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Abstract: Various repurposing drugs have been tested for their efficacy on coronavirus disease 2019 (COVID-19), including 
antimalarial drugs. During the pandemic, Chloroquine (CQ) and Hydroxychloroquine (HCQ) demonstrated good potential against 
COVID-19, but further studies showed both drugs had side effects that were more dangerous than the efficacy. This made World 
Health Organization (WHO) ban the usage for COVID-19 patients. In this context, there is a need to explore other antimalarial drugs 
as potential therapies for COVID-19. This study provides a descriptive synthesis of clinical trials evaluating antimalarial drugs for 
COVID-19 treatment conducted after the withdrawal of CQ and HCQ. The method was a literature study using the keywords 
“antimalarial”, “COVID-19”, “SARS-CoV-2”, “clinical trial”, and “randomized controlled trial” on the MEDLINE, Scopus, and 
Cochrane databases. Inclusion criteria were published clinical trials with randomized controlled trials (RCTs) on the efficacy and 
safety of single antimalarial drugs for COVID-19, published in English and excluding combination therapies. The results showed 3 
antimalarial drugs, namely Quinine Sulfate (QS), Atovaquone (AQ), and Artemisinin-Piperaquine (AP), had gone through clinical trial 
to assess efficacy and safety against COVID-19 patients. Out of the 3 drugs, only AP showed significant results in the primary 
outcome, which was the time required to reach undetectable levels of SARS-CoV-2. Furthermore, the intervention group took 10.6 
days, and the control group took 19.3 days (p=0.001). Based on this review, AP showed significant potential as a therapy in the fight 
against COVID-19. 
Keywords: randomized controlled trial, Quinine Sulfate, Atovaquone, Artemisinin-Piperaquine, SARS-CoV-2

Introduction
The Coronavirus (COVID-19) pandemic is an event in the history of the new millennium that significantly changed the 
global social, economic, and health landscape.1 Since it was first reported in Wuhan, China at the end of 2019, Severe 
Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has rapidly spread in the world and caused a wave of 
infections leading to unprecedented chaos.2 Furthermore, the rapid infection, high death rates, and widespread impacts on 
health systems and economies have forced countries around the world to face extraordinary challenges.3 Efforts to 
understand, control, and overcome COVID-19 have become a major focus for science, governments, and global society. 
Therefore, study as well as development of drugs and vaccines to fight the virus have become a priority.4,5

COVID-19 pathophysiology involves the interaction between SARS-CoV-2 and the human host, primarily targeting 
the angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed in the respiratory tract, lungs, and other 
tissues.6,7 The viral entry triggers immune responses that can result in a dysregulated inflammatory cascade, often 
referred to as a “cytokine storm.” This leads to widespread tissue damage, acute respiratory distress syndrome (ARDS), 
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and multi-organ failure in severe cases.8 Additionally, SARS-CoV-2 infection disrupts the renin-angiotensin-aldosterone 
system (RAAS), contributing to endothelial dysfunction, coagulopathy, and impaired oxygen exchange, which are 
hallmarks of severe COVID-19. Understanding this complex pathophysiology is critical for the identification and 
repurposing of therapeutic agents.

Since the outbreak, the world has witnessed efforts in study as well as development of drugs and vaccines to treat the 
disease. Studies have been conducted since the early phase of the pandemic, with the aim of finding effective solutions to 
reduce the adverse effects of the disease. At the time, there was no definitive treatment, hence, the concept of repurposing 
was implemented, where existing drugs were reused.9 In this context, antimalarial drugs, such as Chloroquine (CQ) and 
Hydroxychloroquine (HCQ), were attracting attention due to their potency and effectiveness.10 In fact, World Health 
Organization (WHO) recommended these drugs to treat COVID-19. Initial studies stated that the mechanism of action 
could be effective in inhibiting viral replication and calming the immune system’s overreaction. Furthermore, the drugs 
showed potential in reducing the duration of fever, inhibiting pneumonia exacerbations, and improving lung health.11,12

However, subsequent research revealed significant safety concerns associated with CQ and HCQ. These drugs were 
found to cause severe side effects, particularly cardiotoxicity, including QT interval prolongation and an increased risk of 
arrhythmias, which could lead to fatal cardiac events.13,14 Other reported adverse effects included hypoglycemia, 
neuropsychiatric disturbances, and gastrointestinal symptoms.15,16 Due to these findings, WHO revoked the 
Emergency Use Authorization (EUA) for CQ and HCQ, emphasizing the need for safer alternatives in treating 
COVID-19.17

The continued exploration of antimalarial drugs remains significant due to their unique properties and the unmet need 
for effective COVID-19 treatments. Antimalarial drugs are potential candidates for use as repurposing due to the extensive 
evaluation for both prevention and treatment purposes, as well as their widespread utilization across diverse age groups.18 

In addition, the strong immunomodulatory and anti-inflammatory effects have good potential in fighting SARS-CoV-2.19 

Studies on other antimalarial drugs continue to be carried out in several countries. The aim was to explore the efficacy and 
safety of these drugs as an alternative treatment after the withdrawal of CQ and HCQ.20–22 Various in silico and in vitro 
studies have been carried out to ascertain the potential of antimalarial drugs for COVID-19.23,24

This study aimed to provide a comprehensive review of several antimalarial drugs that had undergone clinical trials 
for the treatment of COVID-19. Specifically, it focused on assessing their efficacy and safety to identify potential 
therapeutic options. It was hypothesized that certain antimalarial drugs demonstrate measurable efficacy and safety 
profiles in treating COVID-19, providing a basis for their potential use as therapeutic options. Highlighting these drugs’ 
clinical trial results not only addresses an urgent need for evidence-based treatment alternatives but also contributes to the 
broader understanding of repurposed drugs in managing this global health crisis.

Method
The method included conducting literature searches on the MEDLINE, Scopus, and Cochrane databases. Furthermore, 
relevant articles were searched using the keywords “antimalaria”, “COVID-19”, “SARS-CoV-2”, “clinical trial”, and 
“randomized controlled trial.” This narrative review used studies and clinical trial reports published between 2019 and 
May 2024 on the efficacy and safety of antimalarial drugs for COVID-19. This review included randomized controlled 
trials (RCTs) on the efficacy and safety of single antimalarial drugs for COVID-19, published in English and only studies 
evaluating single antimalarial agents, without the use of combination therapies, were included to specifically assess the 
individual effects of these drugs. Articles that included antibiotics commonly used for malaria, such as doxycycline, were 
excluded. Additionally, other sources such as book chapters, conference reports, reviews, posters, articles consisting 
solely of abstracts, discussion results, and articles primarily focused on study design were excluded. Flow diagrams for 
study selection are shown in Figure 1.

Results
Several clinical trials have investigated the efficacy of different antimalarial drugs for COVID-19 following WHO’s 
withdrawal of CQ and HCQ. Three trials were conducted using Quinine Sulfate (QS) in Indonesia, Atovaquone (AQ) in 
the United States, and Artemisinin-piperaquine (AP) in China. Trials on mefloquine were initiated in Japan, but there 
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were no published results despite the study being registered on clinicaltrial.gov. Among the 3 antimalarial drugs studied, 
AP showed significant outcomes. Furthermore, patients in the intervention group had a shorter time to reach undetectable 
levels of SARS-CoV-2 (10.6 days vs 19.3 days in the control group). For safety analysis, AP experienced a significant 
increase (p < 0.05) in QT interval by 21.65 ms (411.94 ms before treatment and 433.59 ms after treatment). Trials of QS 
and AQ did not show significant differences in measured outcomes, although the intervention group showed promising 
results compared to the control in descriptive analyses. Efficacy of Antimalarial Drugs in COVID-19 Patients is 
presented in Table 1.

Discussion
Results on Clinical Trial of Antimalarial for COVID-19
Scientists are relentlessly exploring various treatment options to combat the COVID-19 virus. Among the array of 
potential therapies, antimalarial drugs have become intriguing candidates due to their promising properties.25,26 This 
study provided a comprehensive review of clinical trial that explored the repurposing of antimalarial drugs, and offered 
valuable insights into their potential as therapeutic options. These trials aimed to assess the safety and efficacy of 
antimalarial agents such as QS, AQ, and AP in treating COVID-19 patients. Through meticulous examination of trial 
data, studies endeavor to elucidate clinical benefits, optimal dosage regimens, and any adverse effects associated with 
these drugs. Therefore, by synthesizing results from diverse trials, this review provided a comprehensive understanding 
of the therapeutic landscape, as well as informing healthcare practitioners and policymakers in their efforts to effectively 
combat the pandemic.

Quinine Sulfate (QS)
QS is antimalarial drug used for over 70 years, and the potential to fight COVID-19 has been summarized by Latarissa et al 
2020.27 Furthermore, QS is a weak base that can increase the pH of acidic intracellular organelles and interfere with the 
SARS-CoV-2 fusion process.28–30 It also has a quinoline basic structure that functions to inhibit the Quinine Reductase 
(hQR2) enzyme and disrupt sialic acid biosynthesis. Coronavirus uses this sialic acid group as a receptor.12,16,29,31,32 

Antiviral and immunomodulatory properties are the potential of QS in fighting COVID-19 by increasing the synthesis of 
Retinoic acid-inducible Gene I (RIG-I) and Interferon alpha (IFN-α). These factors block the translation of viral mRNA 
through PKR activation and degrade viral poly mRNA by activating RNAse (L), hence, no viral protein is synthesized.33

Several studies have emphasized the potential of QS in vitro and in silico. A study investigated the effect of QS, CQ, 
and HCQ on the inhibition of SARS-CoV-2 cell replication in Vero B4 cells. The results showed inhibition of SARS- 
CoV-2 virus replication by QS was better than CQ and HCQ, where with 10 μM QS, virus replication could be reduced 

Figure 1 Flow Diagrams for Study Selection.
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Table 1 The Efficacy of Antimalarial Drugs in COVID-19 Patients

Author Antimalarial 
Drugs

Country Sample 
Size

Patient Characteristic Design Study Outcomes Confidence 
Interval

Control Group Intervention Group

22 Quinine Sulfate 

(QS)

Indonesia 25 patients 

(control 
group: 11 

patients, 
intervention 

group: 14 

patients)

Aged ≥18 years (up to 50 

years); hospitalized for 
COVID-19 with mild to 

moderate symptoms

Standard of Care 

(SoC) + Placebo

● Mild case: SoC + QS 

1×400 mg for 5 days
● Moderate Case: SoC + QS 

2×400 mg on the first day 

and 1×400 mg on the next day 
for 5–7 days

● Primary Outcome

- Clinical status using a 7-point 
ordinal scale: NOT 

SIGNIFICANT
● Secondary Outcomes

- Incidence and duration of oxy

gen supplementation: NOT 

SIGNIFICANT
- Incidence of mechanical ventila

tion: NOT SIGNIFICANT

- Length of stay: NOT 
SIGNIFICANT

95%

21 Atovaquone 
(AQ)

United 
States

60 patients 
(control 

group: 19 

patients, 
intervention 

group: 41 

group)

Aged ≥18 years of age, had 
a positive polymerase chain 

reaction test for SARS- 

CoV-2 in 72 h of 
hospitalization

SoC + Placebo SoC + Atovaquone 1500 mg 
BID PO for 10 days

● Primary Outcome

- Log transformed viral load 
(copies/mL): NOT 

SIGNIFICANT
● Secondary Outcomes

- Viral load (log copies/mL) at 2, 

4, and 7 days: NOT 

SIGNIFICANT
- Area under the curve (AUC) of 

viral load through day 3 and 7: 

NOT SIGNIFICANT
- Between group differences in 

viral load, use of remdesivir, 

median split of baseline values 
(high vs low viral load), median 

split time from onset of symp

toms (<5 days vs >5 days, 
median split of body mass index 

(BMI), diabetes status, sex, and 

age: NOT SIGNIFICANT
- Time to 2 log unit decrease in 

viral load: NOT SIGNIFICANT

Not reported
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20 Artemisinin- 

Piperaquine 
(AP)

China 41 patients 

(control 
group: 18 

patients, 

intervention 
group: 23 

patients

Age ≥ 18 years, confirmed 

SARSCoV-2 infection in 
upper respiratory tract 

specimens by real-time 

reverse-transcriptase- 
polymerase-chain-reaction 

(RT-PCR)

HCQ sulfate 

800 mg/day for the 
first 3 days, 

followed by 400 mg 

daily for the next 5 
days + Arbidol 

hydrochloride 

600 mg/day for 8 
days, divided into 

three doses daily.

Artemisinin 125 mg and 

piperaquine 750 mg) for the 
first day and followed by 

a maintenance dose of one 

tablet/day (artemisinin 62.5 mg 
and piperaquine 375 mg) for the 

next 6 days.

● Primary Outcome

- Time taken to reach undetect

able levels SARS-CoV-2: 
Intervention group 10.6 days, 

control group 19.3 days 

(p=0.001)
- Percentage of participants with 

undetectable SARS-CoV-2 on 

days 7, 10, 14, and 28: NOT 
SIGNIFICANT

● Secondary Outcomes

- The CT imaging changes within 
10 days: NOT SIGNIFICANT

- Corrected QT interval changes: 

Before treatment= 411.94 and 
after treatment= 433.59. The 

average prolongation was 21.65 

ms (p=0.011)
- Adverse events: NOT 

SIGNIFICANT

- Abnormal laboratory para
meters: NOT SIGNIFICANT

95%
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by 90%, while HCQ was only reduced by 50%.34 Meanwhile, another in vitro study showed that QS had moderate 
antiviral activity with EC50 of 10.7 ± 3.0 µM and EC90 of 38.8 ± 34 µM in Vero E6 cells infected by SARS-CoV-2 
strain (IHUMI-3).35 In silico, QS showed strong affinity to Angiotensin Converting Enzyme-2 (ACE-2) receptor.36–40 

Another study showed affinity comparison between QS, CQ, and HCQ. The strongest binding affinity was shown by QS 
(−4.89 kcal.mol) and interacts with amino acids His34, Glu37, Lys353.41

Clinical trial of QS was conducted in Indonesia using 25 patients with mild-moderate symptoms from 2 hospitals. The 
primary tested parameter was clinical status using 7-point ordinal scales. Meanwhile, the secondary parameters included 
incidence and duration of oxygen supplementation, incidence of mechanical ventilation, and length of stay. Out of all the 
parameters tested, there was no significant difference between the control and the intervention group. The intervention 
group descriptively showed better results than the control. The small number of samples made the results show 
a statistically insignificant difference.22

While the small sample size is a limitation of the QS clinical trial, it is important to consider other potential 
confounding factors that may have influenced the results. Variability in baseline patient characteristics, disease severity, 
and concurrent treatments could also contribute to the lack of significant findings. Additionally, the study design and 
endpoints selected may not have been optimal to capture the therapeutic effects of QS comprehensively. Future studies 
with larger sample sizes and standardized protocols are necessary to account for these variables and better evaluate the 
efficacy of QS in COVID-19 management.

Atovaquone (AQ)
AQ is antimalarial agent that works by disrupting the mitochondrial electron transport chain in parasites and prevents 
their proliferation.42 In addition to antimalarial properties, AQ has antiviral activity against a range of RNA viruses, 
including coronaviruses. Studies have shown that it inhibits the replication of SARS-CoV-2 in vitro by targeting a key 
enzyme involved in viral RNA synthesis. Furthermore, AQ showed substantial suppression of SARS-CoV-2 replication 
in Calu-3 cells (EC50 = 10.21 μM).43 In a computational study investigating the binding affinity of antimalarial 
medications, AQ and mefloquine were the top 2 drugs in terms of their affinity towards viral proteins when compared 
to other compounds. Also, AQ showed significant inhibition constants for SARS HR1 spike motif protein, 3CL protease, 
and papain-like protease.44 This result has sparked interest in exploring AQ as a potential therapeutic agent for 
COVID-19.

The mechanism of AQ in treating COVID-19 is through inhibition of purine metabolism by decreasing NT5E 
expression. Even though there are currently no antiviral medications designed to specifically target purine metabolism, it 
has been suggested as a significant target for diminishing the nucleotide pool essential for viral replication, as well as 
potentially producing anti-inflammatory effects.45,46 Moreover, clinical trial of AQ has been conducted in China using 60 
COVID-19 patients with a ratio between the control and the intervention group of 2:1. The primary outcome measured 
was log transformed viral load. The secondary outcomes included viral load, Area under the curve (AUC) of viral load 
through day 3 and 7, intergroup differences in viral load, use of remdesivir, median split of baseline, median split time 
from onset of symptoms, median split of body mass index (BMI), diabetes status, sex, age, and time to achieve a 2 log 
units decrease in viral load. Similar to QS, AQ clinical trial results showed no significant differences in efficacy outcomes 
measured between the control and intervention groups. This could be due to the small sample size. In addition, 
confounding variables could affect the results, as most patients in the test group had diabetes. Another factor may be 
that the antiviral effect of AQ was overshadowed by remdesivir which is the standard therapy used in China.21 Similarly 
to QS, aside from the small sample size, the insignificant results of AQ clinical trials could also be influenced by other 
factors, such as the severity of symptoms in patients, the timing of drug administration after infection, and individual 
variations in response to therapy.

Artemisinin-Piperaquine (AP)
Antimalarial artemisinin is produced by the medicinal plant Artemisia annua L (A. annua L). It is a sesquiterpene lactone 
that is stored in glandular trichomes found on the plant’s shoots, specifically on the leaves and flowers. For over 2000 
years, the plant and artemisinin have been safely used to treat a range of fever-related illnesses, including malaria.47 
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Moreover, artemisinin derivatives are first-line treatments for malaria when used in combination with another medication, 
including lumefantrine or amodiaquine. These combinations are known as artemisinin-based combination therapies.48 

Additionally, artemisinins have antiviral activity, and anti-SARS-CoV-1 activity in A. annua extracts increased the 
possibility that they are active against SARS-CoV-2.49

Although artemisinin possesses some antiviral properties, it seems to work against anti-SARS-CoV-2 activity in hot 
water extracts. Also, there was an inverse relationship between the amount of artemisinin in the 8 tested cultivars of 
A. annua and the potency of the extract. It was shown that as the amount of artemisinin increased, the potency of the 
IC50 values decreased.50 Further evidence for non-artemisinin anti-SARS-CoV-2 activity in Artemisia sp. was provided 
by Nie et al which showed that A. afra extracts that lacked artemisinin were equally potent against the virus as 
A. Annua.51

The plant A. annua and artemisinin decreased in vivo concentrations of inflammatory cytokines like Tumor Necrosis 
Factor- alpha (TNF-α) and Interleukin-6 (IL-6). These effector molecules can cause problems when SARS-CoV-2 
patients experience a “cytokine storm.” Additionally, artemisinin reduces fibrosis, a condition that SARS-CoV-2 
survivors face, and damages organs more permanently. According to a recent report, several compounds related to 
artemisinin have shown some level of anti-SARS-CoV-2 activity. Dihydroartemisinin, artesunate, and arteannuin B have 
IC50 values less than 30 μM, while dihydroartemisinin ACTs have IC50 values between 1 and 10 μM. According to 
reports, artesunate’s IC50 values against SARS-CoV-2 were 2.6 μM and 7–12 μg/mL (0.7–1.2 μM). Many viruses are 
inhibited by artemisinin, including SARS-CoV. Therefore, A. annua extract had shown anti-viral activity in vitro against 
SARS-CoV in 200552 and SARS-CoV-2 (EC50 value: 2.5 μg/mL).50,53 Even though A. annua extracts showed some 
activity in vitro, artesunate 2 was found to be the most effective in inhibiting the virus.50 Moreover, Li et al (2020) 
conducted a small human trial and found that artemisinin-piperaquine was safe and twice as effective as a placebo in 
eradicating the virus 21 days after treatment for 7 days.20

This study supported the results of the AP clinical trial conducted on COVID-19 patients in China with the 
randomized controlled trial method. Patients in the treatment group were given artemisinin 125 mg and piperaquine 
750 mg for the first day followed by a maintenance dose of one tablet/day (artemisinin 62.5 mg and piperaquine 375 mg) 
for the next 6 days. Meanwhile, the control group was given HCQ sulfate 800 mg/day for the first 3 days, followed by 
400 mg daily for the next 5 days + Arbidol hydrochloride 600 mg/day for 8 days, divided into three doses daily. Clinical 
trial showed significant results in the primary outcome, namely time taken to reach undetectable levels of SARS-CoV-2, 
where in the intervention group was 10.6 days and control was 19.3 days (p=0.001). This study showed that AP reduced 
the duration the virus stays in the body. Similar to the control, the intervention group showed an improvement effect on 
the lungs after 10 days of consumption. Therefore, this study recommended that for COVID-19 patients with mild- 
moderate symptoms, 8 AP tablets can be given for 7 days.20

AP demonstrates potential as a treatment for COVID-19, particularly in patients with mild to moderate symptoms, as 
evidenced by its ability to reduce duration the virus stays in the body in clinical trials.20 However, its use must be 
contextualized within the broader landscape of current COVID-19 therapies, such as favipiravir and remdesivir. 
Favipiravir, an oral antiviral, is commonly prescribed for mild to moderate cases and has shown efficacy in reducing 
viral load and improving clinical outcomes.54,55 Similarly, remdesivir is the standard of care for hospitalized patients with 
severe COVID-19, significantly reducing recovery time and mortality rates.56,57 Unlike these established treatments, AP 
has been evaluated in limited studies with small sample sizes,20 making its efficacy and safety data insufficiently robust 
to replace favipiravir or remdesivir. Moreover, AP’s role might be better suited as an adjunct therapy rather than 
a standalone treatment. Further large-scale, randomized controlled trials are essential to determine whether AP can 
complement existing treatments and optimize outcomes in COVID-19 management.

Side Effects of Antimalarial Drugs for COVID-19
Antimalarial has potential side effects that need attention.58 QS is antimalarial and also known for the use in treating leg 
cramps.59 Various side effects can occur at therapeutic doses of quinine, including cinchonism (characterized by tinnitus, 
high-frequency hearing loss, photophobia, and other visual disturbances, dysphoria, headache, nausea, vomiting, sweat
ing, dizziness, and postural hypotension), hypoglycemia (due to the drug’s stimulatory effect on pancreatic β cells, most 
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common in the treatment of severe malaria), hypotension (usually associated with intravenous infusion of the drug), 
hearing and visual disturbances (including irreversible loss), gastrointestinal symptoms, cutaneous effects, conduction 
abnormalities (mild prolongation of the corrected QT interval, which is rare unless plasma levels are elevated), 
arrhythmias, and hemolysis (due to hypersensitivity or in patients with G6PD deficiency).60,61 Another rare and serious 
side effect is immune thrombocytopenic purpura and thrombotic microangiopathy. A study by Medicare found that for 
every 1000 individuals consuming quinine, there were 1.67 incidents of immune thrombocytopenic purpura and 0.23 
incidents of thrombotic microangiopathy.62 Besides these side effects, QS has a good safety profile when used as directed 
and in the therapeutic dosage. The side effects associated with quinine use are reversible and can be resolved by stopping 
the medication.27,63,64

The most commonly observed adverse effects of AQ comprise maculopapular rash, nausea, diarrhea, and headache, 
occurring in 10 to 35% of individuals. A study showed that the occurrence of rash was found to be associated with 
elevated plasma concentrations of AQ.65 Furthermore, AQ has the potential to cause liver problems, skin rash, and 
changes in blood cell count.66 In the use of AP, common adverse effects include headache, dizziness, nausea, vomiting, 
anoxia, and fatigue.67 One study found that dihydroartemisinin-piperaquine has a risk of cardiotoxicity, potentially 
prolonging QT interval. This study stated that unexplained sudden death may be associated with repolarization-related 
tachyarrhythmias following treatment with dihydroartemisinin-piperaquine, but rarely occurs. Only one instance of 
possible sudden cardiac death related to dihydroartemisinin-piperaquine was reported among nearly 200,000 individuals 
undergoing directly observed treatment with stringent follow-up.68,69

In AP clinical trial against COVID-19, one of the secondary outcomes was to analyze the safety by measuring ECG 
results before and after treatment. The results showed a significant difference in QT prolonged by 21.65 ms, with 411.94 
ms before treatment and 433.59 ms after treatment, p<0.05. QT prolongation is due to SARS-CoV-2 infecting the 
endothelium and causing immune cell recruitment leading to endothelial dysfunction and extensive apoptosis. This 
causes the blood to become thick, and form a thrombus, as well as prolonged QT.70 Even though the test group caused 
prolonged QT, it did not lead to arrhythmia and other cardiac disorders. Moreover, in patients who experience prolonged 
QT, their QT interval will return to normal after the drug is stopped. Monitoring should still be carried out considering 
the impact of AP on blood vessels.20

To translate these safety findings into clinical practice, specific monitoring guidelines should be established to 
mitigate the potential risks associated with QT prolongation during antimalarial treatment for COVID-19. Routine pre- 
treatment electrocardiograms (ECGs) are recommended to identify pre-existing QT prolongation or other cardiac 
abnormalities. Continuous ECG monitoring during treatment, particularly in patients with known risk factors such as 
electrolyte imbalances or concomitant use of QT-prolonging drugs, can help detect early signs of cardiac arrhythmias. 
Post-treatment follow-up should also be conducted to ensure the resolution of prolonged QT intervals. By integrating 
these monitoring strategies into clinical protocols, healthcare providers can enhance the safe use of antimalarial drugs 
like AP while minimizing adverse cardiac effects.

Limitations
The findings of this review are subject to several limitations. One key limitation is the heterogeneity in study populations, 
as the included trials involved diverse patient demographics, disease severities, and treatment settings, which may affect 
the generalizability of the results. Additionally, there was considerable variation in the endpoints assessed across studies, 
making direct comparisons and synthesis of findings challenging. Furthermore, many of the included studies had 
relatively small sample sizes, which could limit the statistical power to detect significant differences in efficacy and 
safety outcomes. These limitations highlight the need for more robust and standardized clinical trials to better evaluate 
the potential of antimalarial drugs in the treatment of COVID-19.

Conclusion
In conclusion, alternative antimalarial drugs were explored following the retraction of CQ and HCQ, which showed 
varied results. Out of the 3 clinically tested, 2 (QS and AQ) did not show significant results even though the intervention 
group descriptively showed better results than the control. Meanwhile, AP showed significant results in reducing the time 

https://doi.org/10.2147/CPAA.S493750                                                                                                                                                                                                                                                                                                                                                                                                                      Clinical Pharmacology: Advances and Applications 2025:17 8

Latarissa et al                                                                                                                                                                        

Powered by TCPDF (www.tcpdf.org)



required to reach undetectable levels of SARS-CoV-2. However, the potential side effects of these antimalarial drugs, 
particularly QT prolongation with AP, warrant careful consideration. Moreover, the limited scope of evidence, including 
small sample sizes and the lack of diverse clinical settings, highlights the need for further research before recommending 
widespread use. These results showed the varying effectiveness of antimalarial treatments for COVID-19 and empha
sized the potential of AP as a viable therapeutic option.
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