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Evaluating digital medicine ingestion data from seriously
mentally ill patients with a Bayesian Hybrid Model
Jonathan Knights 1, Zahra Heidary1, Timothy Peters-Strickland1 and Murali Ramanathan2

The objective of this work was to adapt and evaluate the performance of a Bayesian hybrid model to characterize objective
temporal medication ingestion parameters from two clinical studies in patients with serious mental illness (SMI) receiving treatment
with a digital medicine system. This system provides a signal from an ingested sensor contained in the dosage form to a patient-
worn patch and transmits this signal via the patient’s mobile device. A previously developed hybrid Markov-von Mises model was
used to obtain maximum-likelihood estimates for medication ingestion behavior parameters for individual patients. The individual
parameter estimates were modeled to obtain distribution parameters of priors implemented in a Markov chain-Monte Carlo
framework. Clinical and demographic covariates associated with model ingestion parameters were also assessed. We obtained
individual estimates of overall observed ingestion percent (median:75.9%, range:18.2–98.3%, IQR:32.9%), rate of excess dosing
events (median:0%, range:0–14.3%, IQR:3.0%) and observed ingestion duration. The modeling also provided estimates of the
Markov-dependence probabilities of dosing success following a dosing success or failure. The ingestion-timing deviations were
modeled with the von Mises distribution. A subset of 17 patients (22.1%) were identified as prompt correctors based on Markov-
dependence probability of a dosing failure followed by a dosing success of unity. The prompt corrector sub-group had a better
overall digital medicine ingestion parameter profile compared to those who were not prompt correctors. Our results demonstrate
the potential utility of a Bayesian Hybrid Markov-von Mises model for characterizing digital medicine ingestion patterns in patients
with SMI.
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INTRODUCTION
Lack of adherence to medication is an important factor that
contributes to increased healthcare utilization1,2: Among patients
with serious mental illness (SMI)—which includes schizophrenia,
bipolar disorder, and major depression—this is of particular
concern, with some reports estimating rates of nonadherence as
high as 60%.1,3 Within the SMI population, effective pharma-
cotherapy is critical for managing the risk of serious potential
adverse events such as relapse of psychosis, recurrence of
symptoms, poor social functioning, hospitalizations, and suicide
attempts.4,5

Conventional methods of inferring medication ingestion
adherence to pharmacotherapy are limited in their utility as they
acquire data on surrogate measures associated with medication
ingestion events and involve subjectivity. Examples of older
methods with high subjectivity are patient self-reports, medication
possession ratio,6 and percentage of days covered.7 Newer
approaches such as electronic blister packs and medication event
monitoring systems have lower subjectivity; however, these
methods assume that the interaction with the packaging implies
successful ingestions. Pharmacokinetic sampling is sometimes
leveraged as an objective measure of general adherence, but is
sub-optimal in routine clinical practice because it is invasive and
provides only a single snapshot in what may have been many
weeks of ingestion opportunities. Given the limitations of
conventional medication ingestion monitoring systems, there is

a clearly recognized but yet unmet clinical need that digital
medicine systems are ideally suited to address.
Digital medicine, in this context, refers to the combination of an

active pharmaceutical and an ingestible sensor component that
communicates to a mobile or web-based application to capture
that a patient has taken their medication at a specific time.8 A core
objective of digital medicine systems is to improve patient
adherence9,10; however, one of their primary advantages over
competing alternatives is that they provide a signal corresponding
to successful medication ingestion events, which can directly
enable timely and impactful interventions by the care team.10

These systems have the potential for a transformative impact on
understanding medication ingestion behaviors, which could lead
to better public health outcomes over time.
Given the importance of medication ingestion data for

informing clinical decision making (particularly in SMI) and the
rising prevalence of risk stratification and predictive models in
both the clinical and population health settings, the successful
application of statistical frameworks for describing objective
patient medication ingestion patterns is of value. This research
applies a novel Bayesian model to characterize digital medicine
data from two clinical studies in SMI: The model,11–13 which has
not been extensively investigated in digital medicine, or in SMI
patients, provides informative metrics on medication ingestion
patterns including observed medication ingestion percent, excess
dosing, duration of observed treatment, probability of dosing
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succeses following dosing successes or failures, and medication
ingestion-timing deviations.

RESULTS
Description of the digital medicine system
The digital medicine system leveraged in this work is composed of
a wearable sensor (patch), a mobile application, and an ingestible
sensor embedded in an active pharmaceutical, which has been
developed to capture medication ingestions in patients with SMI14

(Fig. 1).

Demographic, clinical, and dosing characteristics
The overall demographic and clinical characteristics of the study
sample are summarized in Table 1. Demographic, clinical and
prescribed dosing data from 79 subjects from two clinical studies,
with 49 and 30 subjects, respectively were pooled. Two subjects
(one from each study) were excluded from the modeling because
they took only one dose.
The study sample contained representative numbers of the

White–American and Black or African–American subjects. How-
ever, the numbers of Asian and Other racial groups were small as
were the number of subjects of Hispanic or Latino ethnicity. There
were no American Indian or Alaska Natives and Native Hawaiian or
Other Pacific Islanders.
Table 2 summarizes the prescribed drug dosing regimen and

observed digital medicine ingestion-related characteristics in the
study sample. The median aripiprazole dose was 15 mg (Inter-
quartile range= 10, Range: 2–30mg). The median number of
concomitant medications was 4 (Interquartile range= 3, Range:
1–12). The median duration (days) elapsed between first and last
ingestion was 53 days, with a median of 75.9% of the expected
ingestions being observed (observed ingestion percent). Finally,
The frequency of excess dosing events ranged from 0–14.3%
across patients.

Bayesian modeling of digital medicine ingestion parameters
Figure 2 compares the observed probability density histograms for
overall observed ingestion percent (OIP), the Poisson λ parameter
describing the observed excess dosing events, as well as mean
and concentration parameters for the von Mises distribution
describing the observed ingestion-timing deviations. The Bayesian

model satisfactorily characterized the OIP density function and the
monotonically decreasing nature of the Poisson λ parameter
density function. The fit of the von Mises concentration parameter
was satisfactory but there was modest lack of fit for the sharp peak
of the von Mises mean density function. We hypothesized that this
deviation was potentially related to the excess density at pFS= 1,
which we address in the next section.
The two main Markov parameters, pSS and pFS, captured the

probability of an ingestion success following an ingestion success,
and the probability of an ingestion success following an ingestion

Fig. 1 An overview of the digital medicine system (DMS). From left to right: Patient takes medication embedded with ingestible sensor, which
is activated in the stomach. The ingestible sensor is detected by the wearable sensor, which sends its collected information (including
additional sensors not depicted) to the patient’s smartphone. The information is then passed on to a secure cloud infrastructure where it can
be made available to appropriate members of the patient’s care team

Table 1. Demographic, clinical characteristics of the study sample

Sample size n 77

Females: Males (% Female) 36:41 (47%)

Age, years 47.0 ± 12

Race

Black or African–American 41 (53%)

Asian 3 (4%)

White 31 (40%)

Other 2 (3%)

Ethnicity

Hispanic or Latino 2 (3%)

Not Hispanic or Latino 75 (97%)

Diagnosis

Schizophrenia 44 (57%)

Bipolar 1 disorder 22 (29%)

Major depressive disorder 11 (14%)

Disease duration, years 11.9 ± 11

Clinical Global Impression—Severity (CGI-S) Scorea 3.13 ± 0.85

Personal and Social Performance Scale (PSP) Scoreb 71.8 ± 14

aClinical Global Impression—Severity scale (CGI-S) is a 7-point scale
measure for the severity of the patient’s illness at the time of assessment,
relative to the clinician’s past experience with patients who have the same
diagnosis (https://en.wikipedia.org/wiki/Clinical_Global_Impression)
bPersonal and Social Performance Scale (PSP) measures functioning and
social performance: Original reference30
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failure, respectively. With the exception of the aforementioned
excess point density at pFS= 1, both pSS(i) and pFS(i) were
adequately captured as functions of the parameters s(i) and σ(i)
from helix-coil theory in polymer physics15–17 (see Methods).
Figure 3 compares the observed probability density histograms for
s(i) and σ(i), as well as pSS(i) and pFS(i), to the corresponding
Bayesian probability density estimates. The observed probability
density histograms of all four parameters had asymmetric non-
Gaussian characteristics. The long-tailed density of s(i) and σ(i), as
well as the right skewed, domain-limited density of pSS(i) and pFS(i)
were satisfactorily characterized by our Bayesian model priors—
again, with the exception of the excess density at pFS= 1.

Digital medicine ingestion parameter profiles of the prompt
corrector sub-group
We investigated the lack of fit at pFS= 1 further. For purposes of
these additional analyses, we defined a patient to be a Prompt
Corrector (PC) if they exhibited pFS= 1 and as a Non-Prompt
Corrector (NPC) otherwise.
The proportion of PC patients was 22.1% (N= 17): This sub-

group was comprised of 13.6% (6 of 44) of the schizophrenia
sample, 36.4% (8 of 22) of the bipolar type 1 sample, and 27.3% (3
of 11) of the major depressive disorder sample. These differences
did not reach statistical significance (p= 0.11, χ2 test, df= 5). We
did not find evidence for differences in aripiprazole dose (p= 0.20,
Mann–Whitney test), number of concomitant medications (p=
0.65, Mann–Whitney test), baseline Clinical Global Impression
Severity scale (CGI-S, a 7-point clinician-based scale measure of
disease severity, higher scores are worse) values (p= 0.063,
Mann–Whitney test) or baseline Personal and Social Performance
Scale (PSP) Score of functioning and social performance (p= 0.91,
Mann-Whitney test). We did not obtain evidence for differences in
gender (p= 0.10, Fisher Exact Test) or race (p= 0.42, Fisher Exact

Test, for Black or African-American relative to White) distributions
in the PC vs. NPC groups. Ethnicity differences were not evaluated
in statistical testing because there were only 2 Hispanic or Latino
subjects. The mean age of the PC (median: 52 years, IQR: 18 years,
range: 19–64 years) and NPC (median: 49 years, IQR: 20 years,
range: 20–62 years) groups was similar (p= 0.34, Mann-Whitney
test). However, the PC group had a lower (p < 0.001,
Mann–Whitney test) disease duration (median: 5.00 years, IQR:
8.00 years, range: 1–26 years) compared to the NPC group
(median: 14.0 years, IQR: 16.0 years, range: 1–38 years).
Figure 4 summarizes the mean digital medicine ingestion

parameter profiles for the PC and NPC groups. The pFS in the PC
group was 1 by definition whereas the median pFS in the NPC
group was 0.5 (IQR= 0.296). The PC sub-group had higher pSS,
overall OIP (median: 0.927 for PC vs. 0.700 for NPC), and von Mises
concentration, as well as lower values of excess dosing event
Poisson λ compared to the NPC group (for p-values see Fig. 4). The
OIP, pFS, von Mises concentration and excess dosing event Poisson
λ parameters are consistent with the PC group having a better
overall digital medicine ingestion profile compared to the NPC
group. The survival functions of the observed ingestion duration
were similar between the two groups (Fig. 4g), suggesting that the
PC group did not arise as a fragment of shorter durations on the
system.

DISCUSSION
Digital medicine systems are providing near real-time access to
objective medication ingestion information,14 enabling physicians
and care teams to make more informed treatment decisions: Is
medication being taken as prescribed? If there is a lack of clinical
improvement, is medication adherence a factor? Objective digital
medicine ingestion data will reduce the reliance on patient and
caregiver reports that (psychiatric) care teams consider when
addressing such treatment-related issues. The benefits of this data
extend directly to the patient as well by eliminating subjectivity
and perceptions of mistrust, both of which have previously
demonstrated correlations with medication adherence in SMI.18

Digital medicine systems have begun to show benefit in clinical
outcomes in patients with uncontrolled hypertension and type 2
diabetes.10 Improved patient engagement, effective monitoring,
and the ability to make timely interventions were among the key
drivers reported associated with the benefit derived from the
digital medicine system. However, clinical efficacy is more
challenging to measure in SMI where many of the available
medications require weeks to months to elicit meaningful change,
and there are no direct laboratory observations that can be
associated with efficacy. In this context, objective data on dosing
history may be the best direct measurement to inform clinical
response, as it will enable distinction between patient- and drug-
related treatement success factors on a more immediate time-
scale: Further, the ability to investigate variability in dose-timing,
as well as patterns within periods of successful and unsuccessful
dosing intervals will enable more personalized treatment
recommendations.
In addition to leveraging digital medicine data within the

context of a particular clinical visit or discussion with a patient, the
scientific community must now also adopt new statistical frame-
works—or re-evaluate and enhance existing ones—within the
context of digital medicine to fully realize the benefits of this data,
especially in the SMI patient population. With this in mind, we
aimed to adapt and evaluate the performance of a Bayesian
hybrid model to characterize digital medicine ingestion patterns
in patients with SMI. Our results suggest that the hybrid Bayesian
framework is a promising approach for characterizing medication
ingestion behaviors obtained with a digital medicine system in
SMI patients.

Table 2. Drug adherence characteristics

Sample size n 77

Aripiprazole dose

2mg 7 (9%)

5mg 8 (10%)

10mg 23 (30%)

15mg 14 (18%)

20mg 10 (13%)

30mg 15 (20%)

Number of concomitant medications

1 9 (12%)

2 9 (12%)

3 15 (30%)

4 11 (15%)

5 9 (12%)

6 4 (5%)

7 8 (11%)

8 3 (4%)

9 5 (7%)

>10 2 (3%)

Missing data 2

Observed ingestion duration, days,
median (Range, IQR)

53 (6–64, 20)

Observed ingestion percent %, median
(Range, IQR)

75.9% (18.2–98.3%,
32.9%)

Observed fraction of excess dosing
events (%), median (Range, IQR)

0% (0 −14.3%, 3.0%)
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An observation of particular interest was the presence of a sub-
group of Prompt Corrector (PC) patients who always successfully
registered an ingestion following a failed ingestion event: This
group comprised 22.1% of our sample. The presence of a subset
with these desirable system characteristics was surprising. Part of
our working hypothesis is that PC patients may be individuals who
are well organized, follow a well-established routine for drug
administration, and possibly other activities of daily living;
however, we also found that more recently diagnosed patients
were significantly more likely to be in the PC group, so there may
also be a motivational component. It should be noted that within
the current PC definition it is theoretically possible for a patient to
take every alternate dose (50% expected ingestions observed) and
still maintain the PC (pFS= 1) criteria; however, systematically
taking every alternate dose in such a fashion is likely a pre-
planned and patterned choice that requires the patient to be
highly conscientious about correcting missed doses and is not

inconsistent with the notion of a prompt corrector. In long term
dosing, beyond the currently explored 8-week digital medicine
use-case, we acknowledge that the pFS= 1 definition of prompt
correctors may be too stringent; although as longer-term data sets
become available, there may still be an appropriate pFS threshold
to classify PC patients with similar characteristics, and the ability to
promptly correct missed ingestions.
These promising results in integrative modeling of ingestion

patterns from a digital medicine system (DMS) represent a useful
first step. However, additional high-resolution temporal data on
other biometric markers such as actimetry and ECG that provide
information on rest and activity patterns are also available with
this DMS—these data streams could add additional contextual
information for conditioning the priors in the Bayesian modeling
framework. The framework is also versatile enough to accom-
modate distinctive sub-groups (such as the PC patients) by
incorporating mixture models as priors in the Bayesian framework
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for the parameters. Further, the utility of contextual data outside
the current digital medicine system should be evaluated, e.g.,
wearables and mobile passive sensing, potentially in conjunction
with self-report ecological momentary assessments or brief clinical
questionnaires.19–21

In conclusion, this work has demonstrated that a hybrid
Bayesian modeling framework is capable of characterizing
temporal patterns of successful and unsuccessful ingestion events
from a digital medicine system in patients with serious mental
illness. We have also identified immediate next steps and
additional opportunities for research in the space. To our
knowledge, this modeling framework is among the first to be
applied to digitally acquired medication ingestion
data—especially in the SMI population—and opens the door to
new research possibilities in the area of medication adherence.

METHODS
Digital medicine system (DMS)
The DMS consists of six primary components: (i) an ingestible event marker
(IEM) embedded inside an active pharmaceutical; (ii) a patient-worn patch
(on the torso); (iii) a mobile application; (iv) a secure cloud infrastructure for
housing and making data available; (v) a care team portal that is accessible
via a web browser; and (vi) a call-center to provide support to patients and
their care teams. The patient-worn patch is designed for 7-days of wear
and contains software to detect the IEM after ingestion, as well as a three-
axis accelerometer, electrocardiogram and other sensors. All of the data
that is collected from the patch is transmitted to the mobile application
and then to the secure cloud infrastructure where it may be made
available to appropriate members of the care team. Figure 1 provides a
high-level overview of the DMS system.
This digital medicine system requires a patient-worn device to detect

ingestions; however, we do not address the complexity of patch
compliance in this work. We define a successful ingestion event as an
observed ingestion, and an unsuccessful ingestion event as an unobserved
ingestion. The “observed ingestion duration” is then defined as the elapsed

duration between the first and last observed ingestion. As an analogue to
overall adherence, we use the “observed ingestion percent” (OIP), defined
as the fraction of ingestions observed within the observed ingestion
duration.

Clinical study descriptions
Both of these studies provided smartphones with the appropriate DMS
software pre-loaded and required male and female patients to be on
stable, once-daily, doses of oral aripiprazole: It was required that patients
were deemed “capable” of using a DMS. During these studies patients
received only the digital versions of their stable oral aripiprazole dose.
Further, both studies received human subject approvals from the
appropriate institutional review boards and subjects provided informed
consent.
Study 1 was a multicenter, 8-week, open-label study with a primary

objective of capturing the usability of the DMS by adult subjects with a
diagnosis of schizophrenia with regard to their ability to independently
(and successfully) replace their patch by the end of week 8 (NCT02219009).
Patients were expected to perform five site visits following the screening
period: baseline, and weeks 1, 2, 3, and 8.
Study 2 was a multicenter, 8-week, open-label, single-arm, exploratory

trial with a primary objective of assessing the functionality of an integrated
call center for the DMS by adult subjects with primary diagnoses of
schizophrenia, major depressive disorder, or bipolar 1 disorder
(NCT02722967). This study consisted of two phases: A 2-week prospective
phase, and a 6-week observational phase. In order to progress to the 6-
week observational phase, patients were required to have at least 50%
patch data capture for the 7 days prior to the week 2 visit. Subjects who
met this criterion were eligible to continue into the 6-week observational
phase and would be expected to complete four total site visits (baseline
and weeks 2, 4, and 8).

Modeling digital medicine ingestion profiles
The hybrid Markov chain-von Mises model has been described in detail
elsewhere.12 We recapitulate its key features here for completeness. The
individual model consists of four inter-dependent components:
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1. A two-state Markov chain was used to model the occurrence of
unobserved ingestions (failures) and observed ingestions (suc-
cesses).

2. The ingestion-timing deviations were modeled with a von Mises
distribution.

3. Observed ingestion duration was modeled with a Weibull distribu-
tion.

4. The frequency of observed excess dosing events was modeled with
a Poisson distribution.

Modeling the two-state Markov chain. The short-range dependence of
ingestion observations was modeled using a two-state time-homogeneous
Markov chain with transition matrix A:

A ¼ S

F

pSS pSF
pFS pFF

� �
¼ S

F

pSS 1� pSS
pFS 1� pFS

� �

The probability of a success (observed ingestion) following a success at
the preceding dosing event was denoted by pSS, and the probability of a
success following a failure (unobserved ingestion) at the preceding event
was denoted by pFS.
Maximum-likelihood estimates22 of pSS and pFS were obtained from NSS,

NFS, NFF, and NSF, the frequencies of success followed by success, failure
followed by success, failure followed by failure and success followed by
failure events, respectively, using:

p̂SS ¼ NSS
NSSþNSF

p̂FS ¼ NFS
NFSþNFF

The transition matrix Ai used for defining the Markov chain normalizes
each row of Ni in subject i:

Ai ¼
S

F

pSSðiÞ pSFðiÞ
pFSðiÞ pFFðiÞ

� �
¼ S

F

pSSðiÞ 1� pSSðiÞ
pFSðiÞ 1� pFSðiÞ

� �

The parameterization of this model consisted of hyperbolic functions of
two parameters, s(i) and σ(i), that underlie the helix-coil transition model in
polymer physics,15–17 which has been previously explored as a viable
model for adherence modeling.13

Ai ¼
s ið Þ

1þs ið Þ
1

1þs ið Þ
σðiÞs ið Þ

1þσðiÞs ið Þ
1

1þσðiÞs ið Þ

2
4

3
5

The priors for s(i) and σ(i) were:

s ið Þ ¼ ezðiÞ

z ið Þ � Normalðas; bsÞ
σðiÞ � Gammaðaσ ; bσÞ
Where z(i) is an intermediate dummy variable. as and bs represent the
mean and precision of the normal distribution, respectively, while aσ and
bσ represent the shape and scale parameters of the Gamma distribution.

Modeling observed ingestion-timing deviations. The ingestion-timing
deviation of the ith ingestion, δi, was defined as the difference between
the actual ingestion time and the closest expected ingestion time. The
probability density function (PDF) of the ingestion-timing deviations δ
relative to τ (the dosing interval) after transformations to angular
coordinates, θ, are assumed to be distributed according to the von Mises
(VM) PDF function VM (ψ,ω):

θ ¼ 2π
δ

τ
� VM ψ;ωð Þ

The VM distribution describes angular random variables, and its PDF p(θ)
at angular position θ radians is:

p θð Þ ¼ eω�cos θ�ψð Þ

2πI0 ωð Þ for ψ� π � θ � ψþ π

The ψ(i) is the mean and ω(i) is a measure of how concentrated the
ingestion-timing deviation angles are around the mean in subject i; Io is the

Bessel function of order zero.
The R circular statistics package23 was used to obtain maximum

likelihood estimates for ψ and ω for each subject. The prior for the von
Mises location parameter ψ(i) was a von Mises distribution. The prior for
the von Mises concentration parameter ω(i) was assumed to follow a log-
normal distribution.

ψðiÞ � vonMisesðaψ; bψÞ
ωðiÞ � LogNormalðaω; bωÞ
Where aψ and bψ are the same VM parameters as above, and the aω and bω
represent the mean and precision of the log-normal prior, respectively.

Modeling observed excess dosing events
In this analysis, an excess dosing event was defined as more than one
ingestion observed in a given day for a given patient. The distribution of
observed excess dosing events was modeled with a Poisson distribution.
Maximum-likelihood estimation was used to calculate Poisson rate
parameter λ(i) for subject i, whose prior in the population was assumed
to follow an exponential distribution with rate parameter aλ:

λðiÞ � ExponentialðaλÞ

Modeling observed ingestion duration
Observed ingestion duration was defined as the number of dosing
intervals between the first observed ingestion and the last observed
ingestion. For once-daily expected dosing, NTotal[i], the total number of
prescribed dosing events for the ingestion duration, would be numerically
equivalent to the familiar time-on-treatment for subject i.
The total number of prescribed dosing events for the observed ingestion

duration NTotal[i] was modeled using a Weibull distribution with shape
parameter υ and scale parameter κ:

NTotal ½i� � Weibull υ; κð Þ
The Weibull density, Weibull(υ,κ), with shape parameter υ and scale

parameter κ, is defined with proportional hazards parameterization for a
random variable x as:

Weibull υ; κð Þ ¼ xυ�1e�ðx=κÞυ

The Weibull parameters were estimated using the maximum-likelihood
method in Mathematica (Wolfram Research, Champaign, IL). MCMC
modeling was not used because υ, the Weibull shape parameter, shows
poor mixing.24

Markov chain Monte Carlo implementation
Mathematica (Wolfram Research, Champaign, IL) was used for estimating
individual level parameters. Both SPSS (IBM, Armonk, NY) and the R
statistics program were used for exploratory statistical analyses.23,25

Bayesian analysis was conducted using the well-established Markov
Chain Monte Carlo (MCMC) method in the RJAGS software (Martyn
Plummer). To allow the MCMC chains to converge we employed a
conservative burn-in phase of 50,000 runs before evaluating any statistics.
The MCMC algorithm was implemented for 3 chains each with 200,000
runs and thinning interval of 2.
The MCMC runs were analyzed with the CODA package.26 Add-on code

for analyzing the von Mises distribution in RJAGS was developed by Colin
Stoneking and Klaus Oberauer (Department of Cognitive Psychology,
University of Zurich, Switzerland).
Convergence and mixing were assessed using multiple approaches.

First, visual inspection of parameter trace plots was conducted for
evidence of poor mixing. The Gelman-Rubin-Brooks plot, which shows
the evolution of Gelman and Rubin’s shrink factor as the number of
iterations increases,27 and the Gelman and Rubin multiple sequence
convergence diagnostic were also examined.27–29 The Gelman-Rubin
statistic was less than 1.05.
For visual predictive checks, the empirical density functions were

computed from the histogram data. The density plots from RJAG
simulations were compared to the empirical density functions. Histogram
densities were visually overlaid on the estimated density function to obtain
a visual reference.
The Bayesian analyses were conducted on a MacBook Pro laptop

computer running the OS X Yosemite operating system version 10.10.3.
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Analyses of the prompt corrector sub-group
Following the identification of this sub-group of patients, we defined a
patient to be a PC if they exhibited a pFS= 1 and as a NPC otherwise.
Mann-Whitney tests were used to compare model ingestion-related
parameters of the PC group to those of the NPC group. The frequencies
of PC patients in the schizophrenia, bipolar type 1, and major depressive
disorder populations of SMI were compared using the χ2 test. The survival
functions of the observed ingestion duration were compared using the
Kaplan-Meier log-rank test. These analyses were conducted using IBM SPSS
Statistics software (version 24, IBM Corp., Armonk, NY).

Code Availability
Based on the proprietary nature of modifications made to the code to
accommodate the digital medicine data, it may not be made available in
all cases for a period of at least five years from publication. Requests for
access to source code must be made on an individual basis to the
corresponding author and would require evaluation on an individual basis.
The authors made the appropriate materials available to the editorial staff
during the review process for verification of results.
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