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Improving chemotherapeutic 
efficiency in acute myeloid 
leukemia treatments by chemically 
synthesized peptide interfering 
with CXCR4/CXCL12 axis
Xiaojin Li1,*, Hua Guo1,*, Hongyang Duan2, Yanlian Yang2, Jie Meng1, Jian Liu1, Chen Wang2 
& Haiyan Xu1

Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic 
agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 
to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. 
Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving 
chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic 
peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration 
of AML cells. Here we presented E5’s capacity of enhancing the therapeutic efficiency of various 
chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow 
stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by 
various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 
1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine 
or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as 
well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. 
In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical 
parameters of serum analysis.

Poor prognosis of acute myeloid leukemia (AML) with current treatments is mainly due to the relapse of 
the disease post chemotherapy1,2. In the last decade, an emerging concept has proposed that interactions 
between leukemia cells and the bone marrow microenvironment are the major cause of the leukemia 
relapse3–6. In the cross-talking between them, leukemia cells highly expressing the chemokine receptor 
4 (CXCR4) are recruited into the bone marrow by stromal cells constantly secreting the chemokine 
ligand 12 (CXCL12)2,7,8. Leukemia cells that adhere to the stromal cells can reside in the bone marrow 
to acquire anti-apoptosis signals and favorable conditions for survival and growth9–12. Thus through 
CXCR4/CXCL12 axis leukemia cells are protected by the stromal cells from cytotoxic chemotherapeutics 
and represent a reservoir for minimal residual disease and relapses2,13,14.

Given the central role of the CXCR4/CXCL12 axis in mediating leukemia cell-stroma interactions, 
multiple antagonists targeting CXCR4 have been developed for use in leukemia treatments15,16. For 
example, a small chemical molecule competitive antagonist of CXCR4, AMD3100, was reported for 
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enhanced effect of cytarabine, decreased tumor burden and improved overall survival of AML mice 
through mobilizing leukemia cells from bone marrow into the peripheral blood17. In a phase 1/2 study of 
relapsed or refractory AML, AMD3100 induced a 2-fold mobilization of leukemic blasts into the periph-
eral circulation and an overall complete remission of patients when combined with chemotherapeutic 
drugs mitoxantrone, etoposide or cytarabine18. Its analog AMD3465 demonstrated remarkable activity 
in antagonizing CXCL12-induced CXCR4 signaling pathways, mobilizing AML cells into circulation and 
enhancing anti-leukemic effects of chemotherapy in vitro and in vivo19,20. AMD11070, another derivative 
of AMD3100, could effectively block stroma-induced migration and adhesion of leukemia cells21. When 
combined with cytotoxic drugs, it could prolong the survival of ALL mice and reduce leukemia cell 
infiltration into organs. The peptide T140 and its analogs TC14012 and TN14003 derived from horse-
shoe crabs were reported with effective inhibitory roles mainly in lymphocytic leukemia cells by block-
ing CXCR4/CXCL12 axis-mediated events and enhancing effect of chemotherapy in vitro16,22,23. RCP168 
derived from viral macrophage inflammatory protein II is another kind of CXCR4 peptide antagonist 
that inhibits CXCL12- or MS-5-induced migration of Jurkat or primary CLL cells and increases the 
drug-induced apoptosis of leukemia cells from patients in vitro20. However, it is notable that until now, 
peptide antagonists for AML in vivo have been rarely reported. Therefore, it is of great significance to 
develop novel peptides targeting CXCR4 for providing more therapeutic options in AML treatments.

We have reported a novel peptide E5 by cell-based selection from the de novo designed peptides and 
demonstrated its effect on interfering CXCR4/CXCL12 axis in vitro24. E5 significantly inhibited migration 
and adhesion of AML cells to bone marrow stromal cells through inhibiting leukemia cell response to 
CXCL12- or MS-5-induced activation. Hence we hypothesize that E5 disrupts the interaction of leukemia 
cells with the bone marrow stromal microenvironment, sensitizing these leukemia cells to toxic drug 
stresses. In this study, our findings indicate that E5 treatment can diminish marrow stromal protec-
tion and confer chemosensitivity to AML cells. By mobilizing leukemia cells from the protective stro-
mal microenvironment, E5 significantly increased the efficiency of chemotherapeutic drugs 10-hydroxy 
camptothecin, cisplatin or vincristine in vitro, leading to an improved overall survival in the mouse 
model of AML in combination with vincristine or cyclophosphamide.

Results
E5 reduces marrow stroma-mediated resistance of leukemia cells to various chemothera-
pies. In the first set of experiments, we explored whether E5 can overcome stroma-induced drug 
resistance and sensitize leukemia cells to chemotherapies. The effect of vincristine, cisplatin or 10-hydroxy 
camptothecin on inducing apoptosis of HL-60 cells co-cultured with the MS-5 cell layer within 48 h 
was tested with/without E5. It was found that the stromal cell MS-5 dramatically decreased HL-60 cell 
apoptosis induced by the chemotherapeutic drugs, suggesting protection from drug-induced apoptosis 
(Fig. 1A), while addition of E5 to the co-culture system removed the protection of MS-5 and sensitized 
HL-60 cells to the drugs. In the cultivation of the other AML cells (NB4, THP-1, U937), E5 was also 
found to increase 10-hydroxy camptothecin-induced apoptosis in these cells when MS-5 cells were pres-
ent (Fig.  1B). It was found that E5 did not enhance the drug-induced apoptosis in culturing systems 
without MS-5, indicating that the sensitization effect of E5 can be specifically attributed to interfering 
with the interaction between leukemic cells and stromal cells.

Then we investigated the effect of E5 on 11-day co-culture of leukemia cells and stromal cells. Using 
trypan blue exclusion method on a daily basis, we observed that when co-cultured with stromal cells 
HL-60 remained a constant cell viability level of approximate 60.1% after 5 days of treatment with vin-
cristine, suggesting HL-60 became vincristine-resistant (Fig. 1C). Strikingly, when E5 was added to the 
co-culture system, no vincristine resistance was observed over the whole incubation period. From day 3 
the cell viability level of combination group was significantly lower than the group of vincristine alone. 
After 10 days the cell viability of HL-60 treated in combination of E5 and vincristine was reduced to 
19.0%, indicating the drug resistance developed in the co-culture system was overcome by E5 supplement.

E5-induced leukemia cells mobilization occurs from hematopoietic tissues. We previously 
reported that E5 can effectively inhibit leukemia cell adhesion to bone marrow stroma and induce leu-
kemia cell detachment from stromal cell layer in vitro24. Inspired by these results in vitro, we translated 
our findings into an in vivo system to confirm its primary mechanism of action. To establish the AML 
mouse model for treatment, HL-60 cells were injected into sublethally irradiated NOD/SCID mice by 
tail vein, allowing these cells to migrate to bone marrow and form an enlarged leukemia burden. 20 
days after the injection, mice showed marked leukemic symptoms including paralysis in the rear limbs, 
ruffled fur, and remarkably hunched posture in comparison to healthy control mice. On day 20, 34 and 
40 after HL-60 transplantation, cells from bone marrow and spleen of the mice were analyzed with flow 
cytometry (Supplementary Fig. S1A). The HL-60 cell proportion was 6.1%, 40.4%, 91.9% in bone marrow 
and 3.3%, 10.2%, 65.2% in spleen, demonstrating the successful establishment of leukemia mouse model 
(Supplementary Fig. S1B). Then we collected peripheral blood samples from E5-monotreated AML mice 
before and 4 h after administration of E5 and measured the HL-60 proportion. Results showed that E5 
induced a significant increase of circulating HL-60 cells in mice (Fig. 2). Taking one set of flow cytometry 
data for one of the three mice as an example, the circulating HL-60 proportion increased from 2.8% to 
5.5% on day 27 of HL-60 implantation and from 25.4% to 43.8% on day 40. Compared with control, the 
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Figure 1. E5 inhibits MS-5 mediated-protection and sensitizes leukemia cells to different 
chemotherapies. (A) E5 enhances vincristine, cisplatin or 10-hydroxy camptothecin-induced apoptosis in 
HL-60 cells co-cultured with MS-5 cells. HL-60 cells were treated with drugs alone, or drugs in combination 
with E5 in the absence or presence of MS-5 cells for 48 h. Apoptotic cells were detected by Annexin 
V flow cytometry. (B) E5 enhances 10-hydroxy camptothecin-induced apoptosis in multiple AML cell 
lines including NB4, THP-1 and U937 cells co-cultured with MS-5 cells for 48 h. (C) After continuous 
combination treatment, vincristine drastically reduces HL-60 cell viability. HL-60 cells growing on MS-5 
cell layer were treated with vincristine alone or combined with E5 for 10 days and cell viability was detected 
using trypan blue every day. Data are presented as mean ±  SD (n =  3). The * represents significant difference 
between two groups (*p <  0.05, **p <  0.01).

Figure 2. E5 induces a rapid mobilization of leukemia cells into the peripheral blood. Peripheral 
blood samples were collected through tail vein from three E5-monotreated mice before and 4 h after 
administration of E5. The percentage of CD33 positive cells (HL-60) was detected with flow cytometry.
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percentage was almost doubled. These data clearly indicate that E5 mobilizes leukemia cells from stromal 
microenvironment into peripheral circulation.

Combination treatment of E5 plus vincristine (Vin) or cyclophosphamide (CTX) prolongs the 
survival of leukemia mice and reduces leukemia burden. In view of the above results, we com-
bined E5 with chemotherapeutic drugs to examine the elimination effect to the leukemia cells escaped 
from the protective stromal microenvironment. To ensure that the leukemic cells pushed into the cir-
culation come in contact with the cytotoxic drug, we injected Vin at 4 h after the subcutaneous admin-
istration of E5 from day 20 of the HL-60 transplantation. The group receiving combination treatment 
showed prolonged median survival (56 days) comparing to the group receiving Vin alone (51 days) 
within the experimental period (p =  0.063, Fig. 3A). Analysis with bone marrow, spleen and peripheral 
blood showed a clear reduction of AML cells load in the combination treatment group compared with 
that in the Vin-alone treated group (Fig. 3B–D). E5 alone also slightly decreased the HL-60 percentage 
in bone marrow, spleen and peripheral blood compared with the control group. Besides bone marrow, 
leukemia cells tend to infiltrate into spleen and liver. Especially spleens, as the largest lymphoid organ, 
are usually enlarged in the development of leukemia. As shown in Fig. 4A, the spleens of the combination 
treatment group were markedly smaller than that of the Vin group. From the representative tissue sam-
ples for histopathological analysis (Fig. 4B), reticular cells were regularly distributed in spleen of healthy 
NOD/SCID mice (the mice without HL-60 transplantation). After transplanted with HL-60 cells, splenic 
tissues were mainly filled with HL-60 cells and the structure integrity was damaged. In the combination 
treatment group, less HL-60 cell dissemination was found in the spleen and the histologic structure was 
basically intact compared with the Vin monotherapy group. In addition, for the histopathological anal-
ysis of liver, no obvious infiltration of HL-60 cells around blood vessels was visible in the combination 
treatment group compared with the marked infiltration in the control, E5 and Vin mono-treatment 
group. These results clearly indicate that combination therapy with E5 and Vin decreased the AML bur-
den in bone marrow, spleen and liver, and induced leukemia remission.

The effect of E5 plus CTX was also tested in the AML mice model. CTX was injected 4 h after the 
subcutaneous administration of E5 from day 20 after transplantation. Terminal bone marrow, spleen and 
peripheral blood samples of all AML mice were analyzed for HL-60 cell proportion with flow cytometry. 
In the combination treatment group, the percentage of HL-60 cells in the leukocytes collected from bone 
marrow, spleen and peripheral blood respectively was much lower than that of CTX monotherapy group 
(Fig. 5A). From the peripheral blood smears with Wright’s staining, a clearly reduced amount of HL-60 

Figure 3. In vivo combination treatment of AML mice with vincristine (Vin) and E5. From day 20 of 
HL-60 transplantation, AML mice received Vin intraperitoneally 4 h after subcutaneous E5 administration 
twice weekly. (A) Overall survival of AML mice treated with sterile water (n =  5), E5 alone (n =  5), Vin 
alone (n =  7), or a combination of both (n =  7). (B–D) The percentage of HL-60 cells in the bone marrow, 
spleen and peripheral blood of AML mice in each group was determined with flow cytometry (n =  4) 
(*p <  0.05).
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cells in combination treatment group (Fig. 5B) was also observed. Meanwhile no hyperleukocytosis or 
leukostasis was observed after long-term E5 treatment. Ultimately a prolonged median survival was 
observed in those mice that received the combination treatment (53 days) compared with CTX mon-
otherapy (45 days) (p =  0.12, Fig.  5C). E5 alone also slightly extended the survival of leukemia mice. 
There was no significant effect of drug treatments on the body weights of the mice (Fig. 5D). Moreover, 
the spleens of the combination treatment group were smaller than that of the CTX group (Fig. 6A). As 
shown in Fig.  6B, much stronger rescue effect for HL-60 cell dissemination and histologic structural 
integrity in spleen was observed in combination treatment group. In addition, for the histopathological 
analysis of liver, no obvious infiltration of HL-60 cells around blood vessels was visible in the combina-
tion treatment group compared with the marked infiltration in the control, E5 and CTX mono-treatment 
group (Fig. 6B). These results clearly indicate E5 treatment significantly enhanced the efficacy of the CTX 
chemotherapy.

Systemic toxicity of E5 in healthy mice. We have tested the cytotoxicity of E5 on two nonma-
lignant cell lines (human umbilical vein cell ea.hy926 and murine stromal cell MS-5) with low level 
of CXCR4, and confirmed that E5 did not induce cell apoptosis at concentrations ranging from 1 to 
80 μ M24. To evaluate systemic toxicity of E5, we gave healthy BALB/c mice a subcutaneous injection of E5 

Figure 4. In vivo effects of vincristine (Vin) and E5 on infiltration of HL-60 cells into spleen and liver. 
(A) The weight and size of spleens in healthy mice (without HL-60 transplantation) and Vin-monotreated 
or combination treated AML mice. (B) Histologic sections of spleen and liver in each group of mice were 
stained with H&E. Images of each organ in the second line are the amplification of images in the first line. 
Red arrows represent normal cells and blue arrows represent HL-60 cells infiltrated in spleens. Yellow arrows 
represent HL-60 cells infiltrated into livers.
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at 40 mg/kg every other day in one month. After the mice were sacrificed, several organs were examined 
microscopically. Supplementary Fig. S2A shows representative H&E staining of heart, liver, spleen, lung, 
kidney, brain and lymph node tissues from mice treated either with sterile water or E5 injection. In 
particular, no central necrosis was observed in heart, liver, spleen, lung, brain or lymph node, and no 
tubular necrosis in kidney. There was also no significant effect of E5 administration on the organ weights 
of the mice (Supplementary Fig. S2B). Meanwhile, routine clinical parameters of serum including alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (Cr(E)) and urea suggest the hepatic 
and renal function of mice were normal after the long-term E5 treatment (Supplementary Fig.  S2C).  
All these above results demonstrate that there was no damage in these organs of the E5-treated mice and 
E5 has good security in vivo.

Discussion
Despite significant improvements in the treatment and steady increase in the survival of other types of 
leukemia, the 5-year survival of patients with AML remains dissatisfactory and a great number of AML 
new cases and deaths emerge25. It has been reported that CXCR4 expression is associated with poor 
prognosis in patients with AML26,27. CXCR4 thus can be incorporated into the risk assessment of AML 
patients28. Bone marrow is one of the major tissues that produce CXCL12 which activates CXCR429. 
Through CXCR4/CXCL12 axis, bone marrow stroma creates a protective microenvironment, providing 
pro-survival and chemotherapy resistance signals for the homing AML cells2. Hence CXCR4 antagonists 
were developed for leukemia therapy30.

Among developed CXCR4 antagonists, peptides are one attractive kind to block CXCR4/CXCL12 axis 
and abrogate the stromal cell-mediated leukemia cell drug-resistance. In this work, we demonstrated 
the strong mobilizing activity of E5 using a mouse model of human AML cells. There is a 1.84-fold 
increase of circulating HL-60 cells in the peripheral blood of AML mice at 4 h after E5 administration, 
indicating translocation of leukemia cells by E5 from a protective niche to a location where they are 
more sensitive to therapeutic drug treatment. The results of combination treatment of cytotoxic drugs 
and E5 were quite remarkable, leading to reduced leukemia burden and prolonged survival. These results 

Figure 5. In vivo combination treatment of AML mice with cyclophosphamide (CTX) and E5. (A) The 
percentage of CD33 positive cells (HL-60) in the bone marrow, spleen and peripheral blood of AML mice in 
each group was determined with flow cytometry. Data are presented as mean ±  SD (n =  4). The * represents 
significant difference between two groups (*p <  0.05, **p <  0.01). (B) Wright-stained peripheral blood smears 
of AML mice in each group. Yellow arrows represent HL-60 cells. Scale bar represents 50 μ m. (C) Overall 
survival of AML mice treated with sterile water, E5 alone, CTX alone, or a combination of both (n =  9).  
(D) Relative weight of the mice during the period of treatment.
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still give strong evidence that E5 plays the mobilizing role in the chemotherapies, and we believe the p 
value can be improved by optimizing the leukemia animal model and the overall number of animal. It 
is also noticeable that very similar treatment effects were obtained no matter using E5 plus Vin or plus 
CTX, though the mode of action and cellular target of CTX are very different from that of Vin. Hence 
E5 can be expected to combine with more other cytotoxic drugs in the treatment of leukemia. Another 
point that should be emphasized is that AML is a heterogeneous disease and can be divided into 8 
subtypes according to eight major subtypes from M0 to M7 according to its maturation degree in the 
French-American-British (FAB) classification system31. In the current study, HL-60 and NB4 are defined 
as subtype M3, THP-1 is defined as M5, and U937 is M6. The experimental results in vitro clearly showed 
E5 can be effective to the different subtypes of AML. For future studies, it is genuinely very interesting 
to investigate the effects of E5 obtained from HL-60/NOD-SCID model on the other subtypes of AML 
primary leukemia cells from patients.

Although various CXCR4 antagonists have the function of mobilizing leukemia cells from bone 
marrow, E5 has one distinguished advantage over others-good safety. Chemical molecule antagonists 
such as AMD3100 and AMD11070 mobilize leukemia cells into circulation and improve chemotherapy  
in vitro and in vivo17,21,32–34. However, AMD3100 is reported to display a weak partial agonist activity35,36, 

Figure 6. In vivo effects of cyclophosphamide (CTX) and E5 on infiltration of HL-60 cells into spleen 
and liver. (A) The weight and size of spleens in healthy mice (without HL-60 transplantation) and CTX-
monotreated or combination treated AML mice. (B) Histologic sections of spleen and liver in each group 
of mice were stained with H&E. Images of each organ in the second line are the amplification of images in 
the first line. Red arrows represent normal cells and blue arrows represent HL-60 cells infiltrated in spleens. 
Yellow arrows represent HL-60 cells infiltrated into livers.
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inducing CXCL12-like G-protein activation in CXCR4-expression cells upon binding of it, which could 
be a disadvantage to the treatment of leukemia, because CXCR4 activation provides a survival signal 
for leukemia cells. Long-term animal studies of AMD11070 revealed histological changes in the liver37 
and a phase 1/2 study suggested its potential toxicity in the liver38. Hence, AMD3100 can only be uti-
lized for short-term clinical treatment39. In the previous study24, we have demonstrated E5 induced nei-
ther the CXCR4 activation in four AML cell lines nor apoptosis of two nonmalignant cells (ea.hy926 
and MS-5) even at a high concentration. In this work, we show that the long-term E5 treatment didn’t 
affect the major organ functions and no histological changes were observed, demonstrating the safety 
of E5. Considering that E5 induced mobilization of leukemia cells out of protection into circulation and 
enhanced chemotherapy sensitivity, this appears to be a remarkably effective method of boosting the 
cytotoxicity of low-dose chemotherapeutic drugs on leukemia cells, decreasing the risk of side effects 
caused by high-dose chemotherapies in leukemia treatments40–42. Another advantage of E5 is the low 
cost. Most of currently reported peptide antagonists are derived from cells by bioengineering technol-
ogy15,43,44. For examples, T140 and its analogs TC14012 and TN14003 are derived from naturally occur-
ring peptides in horseshoe crabs, and RCP168 is derived from viral macrophage inflammatory protein 
II. Furthermore, concerns of cytotoxicity have been raised for T140 due to its total positive charge45. In 
contrast, E5 is chemically synthesized according to the sequence of human CXCR4, which makes it more 
easily, flexibly and economically to be produced.

It should be noted that the relapse of most leukemia cells post chemotherapy is dependent on their 
intra-and extra-cellular resistances to chemotherapy. The CXCR4/CXCL12 axis mediated drug-resistance 
of AML cells belongs to the latter. In the current study, the CXCR4/CXCL12 axis is interfered by E5 
and lead to the homing AML cells released from bone marrow to blood circulation. As the result, AML 
cells can be exposed to a higher drug concentration than bone marrow. Nevertheless, intra-cellular drug 
resistance could be induced for leukemia cells long-term exposed to the drug by expressing extensively 
drug resistance proteins such as the ATP-binding cassette (ABC) transporter proteins46. ABC proteins 
that confer drug resistance include P-glycoprotein (genes symbol ABCB1), the multidrug resistance pro-
tein 1 (MRP1, gene symbol ABCC1), MRP2 (gene symbol ABCC2) and the breast cancer resistance 
protein (BCRP, gene symbol ABCG2), induce the drug efflux from tumor cells and decrease cellular drug 
accumulation47. Several molecules have been developed to inhibit the ABC protein-mediated drug efflux, 
such as naringenin48, pegylated phosphotidylethanolamine49, apatinib50. The combination therapy of E5 
and the ABC protein inhibitors with chemotherapeutic drugs can be expected to overcome the leukemia 
drug-resistance synergistically.

CXCR4 is also highly expressed by many other malignant cell types, such as breast cancer51, lung 
cancer52,53, melanoma54, prostate cancer55, and ovarian cancer56, and closely associated with the metasta-
sis, invasion and chemotherapy resistance of these solid tumors. Hence, broader uses of E5 can also be 
expected in those cancer therapies in combination with chemotherapies.

In conclusion, we here present the evidence that E5 can reduce tumor burden, significantly improve 
the efficiency of chemotherapies for AML and extend survival in AML mice.

Materials and Methods
Cell lines and maintenance. The acute promyelocytic leukemia cell HL-60 and NB4, acute monocytic 
leukemia cell THP-1, and myelomonocytic leukemia cell U937 were purchased from the Cell Resource 
Center of Chinese Academy of Medical Sciences (Beijing, China). Murine stromal cell line MS-5 was 
kindly provided by Professor Bin Yin, the Cyrus Tang Hematology Center, Soochow University, China. 
Those cells were cultured in 5% CO2 at 37 °C in RPMI 1640 (Hyclone Thermo Scientific) supplemented 
with phenol red, 10% fetal bovine serum (FBS; Gibco, Grand Island, NY), 100 U/mL penicillin, 100 U/
mL streptomycin.

Peptide and antibody. The peptide E5 (GGRSFFLLRRIQGCRFRNTVDD) used in this study was 
identified by the cell-based selection24 and purchased from GL Biochem (Shanghai) Ltd. The stock 
solution of E5 was dissolved in the sterile water. PE anti-human CD33 antibody was purchased from 
BioLegend (San Diego, CA).

In vitro combination treatments of E5 with chemotherapeutic drugs. Drug combination in 
short-term. MS-5 cells of 1.5 ×  105/well were seeded in 24-well plates in RPMI 1640 containing 10% 
FBS and incubated overnight to form a stromal cell layer. Leukemia cells of 2.5 ×  105 (HL-60, NB4, 
THP-1 and U937) were treated with E5 at 10 μ M or 20 μ M in serum-free medium (opti-MEM; Life 
Technologies, Grand Island, NY) for 1 h, and then cultivated in the presence or absence of MS-5 cell 
layer for 4 h. After that, chemotherapeutic drugs were added to the culture system (10-hydroxy camp-
tothecin at 40 nM for HL-60, THP-1 and U937, or at 11 nM for NB4; vincristine (Vin; Shenzhen Main 
Luck Pharmaceuticals, Shenzhen, China) at 2.5 nM and cisplatin (Hospira Australia Pty Ltd, Melbourne, 
Australia) at 1.2 μ M for HL-60) and the cells were cultivated for 48 h. The leukemia cells were then sepa-
rated from the MS-5 cell layer, washed and stained with FITC-Annexin V (eBioscience, Vienna, Austria) 
and subjected to C6 Accuri®  flow cytometer (Accuri Cytometers, Ann Arbor, MI). In the measurement, 
1.5 ×  104 cells were collected and the acquired data were analyzed by CFlow Plus software.
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Drug combination in long-term. MS-5 cells of 5 ×  103/well were seeded in 96-well plates in RPMI 1640 
containing 10% FBS and incubated overnight to form a stromal cell layer. HL-60 cells (2 ×  104) were 
treated with E5 (10 μ M) in opti-MEM for 1 h, and then inoculated to the MS-5 cell layer. Either vin-
cristine (1 nM) or a combination of vincristine and E5 (10 μ M) was added to the culture system. Half of 
medium was changed every alternate day and replenished with fresh drug. Care was taken not to destroy 
the culture system. Viability of HL-60 cells was analyzed by the trypan blue exclusion method every day.

Establishment of mouse model for human AML. Five-week old female NOD/SCID mice were 
maintained in the Experimental Animal Center at the Institute of Basic Medical Sciences, Chinese 
Academy of Medical Sciences (Beijing, China) under specific pathogen-free conditions. All the animal 
experiments reported herein were carried out in accordance with the approved guideline and approved 
by the committee on the Animal Care and Use of Institute of Basic Medical Sciences, Chinese Academy 
of Medical Sciences & Peking Union Medical College. Animals were acclimatized to laboratory con-
ditions for 1 week prior to experiments. HL-60 cells (1 ×  106) suspended in 100 μ L EDTA/PBS were 
injected intravenously into the sublethally irradiated (250 cGy) NOD/SCID mice. At about 20 days after 
transplantation, mice showed leukemia signs. Cells of bone marrow and spleen were collected from the 
mice and analyzed for HL-60 proportion with flow cytometry on day 20, 34 and 40 after transplantation.

Treatment in leukemia mouse model with E5 and chemotherapeutic drugs. From day 20, the 
mice were randomly treated with E5 (10 mg/kg), Vin (0.2 mg/kg), cyclophosphamide (CTX, 90 mg/kg) 
or a combination of E5 and one of the drugs twice a week. For the combination treatment group, Vin or 
CTX was injected intraperitoneally 4 h after subcutaneous injection of E5. Mice were monitored for the 
condition and weight loss. On day 40 after transplantation, mice were sacrificed. Cells of bone marrow, 
spleen and peripheral blood were collected from each group of mice and analyzed for HL-60 proportion 
with flow cytometry.

Flow cytometry analysis. The bone marrow obtained by femur flushing, spleen and peripheral 
blood from each group of treated mice were collected to prepare single cell suspension. Erythrocytes 
were excluded using the blood cells lysis buffer (Beckman Coulter, Krefeld, Germany). The human spe-
cific CD33 surface marker was used to identify HL-60 (positive rate was 100% as determined by flow 
cytometry) with PE anti-human CD33 antibody and 1.5 ×  104 cells were analyzed with flow cytometry.

Histological analysis. Livers and spleens from each group of treated mice were fixed in 4% formalin, 
dehydrated and embedded in paraffin. Tissue sections were prepared and stained with hematoxylin and 
eosin (H&E). The histology slides were analyzed for HL-60 cells dissemination using an Olympus BX53F 
microscope equipped with a digital camera (Olympus, Tokyo, Japan) (three representative slides for each 
group were reviewed).

Wright staining of blood smears. A drop of peripheral blood from each group of treated mice was 
pulled between two slides at roughly 45° to create a blood film slide which was allowed to air dry. Slides 
were briefly fixed in methanol prior to staining with Wright’s stain. Slides were then cover slipped prior 
to scanning using an Olympus BX53F microscope.

In vivo toxicity of E5. Safety experiments were performed on five-week old healthy female BALB/c 
mice with four mice per group. The mice were randomly divided into two groups and respectively given a 
subcutaneous injection of E5 at 40 mg/kg (E5-treated group) or sterile water (control group) every other 
day. After the 30-day treatment, the mice were sacrificed. Their heart, liver, spleen, lung, kidney, brain 
and lymph node were weighed and the tissue sections were subjected to H&E staining. Blood samples 
of each group were collected and centrifuged at 3000 rpm for 15 min at 4 °C to obtain serum. The serum 
samples were used for routine clinical parameters analysis including alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), creatinine (Cr(E)) and urea.

Statistical analysis. All experiments were carried out in triplicate and unpaired Student’s t-test was 
performed to assess statistical significance of the results (*P <  0.05 and **P <  0.01). The pairwise com-
parisons for the median survival of leukemia mice between Vin (or CTX) alone group and Vin (or CTX) 
plus E5 were assessed by using the Log-rank test (SAS 8.2 Software, SAS Institute).
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