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Several clinical studies have reported that Japanese herbal medicine Hangeshashinto
(HST) has beneficial effects on chemotherapy-induced oral ulcerative mucositis (OUM).
Our previous research demonstrated that HST improves chemotherapy-induced OUM
through human oral keratinocyte (HOK) migration, which was suppressed by mitogen-
activated protein kinase (MAPK) and C-X-C chemokine receptor 4 (CXCR4) inhibitors.
However, the association between thesemolecules and HOKmigration was unclear. Here,
we examined the effects of HST on the expression of CXCR4/CXCR7 and C-X-C motif
chemokine ligands 11 and 12 (CXCL11/CXCL12) in HOKs. Our results indicated that HST
upregulated CXCL12, but not CXCR4, CXCR7, nor CXCL11 in HOKs. HST-induced
expression of CXCL12 was significantly suppressed by an inhibitor of extracellular signal-
regulated kinase (ERK), but not of p38 and c-Jun N-terminal kinase (JNK). In addition, HST
induced phosphorylation of ERK in HOKs. These findings suggest that HST enhances
HOK migration by upregulating CXCL12 via ERK.

Keywords: hangeshashinto, oral ulcerative mucositis, oral keratinocytes, CXCL12, extracellular signal-regulated
kinase

1 INTRODUCTION

Cancer patients receiving chemotherapy, radiotherapy, hematopoietic stem cell transplant, or
terminal care often experience severe oral ulcerative mucositis (OUM), which evokes painful
inflammation and limits their basic day-to day activities, such as “eating, drinking, and talking”
(McGuire et al., 1993; Sonis, 1998; Dodd et al., 2000; Dörr et al., 2002; Sonis, 2004; Duncan et al.,
2005; Jones et al., 2006; Vera-Llonch et al., 2006; Barber et al., 2007; El-Housseiny et al., 2007; Vera-
Llonch et al., 2007; Bensinger et al., 2008; Sonis, 2010a; Sonis, 2010b; Miyano et al., 2016; Miyano
et al., 2020). Additionally, OUM increases the risk of systemic infection via opportunistic
microorganisms, which may lead to extension of hospitalization (Elting et al., 2003; Sonis, 2004;
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Elting et al., 2007; Yeoh et al., 2007; Lalla et al., 2014; Miyano
et al., 2016). Further, OUM often forces patients with cancer to
discontinue or modify their therapy regimen, which adversely
affects their prognosis (Elting et al., 2003; Trotti et al., 2003; Sonis,
2010a; Miyano et al., 2016). Therefore, effective management of
OUM is indispensable for improving both patient quality of life
and prognosis (Miyano et al., 2016).

Although chemotherapy-induced OUM is associated with the
use of various anti-cancer drugs, there are not many effective
prevention methods or therapeutic modalities (Miyano et al.,
2016). Hangeshashinto (HST), a traditional Japanese medicine
(Kampo medicine) that contains extracts of seven botanical
drugs, was approved by Japan’s Ministry of Health, Labour
and Welfare as a prescription treatment for OUM. From the
16th century to the present, HST has been used in Japan to treat
inflammatory diarrhea, gastritis, and oral mucositis (Uezono
et al., 2012; Miyano et al., 2016). A recent double-blind,
placebo-controlled, randomized study reported that the
repetitive use of HST-containing mouthwash effectively
improved chemotherapy-induced OUM in patients with
colorectal cancer or gastric cancer (Matsuda et al., 2015). Basic
research indicated that HST enhanced OUM healing through
multiple pharmacological actions, such as anti-oxidant, anti-
inflammatory, anti-bacterial, and analgesic activities
(Fukamachi et al., 2015; Matsumoto et al., 2015; Hiroshima
et al., 2016; Hitomi et al., 2016; Hitomi et al., 2017). With
regard to anti-inflammatory effects, we previously determined
that various ingredients in HST decrease interleukin 1β-induced
prostaglandin E2 (PGE2) production in human oral keratinocytes
(HOKs) with multi-targeting effects, such as dual suppression of
cyclooxygenase-2 expression and PGE2 metabolic activity (Kono
et al., 2014). Moreover, our recent in vitro and in vivo studies
revealed that HST directly affects OUM and enhances tissue
repair through migration of HOKs, involving activation of
mitogen-activated protein kinases (MAPKs), including
extracellular-signal-regulated kinase (ERK), p38, and c-Jun
N-terminal kinase (JNK), and C-X-C chemokine receptor 4
(CXCR4) (Miyano et al., 2020). In the present study, we
investigated the effects of HST on the expression of
endogenous CXCR4 agonists (C-X-C chemokine ligands
CXCL11 and CXCL12) and the receptors CXCR4 and CXCR7
to clarify how MAPKs and CXCR4 induce HOK migration. We
analyzed the effects of several MAPK inhibitors on the expression
of CXCL12, and also examined the effects of HST treatment on
MAPK phosphorylation in migrating HOKs.

2 MATERIALS AND METHODS

2.1 Chemicals and Reagents
The following reagents were used: fetal bovine serum (FBS) and
Keratinocyte-Serum Free Medium (SFM) (1X) (Gibco, Carlsbad,
CA, United States); trypsin and trypsin neutralizing solution
(TNS; Lonza, Basel, Switzerland); penicillin/streptomycin,
dimethyl sulphoxide (DMSO), and U0126 (Nacalai Tesque,
Kyoto, Japan); poly-L-lysine (PLL), SB202190 (Sigma-Aldrich,
St. Louis, MO, United States); Cellmatrix® I-P (Nitta Gelatin Inc.,

Osaka, Japan); phosphate-buffered saline (PBS; Nissui
Pharmaceutical Co., Osaka, Japan); BDPA-Zn (Fujifilm Wako
Pure Chemical, Osaka, Japan); and JNK inhibitor II (Calbiochem,
San Diego, CA, United States).

HST extract powder (Lot No. 2180014010), the base powder
without excipients, was obtained from Tsumura & Co.
(Ibaraki, Japan), manufactured as an aqueous extract
mixture of seven botanical drugs. All items prescribed in
Hangeshashinto are listed as in the Japanese
Pharmacopoeia: Pinellia tuber (5.0 g, tuber of Pinellia
ternate (Thunb.) Makino (Araceae)), Scutellaria root (2.5 g,
root of Scutellaria baicalensis Georgi (Lamiaceae)), Processed
ginger (2.5 g, rhizome of Zingiber officinale Roscoe
(Zingiberaceae)), Glycyrrhizae Radix (2.5 g, root of
Glycyrrhiza uralensis Fisch. ex DC. (Fabaceae) or
Glycyrrhiza glabra L. (Fabaceae)), Ziziphi Fructus (2.5 g,
fruit of Ziziphus jujuba Mill. (Rhamnaceae)), Ginseng Radix
(2.5 g, root of Panax ginseng C. A. Mey. (Araliaceae)), and
Coptis rhizome (1.0 g, rhizome of Coptis japonica (Thunb.)
Makino (Ranunculaceae), Coptis chinensis Franch.
(Ranunculaceae), Coptis deltoidei C. Y. Cheng and P. K.
Hsiao (Ranunculaceae) or Coptis teeta Wall.
(Ranunculaceae)). Briefly, the mixture of the seven raw
materials was extracted in boiling water for 1 h, and the
extract was then separated from insoluble waste. The
separated extract was concentrated under reduced pressure
and then spray-dried to produce the extract powder of HST.
The yield of the extract was about 24.3%. The three-
dimensional high-performance liquid chromatograph (3D-
HPLC) profile of HST was created by Tsumura & Co.,
showing at Supplementary Figure S1. For the analysis of
components, the dried extract (1.0 g) of HST was extracted
with methanol (20 ml) under ultrasonication for 30 min and
was centrifuged at 3,000 rpm for 5 min. The supernatants were
filtered with a membrane filter (0.45 μm) and then submitted
for HPLC analysis (30 μL). HPLC apparatus consisted of a
Shimadzu LC 10A (analysis system software: CLASS-M10A
ver. 1.64, Tokyo, Japan) equipped with a multiple wavelength
detector (UV 200–400 nm) (Shimadzu SPD-M10Avp, diode
array detector), an auto injector (Shimadzu CTO-10AC).
HPLC conditions were described as follows: column, ODS
(TSK-GEL 80TS, 250 × 4.6 mm i.d., TOSOH, Tokyo, Japan);
eluent, (A) 0.05M AcONH4 (pH 3.6) (B) 100% CH3CN. A
linear gradient of 90% of A and 10% of B changing over 60 min
to 0% A and 100% B was used. (And 100% B was continued for
20 min); temperature, 40°C; flow rate, 1.0 ml/min. The quality
of HST was confirmed to fulfill the standard of the Japanese
Pharmacopoeia. Specifically, the following marker compounds
were included in the extract within the parenthesized rages:
baicalin (70–210 mg), glycyrrhizic acid (22–66 mg), and
berberine (7–21 mg). All voucher specimens of raw
materials used were deposited in the herbarium of Tsumura
& Co., with batch numbers (Supplementary Table S1).

HST extract powder was suspended in DMSO at 100 mg/ml,
diluted 100 fold with culture medium, and filtered through a
0.45 μm membrane (ADVANTEC, Tokyo, Japan) to give a final
concentration of 100 μg/ml.
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2.2 Cell Culture
Primary HOKs (ScienCell Research Laboratories, Carlsbad, CA,
United States) were cultured on poly-L-lysine-coated dishes in
Keratinocyte-SFM (1X) supplemented with 10% FBS and
penicillin (100 U/mL).

2.3 Scratch-Induced Migration Assay
HOK migration was evaluated using the IncuCyte ZOOM®
system (ESSEN BioScience, Ann Arbor, MI, United States),
which enables real-time and quantitative live-cell analysis, as
previously described (Miyano et al., 2020). HOKs were seeded at a
concentration of 3.0 × 104 cells/0.1 ml/well onto a 96-well
ImageLock microplate (ESSEN BioScience), coated with
300 μg/ml CellmatrixⓇ I-P (Nitta Gelatin Inc., Osaka, Japan).
The following day, the cells were scratched using a 96-well
WoundMaker (ESSEN BioScience), and the culture medium
was changed to assay medium (Keratinocyte-SFM (1X)
containing 2% FBS). The cells were then treated with HST
(100 μg/ml) and visually monitored every 2 h for 72 h. The
area occupied by HOKs on the scratched area was quantified
using IncuCyte™ scratch wound cell migration software (ESSEN
BioScience).

2.4 Real-Time Quantitative PCR
HOKs were seeded at 6.5 × 105 cells/2 ml/well onto a 6-well
microplate (Thermo Fisher Scientific, Inc., Waltham, MA,
United States), coated with 300 μg/ml CellmatrixⓇ I-P. The
following day, the cells were scratched with a 1 ml syringe
(Terumo Corporation, Tokyo, Japan) and the culture medium
was changed to assay medium. The cells were then treated with
HST for 48 h. Total RNA was extracted using the AllPrep DNA/
RNA/Protein Mini Kit (QIAGEN, Hilden, Germany). Sample
RNA (1.5 µg) was reverse-transcribed using the High-Capacity
RNA-to-cDNA™ Kit (Thermo Fisher Scientific), according to the
manufacturer’s instructions. Real-time quantitative PCR (RT-
qPCR) analysis was conducted using LightCycler FastStart DNA
Master PLUS SYBR Green I (Roche, Basel, Switzerland) on a
LightCycler 2.0 system (Roche). Thermal cycling was initiated at
95°C for 1 min, followed by 50 cycles of 20 s at 95°C, 10 s at 58°C,
and 10 s at 72°C. The glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) gene was used as a reference gene to normalize
expression levels in RT-qPCR analysis. The primer sequences of
CXCR4, CXCR7, CXCL12, and GAPDH are listed in Table 1. The
PCR products were analyzed on 1.5% agarose gel and had the sizes
expected from the known cDNA sequences. CXCL11 primers were
purchased from Sino Biological (Beijing, China). RNA quantities of
target genes were calculated using the Ct method (Livak and
Schmittgen, 2001).

2.5 Western Blotting
Sample proteins were extracted using the AllPrep DNA/RNA/
Protein Mini Kit and diluted in sodium dodecyl sulfate (SDS)
sample buffer (Nacalai Tesque). After heating for 5 min at 95°C,
equal amounts of proteins were separated by SDS-polyacrylamide
gel electrophoresis and blotted onto polyvinylidene difluoride
(PVDF) membranes. The membranes were blocked with
Blocking One solution (Nacalai Tesque) for 1 h at room
temperature, and incubated overnight at 4°C with primary
rabbit IgG antibodies against ERK1/2 (1:1,000; Cell Signaling
Technology Inc., Danvers, MA, United States) and primary rabbit
IgG antibodies against phospho-ERK1/2 (1:1,000; Cell Signaling
Technology, Inc.). After washing, the membranes were further
incubated with horseradish peroxidase-linked anti-rabbit IgG
antibody (1:2,000; Cell Signaling Technology Inc.) for 2 h at
room temperature. Immunoreactivity was detected using the
Western Lightning ECL Pro system (Perkin Elmer Co., Ltd.,
Waltham, MA, United States). Finally, the band densities of both
pERK and ERK were measured using ImageJ software (National
Institutes of Health, Bethesda, MD, United States). ERK
expression was calculated using the ratio of the phospho-ERK-
specific band density/ERK-specific band density.

2.6 Statistical Analysis
All data are presented as the mean ± standard error of the mean
(SEM) for at least three independent experiments. Statistical
analysis was performed using one-way analysis of variance
(ANOVA), followed by the Bonferroni’s multiple comparisons
test (Figures 1, 2, 5) or unpaired t-test (Figures 2, 4), using
GraphPad Prism version 8 software (GraphPad Software, La Jolla,
CA, United States). A probability value (p) < 0.05 was considered
statistically significant.

TABLE 1 | Primer sequences of human CXCR4, CXCR7, CXCL12, and GAPDH.

Forward primers (59→39) Reverse primers (39→59)

CXCR4 CGTCTCAGTGCCCTTTTGTTC CTGAAGTAGTGGGCTAAGGGC
CXCR7 CTATGACACGCACTGCTACATC CTGTACGAGACTGACCACC
CXCL12 ACACTCCAAACTGTGCCCTT CTGTAAGGGTTCCTCAGGCG
GAPDH GCTCTCTGCTCCTCCTGTTC ACGACCAAATCCGTTGACTC

FIGURE 1 | Effect of MAPK inhibitors on Hangeshashinto (HST)-induced
migration of human oral keratinocyte (HOKs). HOKs were scratched and co-
treated with HST, CXCR4 inhibitor BDPA-Zn, ERK inhibitor U0126, JNK
inhibitor II, or p38 inhibitor SB202190 for 72 h. Data are expressed as
the mean ± SEM (bars, n � 12–50). *** indicates p < 0.001, compared with
vehicle; #, ##, #### indicates p < 0.05, p < 0.01, p < 0.001 compared with
HST alone. Bonferroni’s comparison test following ANOVA.
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3 RESULTS

3.1 HST Enhanced Scratch-Induced HOK
Migration via MAPKs and CXCR4
We previously reported that treatment with 1–100 μg/ml HST
enhanced scratch-induced wound healing in dose- and time-
dependent manners, which involved HOK migration (Miyano
et al., 2020). As shown in Figure 1, treatment with HST for 72 h
significantly induced HOK migration. Conversely, this effect was
significantly suppressed by treatment with a CXCR4 inhibitor
(BDPA-Zn, 3 µM), an ERK inhibitor (U0126, 10 µM), a JNK
inhibitor (JNK inhibitor II, 1 µM), and a p38 inhibitor (SB202190,
10 µM). Compared with vehicle treatment alone, treatment with
each inhibitor did not significantly affect HOK migration
(Figure 1).

3.2 HST Upregulated CXCL12, But Not
CXCR4, CXCR7, Nor CXCL11 in HOKs
To clarify the molecular mechanism responsible for HST-
induced HOK migration, we first investigated the effects of

HST on the expression of endogenous CXCR4 agonists
(CXCL11 and CXCL12) and the receptors CXCR4 and
CXCR7 in HOKs. As shown in Figure 2, treatment with
HST for 48 h significantly increased mRNA expression of
CXCL12, but not that of CXCR4, CXCR7, nor CXCL11,
compared with vehicle treatment.

3.3 HST Upregulated CXCL12 via ERK
Activation in HOKs
To elucidate the involvement of MAPKs in HST-induced
upregulation of CXCL12, we examined the effects of MAPK
inhibitors on HST-induced upregulation of CXCL12 in
HOKs. The ERK inhibitor (U0126, 10 µM) completely
suppressed HST-induced CXCL12 mRNA expression
(Figure 3A), but this phenomenon was not observed when
HOKs were treated with the JNK inhibitor (JNK inhibitor II,
1 μM, Figure 3B) nor with the p38 inhibitor (SB202190,
10 μM, Figure 3C). We then examined whether HST
affected phosphorylation of ERK in HOKs using western
blotting. The results indicated that HST treatment

FIGURE 2 | Effect of Hangeshashinto (HST) on the mRNA expression of CXCR4, CXCR7, CXCL11, or CXCL12 in human oral keratinocytes (HOKs). HOKs were
scratched and treated with vehicle or HST for 48 h mRNA expression was determined by RT-qPCR. (A) CXCR4 (n � 5), (B) CXCR7 (n � 6), (C) CXCL11 (n � 5), or (D)
CXCL12 (n � 6). Data are presented as the mean ± SEM (bars). * indicates p < 0.05, compared with vehicle; unpaired t-test.
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significantly increased ERK phosphorylation in HOKs
compared with vehicle treatment (Figure 4).

3.4 10-gingerol Upregulated CXCL12 in
HOKs
Our previous study revealed that 6-shogaol, 10-gingerol and
glycyrrhetinic acid, which are the typical components of HST,
enhanced the scratch-induced HOK migration (Miyano et al.,
2020). We examined the effects of these components on the level
of CXCL12 mRNA expression in HOKs. The doses of these
compounds used in the present study were determined
according to our previous study (Miyano et al., 2020), which
have highest efficacy in the scratch-induced migration. As shown
in Figure 5, 10-gingerol (10 µM) significantly induced CXCL12
expression, compared with vehicle. Although 6-shogaol (1 µM)

and glycyrrhetinic acid (10 µM) slightly increase CXCL12
expression, these responses were not significant.

4 DISCUSSION

In this study, we revealed for the first time that treatment with
100 μg/ml HST activated ERK and upregulated CXCL12 in HOKs,
which subsequently caused their migration. OUM treatment in
clinical practice involves dissolving HST in hot water to a final
concentration 50mg/ml, followed by mouth washing (Matsuda
et al., 2015). Our previous study determined that the doses of HST-
derived compounds required for effective HST-induced HOK
migration were higher than the concentrations of HST-derived
compounds found in patient plasma (Miyano et al., 2020).
However, the effective doses in the HST-induced HOK
migration assay were lower than those measured in the HST

FIGURE 3 | Involvement of MAPKs in Hangeshashinto (HST)-induced expression of CXCL12 mRNA in human oral keratinocytes (HOKs). HOKs were scratched
and co-treated with HST and inhibitors of (A) ERK (U0126; n � 3–5), (B) JNK (JNK inhibitor II; n � 3–5) or (C) p38 (SB202190; n � 3–8) for 48 h. mRNA expression was
determined by RT-qPCR. Data are expressed as the mean ± SEM (bars). *, ** indicates p < 0.05, p < 0.01 compared with vehicle, respectively; # indicates p < 0.05
compared with HST alone. Bonferroni’s comparison test following ANOVA (A–C). n.s. indicates not significant (B,C).
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solution used in clinical practice (Matsuda et al., 2015; Miyano
et al., 2020). Taken together, these findings suggest that HST-
induced CXCR12 expression via ERK activation is evoked by direct
action of HST on OUM, not following absorption in the blood.

Many studies have reported that MAPK, CXCR, and CXCL play
important roles in cell migration (Kukreja et al., 2005; Huang et al.,
2009; Yuan et al., 2013; Cui et al., 2016). Concurring with the results of

previous studies, our results demonstrated that ERK, JNK, p38, and
CXCR4 inhibitors significantly suppressed HST-induced HOK
migration (Figure 1). Shi et al. determined that CXCL12 was
upregulated via ERK activation (Shi et al., 2013). In addition, some
reports have shown that cell migration induced by the CXCL12/
CXCR4 axis is the result of ERK, JNK, and p38 activation (Sun et al.,
2002; Kukreja et al., 2005; Huang et al., 2009; Yuan et al., 2013; Cui
et al., 2016). We found that HST-induced CXCL12 expression was
involved in the activation of ERK, but not that of JNK and p38
(Figure 3). HST increased the phosphorylation level of ERK in HOKs
(Figure 4). Taken together, these data suggest that HST induces ERK
phosphorylation and upregulates CXCL12,which activates its receptor
CXCR4, and consequently induces cell migration through
phosphorylation of JNK and p38 (Figure 6). However, further
studies are needed to clarify the effects of CXCL12 on HOK
migration via JNK and/or p38.

Our previous study revealed that Scutellaria root (baicalein),
processed ginger (6-shogaol, 8-shogaol, 10-shogaol, 6-gingerol, 8-
gingerol, and 10-gingerol), and Glycyrrhiza (glycyrrhetinic acid)
were the active constituents among the seven botanical drugs
comprising HST, suggesting that these ingredients could
cooperatively enhance scratch-induced HOK migration (Miyano
et al., 2020). Some studies have reported that baicalein activates JNK
and/or p38 (Chao et al., 2007; Su et al., 2018), while 6-shogaol and
10-gingerol activate ERK, JNK, and p38 (Kim et al., 2009; Kim et al.,
2015; Ryu and Chung, 2015). These studies suggest that 6-shogaol
and 10-gingerol induce ERK phosphorylation, resulting in
production of CXCL12 in HOKs. In fact, our present study
revealed that 10-gingerol significantly induced mRNA expression
of CXCL12 in HOKs (Figure 5). Taken together, these data suggest
10-gingerol induced CXCL12 expression via activation of ERK in
HOKs. Further investigation is warranted to elucidate which
ingredients including 10-gingerol activate ERK, JNK, and p38.

Our previous study indicated that HST enhances tissue repair
using animal models of chemotherapy-induced OUM (Miyano
et al., 2020). The migration of keratinocytes is the basis for re-
epithelialization during wound healing (Castellano-Pellicena and
Thornton, 2020). In our wound healing assay using HOKs, the
scratched HOKs produced inflammatorymediators such as PGE2

FIGURE 4 | Effect of Hangeshashinto (HST) on ERK phosphorylation in
human oral keratinocytes (HOKs). HOKs were scratched and treated with
vehicle or HST for 48 h. ERK expression was calculated using the ratio of the
pERK-specific band density/ERK-specific band density determined by
western blotting (n � 3). Data are expressed as the mean ± SEM. (bars). *
indicates p < 0.05 compared with vehicle. Unpaired t-test.

FIGURE 5 | Effect of components of Hangeshashinto (HST) on the
expression of CXCL12 mRNA in human oral keratinocytes (HOKs). HOKs were
scratched and treated with vehicle, 6-shogaol (1 µM), 10-gingerol (10 µM), or
glycyrrhetinic acid (10 µM) for 48 h. mRNA expression was determined by
RT-qPCR. Data are expressed as the mean ± SEM. (bars). * indicates p < 0.05
compared with vehicle. Bonferroni’s comparison test following ANOVA.

FIGURE 6 | Schematic diagram showing the mechanism of the
Japanese herbal medicine HST inducing oral keratinocyte migration by
mediating the expression of CXCL12 through the activation of ERK. HST
induces ERK phosphorylation and upregulates CXCL12, which activates
its receptor CXCR4, and induces cell migration.
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(data not shown), which were elicited during chemotherapy and
such inflammatory mediators induced OUM (Miyano et al.,
2016). These data suggest that our cell culture model of HOK
migration reflects one of mechanism of chemotherapy-induced
OUM. However, further investigations are needed to reveal
relationship between HOK migration induced by HST and this
tissue repair using both in vitro and vivo assay.

In conclusion, the findings of the present study suggest that
treatment with HST enhances tissue repair through oral
keratinocyte migration likely induced by CXCR4 activation through
upregulation of CXCL12 via activation of ERK. In addition, we
identified 10-gingerol to induce CXCL12 expression in HOKs
among components of HST. However, it is not clear whether 10-
gingerol induces CXCL12 expression via ERK in HOKs. Further
investigations using in vivo and in vitro assay are needed to reveal
that 10-gingerol improves mucositis via the ERK-CXCL12-CXCR4
pathway.Nonetheless, this studyprovides scientific evidence supporting
the use of HST in patients with cancer and comorbid OUM.
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