect of the inhibition of the TF during extinction training on

memory extinction. We found that during extinction induction

NF-kB levels of activity are significantly diminished in the brain,

and that the pharmacological inhibition of NF-kB during

extinction training strengthened memory extinction.

Results

Inhibition of NF-kB during extinction session impairs
spontaneous recovery

Memory reactivation induced by animal re-exposure to the

training context activates NF-kB as part of the molecular

mechanisms involved in memory reconsolidation. Such activation

was found in different types of contextual memory models as

context-signal memory in the crab Chasmagnathus [21], contextual

fear conditioning in rats [34] and inhibitory avoidance in mice

[22]. In the crab model, 5 min of re-exposure to the training

context 24 h after learning induces reconsolidation that is

impaired with the pre-exposure administration of the NF-kB

inhibitor sulfasalazine. Conversely, 2 h re-exposure to the context

induces protein synthesis-dependent extinction [10]. This extinc-

tion is expressed during testing session as a lack of retention, in

spite of the strong training protocol used during the training day.

To assess the eventual effect of NF-kB inhibition on extinction

we trained a group of animals (TR group) with 15 trials while a

control group (CT group) remained in the experimental device

without stimulus presentation (Figure 1a, left diagram). Under

such conditions, a long-term association between context features

and the danger stimulus is formed [35]. This association is assessed

as a significant lower level of response of TR group respect to CT

group at testing. Such a low level is an expression of an active

change from escape to freezing response [36]. Twenty four h later,

the animals were injected in the pericardial sac with 6.6 mg/g

sulfasalazine or vehicle 20 min before the extinction session,

consisting of a re-exposure to the training context for 2 h. Then,

two pairs of CT/TR groups were formed (CT-Veh/TR-Veh and

CT-SSZ/TR-SSZ). A third pair of CT/TR groups injected with

sulfasalazine but not re-exposed to the training context was used in

order to evaluate the effect of the drug 24 h after training without

the extinction session (Figure 1a). Sulfasalazine is a specific

inhibitor of IkB kinase (IKK), the kinase that phosphorylates and

induces the degradation of IkB, the inhibitor of NF-kB. The used

dose is effective to induce an inhibition of about 50% in basal NF-

kB activity for 45 min and to impair memory consolidation and

reconsolidation [18,21]. One day after the injection and the

extinction protocol, the testing session showed, as expected,

memory retention for the trained group without exposure (F (1,74)

= 5,52; p,0.05, CT-SSZ vs. TR-SSZ, Figure 1a). This result

confirms previous results showing that sulfasalazine has no effect

administered 24 h after training without re-exposure to the

training context. Conversely, no memory retention was found

for the two trained groups that were injected with vehicle or

sulfasalazine and then re-exposed to the training context (no

significant differences between CT and TR pair of groups,

Figure 1b). These results indicate memory extinction for both

groups re-exposed to the training context for 2 h. At variance with

the effect of the protein synthesis inhibitor cychoheximide [10],

sulfasalazine injection did not impede extinction, suggesting at first

glance that NF-kB activity is not required for consolidation of

extinction.

In the crab model, spontaneous recovery of memory retention

occurs between 2 and 3 days after extinction induction (Hepp Y,

Pedreira ME, personal communication). In order to study the

effect of sulfasalazine on spontaneous recovery of extinction, we

performed the following experiment with the same design of the

previous one but with 48 h interval between extinction session and

testing, instead of 24 h (Figure 1c, left diagram). In this instance,

we found retention in the vehicle-injected trained group

(F (1,156) = 5,19; p,0.05, CT-Veh vs. TR-Veh) due to spontaneous

recovery, but no retention in the sulfasalazine trained group

(F (1,156) = 1,03; p.0.05, between CT-SSZ and TR-SSZ groups)

(Figure 1c, graph on the right). These results suggest that NF-kB

inhibition facilitates extinction, impairing the spontaneous recovery

of the original memory trace.

NF-kB inhibition facilitates extinction
Although the results of the previous experiment are in agreement

with extinction facilitation, the lack of retention in sulfasalazine-

injected group can also be explained in terms of impairment of the

original memory trace induced during memory reactivation by

retrieval. As shown in the previous section, sulfasalazine does not

impair memory when injected 24 h after training without context re-

exposure but shows amnesic effect if it is administered prior to 5 min

context re-exposure. Sulfasalazine inhibits NF-kB activation induced

by retrieval [21]. Thus, in the last experiment (Fig 1c) memory may

become labile after retrieval induced by context re-exposure.

However, in previous studies on this model, Pedreira and

Maldonado demonstrated, using cycloheximide, that the original

memory remained unaffected after a long re-exposure of 1 or 2 h,

i.e., when extinction was induced. In that circumstance, extinction

was impeded by protein synthesis inhibition [10]. Those findings

supported the idea that reconsolidation and extinction are not

coexisting, so that the original memory cannot be disrupted by drugs

when an extinction process is ongoing. We performed the following

experiments in order to evaluate these two alternative interpretations

NF-kB Inhibition in Extinction
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Figure 1. Effect of sulfasalazine on memory extinction. A. Effect of sulfasalazine injection 24 h after training without re-exposure
session. Left panel: Experimental design. On day 1 the animals were trained with 15 trials (TR groups) or were located in the training apparatus but
remained untrained (CT groups). On day two, the animals were injected with 6 mg/g sulfasalazine (indicated with arrows). 24 h after the injection the
animals were tested for memory retention with one trial in the training context. Right graph: Performance at testing session. B. Effect of sulfasalazine
20 min before prolonged re-exposure session. Left panel: On day 1 the animals were trained with 15 trials (TR groups) or were located in the
actometers but remained untrained (CT groups). On day two, a pair of CT-TR groups was injected with 6 mg/g sulfasalazine and the other with vehicle
solution (indicated with arrows). 20 min later, all groups were re-exposed to the training context for 2 hours. 24 h after the extinction session the
groups were tested for memory retention with one trial in the training context. Right graph: Performance at testing session. C. Effect of sulfasalazine
in spontaneous recovery. Left panel: the same as in B, but the testing session was given 48 h after the extinction protocol. Right graph: Performance at
testing session. Values are Mean Response Level6SEM at testing. *, p,0.05.
doi:10.1371/journal.pone.0003687.g001
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for sulfasalazine effect: extinction facilitation or original memory

impairment.

In previous studies on this model, context re-exposure of 2 h

failed to induce extinction when the danger stimulus was presented

at the end of the extinction session, before animals are removed

from the training context [28]. This finding prompted us to the

following proposition: If sulfasalazine injection disrupts the original

memory, no retention should be found even after a stimulus

presentation at the end of the 2 h re-exposure session. Taking

advantage of this tool, it could be possible to dissect lack of retention

due to extinction facilitation from that due to original memory

impairment. Thus, in the following experiment the same design was

used but we included one stimulus presentation at the end of the

extinction session (Fig 2a). As expected on the basis of previous

studies [28], we found that the stimulus presentation impeded short-

term and long-term extinction in the TR-Veh group (Figure 2b and

c) (CT-Veh vs. TR-Veh, F (1,135) = 3,93, p,0.05 and F (1,135) =

5,70, p,0.05, respectively). Similar results were found in the

sulfasalazine injected groups (Fig 2b and c) (CT-SSZ vs. TR-SSZ,

F (1,135) = 5,03, p,0.05 and F (1,135) = 4,72, p,0.05, respectively).

Thus, these findings suggest that the original memory was not

affected by sulfasalazine administration prior to extinction

session.

In order to obtain further evidence, we performed an

experiment in which an extinction session is presented 24 h after

training and the testing session was delayed from 48 h to 72 h

(Figure 3a, upper diagram). A delay in the spontaneous recovery of

the original memory may be expected if sulfasalazine induces

extinction facilitation. However, for longer periods between

extinction session and testing the original memory should be

recovered. As expected, the analysis of the Veh pair of groups

showed memory recovery (CT-Veh vs. TR-Veh, F (1,154) = 6,62,

p,0.05) but in the analysis of sulfasalazine injected groups no

retention was found (Figure 3b). Thus, sulfasalazine impedes

memory recovery even 72 h after the extinction session.

In the third experiment of this section we explored if it is

possible to induce the recovery of the original memory by means

of reinstatement [2,37] in SSZ treated animals. For this purpose,

we introduced a session of 5 danger stimulus presentations in a

different context (context B) 48 h after the extinction session and

1 day before testing performed in the normal context (context A)

(Figure 4a left panel). Figure 4a shows memory recovery in the

Veh pair of groups (CT-Veh vs. TR-Veh, F (1,131) = 4,45, p,0.05)

but not in the SSZ pair of groups, indicating that 5 trials of danger

stimulus are not able to reinstate the original memory in the drug

treated group.

Next, we repeated the previous experiment but including 10

trials (instead of 5) of reinstatement (Figure 4b, left panel). As

shown in the graph of Figure 4b, the stronger reinstatement

session was able to recover memory retention in both Veh and

SSZ pairs of groups (CT-Veh vs. TR-Veh, F (1,132) = 4,58,

p,0.05; CT-SSZ vs. TR-SSZ, F (1,132) = 6,30, p,0.05).

Finally, in order to rule out the possibility that 10 trials in a

different context are able to induce long-term memory retention

per se, we included an experiment in which a group of animals was

trained in context B with 10 trials and the other group was

exposed to context B but remained untrained. The following day,

animals were tested in context A and no statistically significant

differences were found between groups (Fig 4c, left panel),

indicating that 10 trials were not enough to induce significant

retention. This result is expected taken into account that 15 trials,

but not 10 trials, are required to induce long-term memory in this

model [27], and that this memory is context-specific [35,38].

Thus, the retention found in the previous experiment was due to

memory reinstatement from extinction, indicating the presence of

the original memory.

The experiments of the present section support that the

retention deficit induced by sulfasalazine is due to extinction

facilitation and not to impairment of the original memory.

Figure 2. The effect of sulfasalazine injection in memory
extinction is cancelled by US presentation during CS re-
exposure. A. Experimental design: On day 1 the animals were trained
with 15 trials (TR groups) or were located in the training apparatus but
remained untrained (CT groups). On day two, a pair of CT-TR groups
was injected with 6 mg/g sulfasalazine and the other with vehicle
solution (indicated with arrows). 20 min later, all groups were re-
exposed to the training context for 2 hours. At the end of the 2h
context re-exposure one trial was presented. 48 h after the extinction
session the groups were tested for memory retention with one trial in
the training context. B. Performance elicited by the trial at the end of
the extinction session. C. Performance at testing session. Values are
Mean Response Level6SEM at testing. *, p,0.05.
doi:10.1371/journal.pone.0003687.g002
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NF-kB is inhibited during extinction session
In the following experiments we measured nuclear NF-kB

activity during extinction induction. For this purpose nuclear

extracts were obtained from the central brain at different time

points during extinction session. With these extracts we performed

electrophoretic mobility shift assay (EMSA), a technique that allow

to determine changes in the specific NF-kB DNA binding activity

and to detect the presence or absence of this TF in nuclei [32].

In the first experiment, TR group received a 15 trials training

and CT group remained in the training chamber without

stimulation. Twenty four h later, each group was divided in three

groups of 20 crabs that were re-exposed to the training context

and remained there either for 5, 45 or 120 min. Animals were

then anesthetized in ice-cold water, sacrifice, and the central brain

was dissected (Fig 5a). We obtained nuclear extracts from the pool

of 20 central brains for each group and we performed EMSAs with

a kB consensus sequence DNA oligonucleotide as a probe. Using

this probe one retarded band is observed. This band is specific for

NF-kB, as previously demonstrated [39,32]. Four independent

experiments were performed and the densitometric values of this

band were analyzed as relative NF-kB activity to the respective

CT group (Fig 5b and c). As we had previously found [21], a

5 min re-exposure induced memory reconsolidation and NF-kB

activation (p,0.05, t-test). Conversely, after a 45 min re-exposure

to the training context NF-kB was inhibited (p,0.05, t-test) and

this inhibition persisted, although with less intensity and without

significant differences after 120 min (Fig 5b and c). These time

points are coincident with the induction of memory extinction

[10]. However, if animals were re-exposed to the training context

for 5 min and then were removed and placed in individual

containers (Fig 5d), the initial activation of NF-kB decreased to

basal level at 40 or 175 min (Fig 5e and f). Thus, at variance with

NF-kB inhibition found when animals remained for a prolonged

period in the training context, no inhibition was found when the

crab were exposed for only 5 min and then removed. These data

support that NF-kB is specifically inhibited during the induction of

extinction but not by the mere time course.

Memory deficit induced by NF-kB inhibition in
reconsolidation can be recovered by reinstatement
treatment

Memory activation induced by animal re-exposure to the

training context for a short time (i.e., 5 min) induces NF-kB

activation and reconsolidation. When such activation is blocked by

sulfasalazine, a retention deficit is found [21]. On one hand,

sulfasalazine administration at the same dose used in the present

work induces NF-kB inhibition of about 50% on basal activity

during 45 min [18]. On the other hand, the last results of the

present work showed that NF-kB inhibition is part of the molecular

processes of extinction induction. Bearing these two facts in mind,

we asked whether sulfasalazine during the reconsolidation protocol

could induce memory extinction by prolonged NF-kB inhibition

during memory reactivation rather than by disrupting memory

reconsolidation. If this is the case, a reinstatement protocol should

induce memory recovery. On the contrary, if sulfasalazine

provokes long-term memory impairment the reinstatement treat-

ment should not be able to induced memory recovery. To test these

two alternatives, we performed a reconsolidation experiment in

which, one day after the training session, animals were injected

with vehicle or sulfasalazine and after 20 min were re-exposed to

the training context for 5 min. Forty eight h later, a reinstatement

protocol of 10 trial of stimulus presentation in context B was

performed. A testing session was then presented 24 h after the

reinstatement session. Two pairs of groups without reinstatement

session were included to assess the effect of sulfasalazine in

reconsolidation, as previously found [21] (Fig 6a and c). Both pairs

of reinstated groups, CT-Veh/TR-Veh and CT-SSZ/TR-SSZ

showed retention (CT-Veh vs. TR-Veh, F (1,156) = 12,85, p,0.01;

CT-SSZ vs. TR-SSZ, F (1,156) = 11,02, p,0.05, Fig 6b) while

among the groups without reinstatement session only CT-Veh/

TR-Veh pair showed retention (CT-Veh vs. TR-Veh, F(1,152) =

5,06, p,0.05), and no retention was found in the sulfasalazine CT

vs. TR groups comparison (Fig 6d). These results indicate that the

retention deficit induced by sulfasalazine in reconsolidation can be

recovered by means of reinstatement treatment.

Discussion

The findings of the present work provide evidence about the

role of the TF NF-kB in memory extinction and new insights on its

role in reconsolidation. We initially found that the NF-kB inhibitor

sulfasalazine produce a lack of spontaneous recovery that normally

occurs 2 or 3 days after the induction of extinction. A series of

experiments using sulfasalazine in the extinction session supports

that NF-kB inhibition induced extinction facilitation but not the

impairment of the original memory. On the one hand, the

retention deficit induced by sulfasalazine was not found when

Figure 3. The effect of sulfasalazine injection in memory
extinction endures for at least 72 h. A. Experimental design: On
day 1 the animals were trained with 15 trials (TR groups) or were
located in the training apparatus but remained untrained (CT groups).
On day two, a pair of CT-TR groups was injected with 6 mg/g
sulfasalazine and the other with vehicle solution (indicated with
arrows). 20 min later, all groups were re-exposed to the training
context for 2 hours. 72 h after the extinction session the groups were
tested for memory retention with one trial in the training context. B.
Performance at testing session. Values are Mean Response Level6SEM
at testing. *, p,0.05.
doi:10.1371/journal.pone.0003687.g003
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Figure 4. Reinstatement reveals the original memory over sulfasalazine-facilitated memory extinction. A. The reinstatement with 5
trials fails to reveal the original memory over sulfasalazine-facilitated memory extinction. Left panel: Experimental design. On day 1 the animals were
trained with 15 trials (TR groups) or were located in the training apparatus but remained untrained (CT groups). On day two, a pair of CT-TR groups
was injected with 6 mg/g sulfasalazine and the other with vehicle solution (indicated with arrows). 20 min later, all groups were re-exposed to the
training context (context A) for 2 hours. 48 h after the extinction session the groups were reinstated with 5 trials in a different context (B). 24 h later
all groups were tested for memory retention with one trial in the training context. Right graph: Performance at testing session. B. The reinstatement
with 10 trials reveals the original memory over sulfasalazine-facilitated memory extinction. Left panel: Experimental designs in A but using 10 trials
during the reinstatement session. Right graph: Performance at testing session. C. 10 trials training is insufficient to induce long-term memory in a
novel context. Left panel: Experimental design. On day 1 the animals were trained with 10 trials (TR groups) or were located in the context B but
remained untrained (CT groups). 24 h later, all groups were exposed to the context A and tested for memory retention with one trial. Right graph:
Performance at testing session. Values are Mean Response Level6SEM at testing. *, p,0.05. Plain box: context A. Stripped box: context B.
doi:10.1371/journal.pone.0003687.g004
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extinction was impeded by the danger stimulus presentation at the

end of the extinction session (Fig 2a). On the other hand, a

reinstatement protocol rescued the retention deficit provoked by

sulfasalazine administered previous to the extinction protocol. In

agreement with these findings, the time course of NF-kB activity in

the central brain after memory retrieval showed that, initially,

activation occurred but was followed by inhibition with prolonged

re-exposure to the training context, a treatment that induces

memory extinction. If animals were re-exposed only for 5 min, a

protocol that induces reconsolidation, and then placed in another

context for the rest of the time before NF-kB activity determina-

tion, no inhibition was found, but only the initial activation (Fig 7).

These findings are interpreted in the following terms: retrieval

induced by re-exposure to the training context provokes NF-kB

activation as part of the molecular processes required for long-

term memory re-stabilization. However, in coincidence with the

switch between reconsolidation and extinction [10], the prolonged

exposure to the CS (training context) without reinforcement

initiate a process that leads to NF-kB inhibition as part of the

molecular mechanisms of extinction (Fig 8).

The long-term persistence of memory requires regulation of

gene expression and, particularly, activation of the NF-kB

pathway. Inversely, extinction that involves the temporary waning

of the conditioned response would imply, among other mecha-

nisms, exportation of NF-kB from the nucleus with the subsequent

prevention of NF-kB transcriptional activity.

Figure 5. NF-kB activity during extinction session. A. Top diagram: experimental design. On day 1 the animals were trained with 15 trials (TR
groups) or were located in the training apparatus but remained untrained (CT groups). On day two, the CT-TR groups were re-exposed to the training
context. At different time points (indicated by arrows), animals of CT and TR pair of groups were anesthetized and nuclear extracts from the 20 central
brains of each group were obtained. B. Representative EMSAs performed with nuclear extracts obtained from CT and TR groups at 5, 45 and
120 minutes of context re-exposure. The specific band is indicated with a filled arrow. C. NF-kB activity in TR group relative to CT. Mean6SEM of
relative optic density (ROD) values of the specific NF-kB retarded band normalized to CT group media, obtained in four independent experiments. D,
E and F. NF-kB activity after memory reactivation. D. Top diagram: experimental design. On day 1 the animals were trained with 15 trials (TR groups)
or were located in the training apparatus but remained untrained (CT groups). On day two, the CT-TR groups were re-exposed for 5 minutes to the
training context. At different time points after the re-exposure (indicated by arrows), animals of CT and TR pair of groups were anesthetized and
nuclear extracts from the 20 central brains of each group were obtained. E. Representative EMSAs performed with nuclear extracts obtained from CT
and TR groups at 5, 45 and 180 minutes after context re-exposure. The specific band is indicated with a filled arrow. F. NF-kB activity in TR group
relative to CT. Mean6SEM of relative optic density (ROD) values of the specific NF-kB retarded band normalized to CT group media, obtained in four
independent experiments. *, p,0.05 in t-test.
doi:10.1371/journal.pone.0003687.g005
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Figure 6. The reinstatement with 10 trials reveals the original memory over sulfasalazine-induced amnesia in memory
reconsolidation. A. Experimental design: On day 1 the animals were trained with 15 trials (TR groups) in the context A or were located in the
context but remained untrained (CT groups). On day two, a pair of CT-TR groups was injected with 6 mg/g sulfasalazine and the other with vehicle
solution (indicated with arrows). 20 min later, all groups were re-exposed to the context A for 5 minutes. 48 h after re-exposure session the groups
were reinstated with 10 trials in the context B. 24 h later all groups were tested for memory retention with one trial in the context A. B. Performance
at testing session. C. Experimental design: On day 1 the animals were trained with 15 trials (TR groups) in the context A or were located in the context
but remained untrained (CT groups). On day two, a pair of CT-TR groups was injected with 6 mg/g sulfasalazine and the other with vehicle solution
(indicated with arrows). 20 min later, all groups were re-exposed to the context A for 5 minutes. 48 h after re-exposure session the groups were
exposed to the context B for 30 minutes. 24 h later all groups were tested for memory retention with one trial in the context A. D. Performance at
testing session. Values are Mean Response Level6SEM at testing. *, p,0.05.
doi:10.1371/journal.pone.0003687.g006

Figure 7. Time course of NF-kB activity underlying memory reconsolidation or extinction. Summary of EMSA experiments shown in Fig. 5.
CT, control group; TR-Rec, trained group re-exposed for 5 minutes to the training context; TR-Ext, trained group re-exposed 5, 45 or 120 minutes to
the training context. Mean6SEM of relative optic density (ROD) values of the specific NF-kB retarded band normalized to CT group media, obtained
in four independent experiments for each time point and treatment. *, p,0.05 in t-test.
doi:10.1371/journal.pone.0003687.g007
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On the basis of the present findings and previous results, we

propose a working model for NF-kB role in memory after retrieval

(Fig 8). The initial process of transcriptional activation induced by

retrieval would be mediated by protein kinases. In particular, the

activation of IKK protein kinase induces NF-kB translocation to

the nucleus and its activation. The prolonged presence of the CS

would induce activation of other mediators such as protein

phosphatases (i.e. calcineurin) that can increase the level of NF-kB

inhibitor IkB and produce its nuclear exportation [40]. Under this

interpretation, the administration of sulfasalazine during memory

reactivation reinforced the effect of prolonged exposure to the CS,

provoking extinction strengthening. Accordingly, in the last

experiment of the present paper (Fig 6b), the retention deficit

induced by sulfasalazine administered before memory reactivation,

is reverted by a reinstatement session because the temporary

inhibition of NF-kB mimicked the extinction process, allowing a

short 5 min exposure to the context to induce memory extinction.

Our interpretation is in line with the point of view that

weakening of the original consolidated circuit is part of the neural

correlate of memory extinction. However, we cannot exclude the

requirement of reinforcement mechanisms in other circuits, non-

dependent of NF-kB pathway, mediating the same extinction

process. For instance, in other memory model, fear conditioning in

rats, the medial prefrontal cortex is involved in extinction by feed-

forward inhibition in the lateral amygdala [41]. In such a case, c-

fos immediate early genes expression was reported [42], indicating

activation of TFs and gene expression.

Recent reports shed light into the molecular mechanisms

engaged during memory extinction. Lin and co-workers found that

in mice amygdala, Ca2+-dependent phosphatase calcineurin levels

are rapidly increase during extinction induction (a process that

required protein synthesis), and that extinction is blocked after

pharmacological inhibition of calcineurin [24]. Moreover, a

correlation was established between the extinction protocol and

a decrease in phosphorylated CREB levels, the active form of

CREB. In the same direction, it was shown that the extinction of

fear memory can be facilitated by the transgenic inhibition of

PKA, a well known pathway to CREB activation [43]. On the

basis of these previous reports and the present work, we propose

that extinction of long-term memories depends upon the inhibition

Figure 8. A model of NF-kB role in memory extinction and reconsolidation, and the effect of its inhibition. 1) Five min context re-
exposure induces NF-kB-dependent and protein synthesis-dependent memory reconsolidation. 2) Prolonged re-exposure induces NF-kB inhibition
and protein synthesis-dependent memory extinction. 3) NF-kB inhibition by sulfasalazine plus 5 min re-exposure mimics memory extinction. 4) NF-kB
inhibition by sulfasalazine plus prolonged re-exposure induces extinction facilitation.
doi:10.1371/journal.pone.0003687.g008
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of the transcriptional machinery engaged during the original

memory trace consolidation. In other words, the inhibition of gene

expression could be a necessary step in order to extinguish long-

term memories. In several memory models in both vertebrates and

invertebrates extinction requires de novo protein synthesis [4,8,10].

The evidence presented here support that extinction does not

required the activity of a key TF involved in consolidation and

reconsolidation but actually, requires its inhibition. Similarly,

LTD, a model of neural plasticity that involves synaptic

weakening, is also dependent on protein synthesis but not on

gene transcription [44].

In most cases, extinction is less persistent than the original

memory, a fact that allows for spontaneous recovery of the original

memory trace. Since gene expression is necessary for persistence of

long-lasting neural plasticity, the inhibition of TFs and the

concomitant transcription inhibition during extinction could

explain in part the less persistent nature of extinction memory.

It is noteworthy that NF-kB is involved in memory consolidation

and reconsolidation both in crabs and rodents [22,31,34], suggesting

that its role is evolutionarily conserved. Here we described in the

crab Chasmagnathus memory system that inhibition of this TF

enhanced memory extinction. Taking into account that pharmaco-

logical interventions to enhance extinction have been proposed as

potential approaches to the treatment of maladaptive memory

disorders [45–48], the elucidation of novel molecular mechanisms

underlying extinction could help to identify novel molecular

candidates for pharmacological interventions that may provide

more effective treatments of such neuropsychiatric disorders.

Materials and Methods

Animals
Adult male Chasmagnathus granulatus intertidal crabs, 2.6–2.9 cm

across the carapace, weighing 1760.2 g (n = 60), were collected

from water less than 1 m deep in the estuarine coasts of San

Clemente del Tuyú, Argentina, and transported to the laboratory,

where they were lodged in plastic tanks (30645620 cm) filled to

0.5 cm depth with diluted (12%, pH 7.4–7.6) marine water

(prepared from Cristalsea Marinemix salts, USA), to a density of

20 crabs per tank. The holding room was maintained on a 12 h

light-dark cycle (light on 07:00–19:00 h). Animals were fed rabbit

pellets (Nutrientes S.A., Argentina) every 3 days and water was

changed after feeding. Temperature of both holding and

experimental rooms was maintained within a range of 22–24uC.

Experiments were carried out between the third and the tenth day

after the animal’s arrival. Each crab was used in only one

experiment. Experiments were carried out in accordance with the

National Institute of Health Guide for the Care and Use of

Laboratory Animals (NIH publication 80-23/96), USA, and local

regulations. All efforts were made to minimize animal suffering

and to reduce the number of animals used.

Training-testing apparatus
The experimental unit was described in detail elsewhere [49].

Briefly, it consists in a bowl-shaped plastic container where the

crab is lodged and an opaque rectangular screen moves

horizontally over the animal. Screen displacements evoke a crab’s

running response and, as a consequence, container vibrations

which induce electrical signals through a piezoelectric transducer.

Signals recorded during a trial were translated into numerical units

ranging from 0 to 8000. The experimental room had 40 units,

separated from each other by partitions. A computer was

employed to program trial sequences, trial duration and inter-

trial intervals, as well as to monitor experimental events.

Drugs and injection procedure
5-[4-(2-Pyridylsulfamoyl)phenylazo]salicylic acid (sulfasalazine)

(Sigma, USA) was freshly dissolved in crustacean saline [50] with

10 mM HEPES pH 7.6 plus 15% dimethylsulfoxide (DMSO),

final pH 7.6. Fifty ml of vehicle or drug solution were given

through the right side of the dorsal cephalothoracic-abdominal

membrane by means of a syringe fitted with a sleeve to control

depth of penetration to 4 mm, thus ensuring that the injected

solution was released roughly at the centre of the pericardial sac.

The total volume of hemolymph was estimated at 5 ml (30 % of

the body weight) [51] resulting an approximate 100-fold dilution

of the drug in hemolymph.

Procedure in memory evaluation experiments
Each trial lasted 9 sec and consisted of two cycles of

presentation of the screen over the actometer. Each cycle lasted

2.5 sec with 2 sec of interval between cycles. The crab’s activity

was recorded during the entire trial time.

Each experiment lasted between 3 to 5 days and included three

phases, namely, training session (day 1), exposure session (day 2),

and testing session (day 3, 4 or 5). Crabs were individually housed

during the inter-session interval in plastic containers, covered to a

depth of 0.5 cm with marine water and kept inside dimly lighted

drawers. The training session consisted of 15 trials with an inter-

trial interval of 171 sec. In the exposure session, depending on the

protocol, the animals were exposed for 5 min or 2 h to the training

context (i.e., container with plain walls) without visual danger

stimulus presentation. The testing session consisted of one trial.

Both the training and testing sessions were preceded by 15 min of

adaptation in the apparatus. The unit used during training session

is referred to as the training context. In all experiments, one group

was trained (TR-group) while the other was located in the device

but remained untrained (control group, CT-group).

When indicated, a pair of CT-TR group was injected with

vehicle (Veh-pair) or sulfasalazine (SSZ-pair) 20 minutes before

the exposure session. Each experiment consisted of four groups (n

= 30–40 for each group).

In the reinstatement experiments we used two different contexts

to train and reinstate the animals. The context A, the training

context, consisted of a container with plain orange walls. The

context B, the reinstatement context, consisted of a container with

black and white striped walls. With such a change in this highly-

contrasted visual trait was demonstrated that long-term memory is

context-specific [35].

Data analysis and drug effect evaluation
Retention of learning acquired during training was considered

when a statistically lower level of response in the testing session was

found for trained group relative to control group injected with the

same solution (drug or vehicle). The rationale for this criterion is

that in previous experiments performed in our laboratory, a

significant difference (t test, a= 0.05) between trained (TR) and

untrained groups (CT) was invariably disclosed at testing session

24 h or more after training when 15 or more training trials

(ITI = 171 sec) were given. Such significant differences were also

found when crabs were injected with vehicle at diverse pre- and

post-training intervals. Accordingly, predictions are for a signifi-

cant difference at testing between CT and TR groups. Therefore,

throughout this papers results of the behavioural study are

analyzed with a priori planned comparisons using a weighted

means ANOVA with a (per comparison error rate) = 0.05,

according to the standard method [52]. The lack of difference

between CT and TR groups is thus assumed as no memory

retention. In the case that the extinction protocol is presented, the
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lack of retention is considered as the extinction memory. A

comparison between control groups injected with drug or vehicle

was necessary in order to determine eventual drug side-effects

affecting the response level at testing in a way not related to

training experience. In general, the statistical analysis of testing

data included a set of three a priori planned comparisons, namely

CT-Veh vs. TR-Veh, CT-SSZ vs. TR-SSZ and CT-Veh vs. CT-

SSZ, using a weighted means ANOVA with a (per comparison

error rate) ,0.05 [52,53]. In the first comparison, a difference

between CT-Veh vs. TR-Veh groups was expected due to the

reduction in response level induced by training in the latter group.

On the contrary, in the second comparison, if the drug impairs

retention or spontaneous recovery, no difference was expected

between CT-SSZ and TR-SSZ. Finally, as long as the drug does

not affect the level of response at testing, no difference was

expected in the comparison between control groups.

Electrophoretic mobility shift assay
Immediately after re-exposure animals were anaesthetized by

immersion on ice-cold water for two min. The central brain

(supraesophageal ganglion) was then dissected. Twenty ganglions

per sample were pooled in 1 ml buffered crab saline solution

(pH 7.6). Nuclear extracts were obtained as described previously

[32]. To assess NF-kB activity, 12 mg of nuclear proteins extracts

were used and double-stranded oligonucleotide DNA containing

the NF-kB binding site (59-AGTTGAGGGGACTTTCC-
CAGGC-39, binding site in bold) (Promega) was used as probe.

With this probe, a single and specific retarded band is found [33].

The relative optical density (R. O. D.) of the band was estimated

using NIH ImageJ 1.36b software. All measures were made with

exposures within the linear range of the film (Agfa CP-BU). Images

were digitalized by means of a scanner for negatives (Umax

PowerLook III). Protein contents of the extracts were measured in

triplicate by Bradford method and checked for quality and

quantity by comparing pattern intensities in SDS-PAGE. CT vs.

TR group comparisons was performed by t-test.
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