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Background. The whole tumor microenvironment (TME) infiltration features monitored by integrated roles of different RNA N6-
methyladenosine (m6A) regulators remain elusive. Our study is aimed at exploring the association between m6A modification
patterns, TME cell-infiltrating levels, and patients’ prognosis in stomach adenocarcinoma (STAD) patients. Methods.
Consensus clustering was performed based on the integrated analyses of 17 m6A regulators and 229 m6A-related hallmark
genes in STAD (The Cancer Genome Atlas (TCGA) cohort, n = 443; Gene Expression Omnibus (GEO) GSE57303, n = 70,
GSE62254 n = 300, and GSE84437 n = 433). A m6ASig scoring system was calculated by the principal component analysis
(PCA), and its prognostic value was validated in an independent dataset GES15459. Results. Three m6A clusters were
identified among 1246 STAD patients, which had significant overall survival (OS) differences and demonstrated different TME
immune cell infiltration and biological behaviors. According to the m6ASig score, which was generated from the m6A-related
hallmark genes, STAD patients were divided into the high-m6ASig group (n = 585) and low-m6ASig group (n = 586). Patients
in the high-m6ASig group had a notably prolonged OS and higher immune cell infiltration. Moreover, patients with higher
m6ASig score were associated with higher microsatellite instability (MSI); higher PD-L1, CTLA4, and ERBB2 expressions; and
greater tumor mutation burden (TMB). Patients with higher m6ASig score demonstrated a better immune response and drug
sensitivity. Conclusion. Our m6ASig scoring system could characterize TME immune cell infiltration, thus predict patient’s
prognosis and immunotherapy and chemotherapy efficacy, offering a novel tool for the individualized therapeutic implications
for STAD patients.

1. Introduction

Gastric cancer (GC) is one of the most fatal malignancies
worldwide and ranks second in tumor-related death in
China [1]. STAD (stomach adenocarcinoma) accounts for

the vast majority of gastric cancer [2]. Most of STAD
patients are diagnosed at advanced stages and lost opportu-
nity for surgery. Chemotherapy remains the most classic
way for STAD treatment [3]. However, patients with the
same stage and similar treatment regimens demonstrated

Hindawi
BioMed Research International
Volume 2022, Article ID 2053719, 20 pages
https://doi.org/10.1155/2022/2053719

https://orcid.org/0000-0002-5744-5962
https://orcid.org/0000-0002-9180-341X
https://orcid.org/0000-0002-6566-9018
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2053719


large variations in clinical outcomes [4]. Recently, monoclo-
nal antibodies targeting cytotoxic T lymphocyte-associated
antigen 4 (CTLA4), programmed death-1 (PD-1) receptor,
and its ligand (PD-L1) have achieved encouraging antitumor
effects in STAD patients [5]. However, only a limited num-
ber of patients demonstrated durable responses from current
immunotherapies [5]. Thus, new strategies are urgently war-
ranted for improvement of prognostic prediction and ther-
apy strategy.

Methylation of N6 adenosine (m6A) is the most abun-
dant and predominant modification of mRNA, lncRNAs,
and miRNAs detected in higher mammalian cells [6]. An
average of 1000 nucleotides are observed to have 1-4 m6A
adenosine residues [7]. m6A modification process is
dynamic and reversible, which is regulated by three types
of regulatory enzymes: “writers” (methyltransferases),
“readers” (binding proteins), and “erasers” (demethylases)
[7]. Studies of those m6A modification regulators have
helped to depict the exact functions of m6A methylation in

posttranscriptional level. Emerging literature has reported
that the m6A regulators could mediate gene expression
levels in diverse biological processes, including cancer devel-
opment, progression invasion, and metastasis, and could
serve as prognostic biomarkers [8–11]. Moreover, m6A reg-
ulator expression is tightly associated with the tumor
immune microenvironment (TME) [6]. The TME compo-
nents such as cytotoxic T cells, helper T cells, dendritic cells
(DCs), and tumor-associated macrophages (TAMs) could
reflect the immune response [12] and chemotherapy benefit
[13]. Therefore, by comprehensively parsing the m6A mod-
ification and TME relationships, novel therapeutic biomark-
ers are likely to be revealed. In fact, several studies have
reported the interactions between m6A modification and
TME immune cell infiltrations in STAD [14–16]. However,
most of the studies focused on limited number of m6A reg-
ulators, while the antitumor effect is mediated cooperatively
by different tumor-associated factors.

Hence, through bioinformatics analysis from both the
TCGA and GEO databases, we comprehensively analyzed
the association between m6A modification patterns, TME
cell-infiltrating levels, and patients’ prognosis in STAD.
Moreover, we constructed an m6ASig scoring system to
quantify the m6A modification and predict patients’ clinical
responses to immunotherapy and chemotherapy in individ-
ual patients.

2. Materials and Methods

2.1. Data Collection and Preprocessing. The flowchart of the
present study was shown in Figure S1. Raw counts and
fragments per kilobase of transcript per million- (FPKM-)
normalized RNA-seq data, single nucleotide variation
(SNV), and copy number variation (CNV) data with
corresponding clinical information of STAD patients were
downloaded from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/) on July 29, 2021.
The count data of genes in each sample were transformed
to transcripts per million (TPM) values for normalization.
A total of 443 patients with full clinical information,
including age, gender, T stage, N stage, M stage (according
to the AJCC 8th), and survival data, were included. In
addition, three eligible datasets GSE57303 (70 patients),
GSE62254 (300 patients), and GSE84437 (433 patients)
containing mRNA microarray data and prognostic
information were retrieved from Gene Expression
Omnibus (GEO) database. The clinical characteristics of
the TCGA and GEO patients are summarized in Table 1.
An independent dataset GES15459, which lacked clinic
data of T, N, and M stages, was selected as an external
validation cohort to verify the prognostic role of the
m6ASig model (Table S1). The R language software
(v3.6.3) and relevant packages were used in the process of
data analyses in the current study. And a two-sided P
value < 0.05 was defined as statistical significance unless
specifically indicated.

2.2. m6A RNA Methylation Regulator Detection and
Prognosis Analysis. Twenty-three well-acknowledged m6A

Table 1: Demographic and clinical characteristics of patients (P
value: the result of chi-squared test).

TCGA GSE57303 GSE62254 GSE84437 Total

Number 443 70 300 433 1246

Age

≤60 142 29 117 194 482

>60 296 39 183 239 757

Unknown 5 2 0 0 7

Gender

Male 285 52 199 296 832

Female 158 18 101 137 414

T

T1 23 0 0 11 34

T2 93 7 186 38 324

T3 198 54 91 92 435

T4 119 9 21 292 441

Unknown 10 0 2 0 12

N

N0 132 13 38 80 263

N1 119 26 131 188 464

N2 85 26 80 132 323

N3 88 5 51 33 177

Unknown 19 0 0 0 19

M

M0 391 63 273 433 1160

M1 30 7 27 0 64

Unknown 22 0 0 0 22

TNM stage

I 59 3 30 21 113

II 130 9 96 138 373

III 183 41 95 274 593

IV 44 17 77 0 138

Unknown 27 0 2 0 29
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Figure 1: Continued.
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RNA methylation regulators, including 8 “writers”
(METTL3, METTL14, METTL16, WTAP, VIRMA,
ZC3H13, RBM15, and RBM15B), 13 “readers” (YTHDC1-
2, YTHDF1-3, HNRNPC, FMR1, LRPPRC, HNRNPA2B1,
IGFBP1-3, and RBMX), and 2 “erasers” (FTO and
ALKBH5), were collected according to previous studies
[17, 18]. The differential expression patterns of the 23 m6A
regulators were analyzed with the R “limma” package in
the TCGA cohort. We visualized the chromosome location
and mutational landscape of the 23 regulators using the
“RCircos” and “maftools” packages, respectively. Later,
STAD patients in TCGA cohort and three GEO cohorts
were consolidated as a STAD metacohort. The batch effects
were removed by the “combat” function of the “sva” pack-
age. The patients in STAD metacohort were classified into
high- or low-expression groups according to the cut-off
value of each gene acquired with the function “surv_cut-
point” of the “survminer” package. The differences in overall
survival (OS) were evaluated via “survival” and “survminer”
packages. Interactions among m6A regulators were ana-
lyzed, and a network was depicted by “igraph, psych,
reshape2, and RColorBrewer” packages.

2.3. Consensus Clustering and PCA Analysis. To functionally
illustrate the biological role of m6A regulators in STAD,
patients in STAD metacohort were clustered into different
groups using “ConsensusClusterPlus” package. Principal
component analysis (PCA) is an unsupervised statistical
method, which is able to condense data sources down into
a group of linearly uncorrelated variables [19]. Hence, PCA
was performed using “PCA, limma, and ggplot” packages
to observe the distribution of m6A regulator expressions in
different clusters. K-M survival curves were utilized to assess
the survival differences between clusters. The distribution of
different clinicopathological characteristics between the
three clusters were visualized by “pheatmap.”

2.4. Gene Set Variation Analysis. The ssGSEA (single-sample
gene set enrichment analysis) algorithm was applied to iden-
tify the relative abundance of infiltrating immune cells
related to different clusters (including activated B cells, acti-
vated CD4+ cells, activated CD8+T cells, activated dendritic
cells, CD56 bright natural killer cell, CD56dim natural killer
cell, eosinophil, gamma delta T cell, immature B cell, imma-
ture dendritic cell, MDSC, macrophage, mast cell, monocyte,
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Figure 1: Overview of the 23 m6A regulators in stomach adenocarcinoma (STAD). (a) The mRNA expression of the m6A regulators in
STAD tissues and normal tissues. (b) The CNV variation frequency of the m6A regulators. Red dots: CNV amplification; green dots:
CNV deletion. (c) The location of CNV alteration of the m6A regulators on different chromosomes. (d) Mutation frequency of the m6A
regulators of STAD patients in the TCGA cohort (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001).
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Figure 2: Continued.
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natural killer T cell, natural killer cell, neutrophil, plasmacy-
toid dendritic cell, regulatory T cell, T follicular helper cell,
type 1 T helper cell, type 17 T helper cell, and type 2 T helper
cell) in the tumor microenvironment. “Reshape2, ggpubr,
limma, GSEABas, and GSVA” algorithms were used to cal-
culate and depict the immune infiltration of different m6A
clusters. Gene set variation analysis (GSVA) [20] was per-
formed to find the most significant pathways between differ-
ent m6A regulator clusters, according to the gene sets
“c2.cp.kegg.v7.4.symbols.gmt.”

2.5. Screening of m6A-Related Genes Affecting Prognosis. The
differentially expressed genes (DEGs) in the three m6A clus-
ters were obtained by setting a threshold P < 0:01. Cox
regression analysis was used to identify the m6A cluster hall-
mark genes. Finally, a total of 229 DEGs were obtained.
Next, consensus clustering and PCA analysis were again per-
formed to determine subgroups of STAD patients based on
the expression similarity of m6A cluster hallmark genes.

2.6. Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes Analyses. To explore the relevant biological path-
ways enriched by these DEGs, “clusterProfiler, org.Hs.eg.db,
enrichplot, and ggplot2” packages were applied to analyze
and visualize Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment paths.

2.7. Construction and Evaluation of the m6ASig Model.
Additionally, an m6ASig model was constructed with the
combination of PC1 and PC2 from PCA analysis of m6A
cluster hallmark genes: m6ASig = PC1 + PC2. Patients were
classified into two different groups according to the median
value of the m6ASig score followed by Kaplan-Meier analy-

ses. Next, our study created a Sankey diagram to illustrate
the patient transitions between m6A clusters, m6A cluster
hallmark gene clusters, m6ASig, and their living status. Uni-
variate and multivariate cox regression analyses involving all
variables were carried out to explore the independent prog-
nostic elements for STAD patients. Nomogram is an effec-
tive predictive tool that is able to generate an individual
probability of a clinical event [21]. Hence, we constructed
a predictive nomogram by integrating different prognostic
factors using the “survival and regplot” and “rms” R
packages.

2.8. Association between Different m6ASig Score Groups and
Tumor Immune Landscape. The association between differ-
ent m6ASig score groups and the 23 types of infiltrating
immune cells was analyzed using the “corrplot” algorithm.
Microsatellite instability (MSI) is a molecular tumor pheno-
type of a deficient mismatch repair system [22]. MSI status
of patients in TCGA cohort was retrieved from The Cancer
Immunome Atlas (TCIA, https://tcia.at/home). Analysis
regarding the association between m6ASig score and MSI
in the TCGA cohort was achieved by “limma” package.

Programmed cell death protein 1 or programmed cell
death ligand 1 (PD-1/PD-L1) is a checkpoint molecule that
plays a vital role in the immune system suppression [23].
ErbB2 is an important signal integrator for the epidermal
growth factor family of receptor tyrosine kinases [24].
Hence, the corrections between m6ASig score and PD-L1,
CTLA-4, and ERBB2 were analyzed with the “limma”
package.

Tumor mutational burden (TMB) is a measure of the
amount of somatic coding mutations per DNA megabase

Erasers
Readers
Writers

Risk factors
Favourable 
factors

Positive correlation with P < 0.0001
Negative correlation with P < 0.0001

Cox test, pvalue
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(c)

Figure 2: Overall survival (OS) analysis of 17 m6A regulators (METTL3, WTAP, RBM15, RBM15B, YTHDC1, YTHDC2, TYHDF1,
YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC, IGFBP1, IGFBP2, IGFBP3, FTO, and ALKBH5). (a) Kaplan-Meier survival curve for
ALKBH5, FTO, HNRNPC, IGFBP1, IGFBP2, IGFBP3, LRPPRC, RBM15, RBM15B, WTAP, YTHDC2, TYHDF1, YTHDF2, and
YTHDF3. (b) Cox regression analysis identified the independent prognostic predictors in the TCGA-GEO metacohort. (c) Interactions
among different m6A regulators in the TCGA-GEO metacohort. P < 0:05 was considered significant.

6 BioMed Research International

https://tcia.at/home


Consensus matrix k = 3

1
2
3

(a)

2.5

0.0

–2.5

–5 0

PC1

5

PC
2

m6A cluster
A
B
C

(b)

1.00

0.75

0.50

0.25

0.00

442

287
442

339

218
340

238

164
229

193

146
191

168

131
158

134
Number at risk

107
135

101

90
111

69

71
87

50

56
69

42

42
50

30

27
31

15

13
16

2

3
9

0

1
0

10 2 3 4 5

Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

6 7 8 9 10 11 12 13

m
6A

 cl
us

te
r

A
B
C

10 2 3 4 5

Time (years)

6 7 8 9 10 11 12 13

m6A cluster
A
B
C

p < 0.001

(c)

1.00 ns ns ns ns ns ns ns ns ns ns ns

0.75

0.50

0.25Im
m

un
e i

nf
itr

at
io

n

0.00

A
ct

iv
at

ed
.B

.ce
ll

A
ct

iv
at

ed
.C

D
4.

T.
ce

ll
A

ct
iv

at
ed

.C
D

8.
T.

ce
ll

A
ct

iv
at

ed
.d

en
dr

iti
c.c

el
l

CD
56

br
ig

ht
.n

at
ur

al
.k

ill
er

.ce
ll

CD
56

di
m

.n
at

ur
al

.k
ill

er
.ce

ll
Eo

sin
op

hi
l

G
am

m
a.d

el
ta

.T
.ce

ll
Im

m
at

ur
e.B

.ce
ll

Im
m

at
ur

e.d
en

dr
iti

c..
ce

ll
M

D
SC

M
ac

ro
ph

ag
e

M
as

t.c
el

l
M

on
oc

yt
e

N
at

ur
al

.k
ill

er
.T

.ce
ll

N
at

ur
al

.k
ill

er
.ce

ll
N

eu
tr

op
hi

l
Pl

as
m

ac
yt

oi
d.

de
nd

rit
ic

.ce
ll

Re
gu

la
to

ry
.T

.ce
ll

T.
fo

lli
cu

la
r.h

el
pe

r.c
el

l
Ty

pe
.1

.T
.h

el
pe

r.c
el

l
Ty

pe
.1

7.
T.

he
lp

er
.ce

ll
Ty

pe
.2

.T
.h

el
pe

r.c
el

l
m6A cluster

A
B
C

⁎⁎ ⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(d)

Figure 3: Continued.
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[25]. TMB data of patients in TCGA database was calculated
through the “maftools” package in R. Patients in TCGA
cohort were divided into the low TMB group (n = 68) and
the high TMB group (n = 291) according to cut-off value of
1 mutation/mb for further analysis. The correlation between
TMB and m6ASig score was conducted by “ggpubr and
reshape2” R packages. We also used the “survival” package
to compare the survival time differences.

2.9. Chemotherapy and Immunotherapy Response Prediction.
To assess the predictive role of the m6ASig model for che-
motherapy in STAD patients, we used the “pRRophetic”
package to predict the half-maximal inhibitory concentra-
tion (IC50) of some common chemotherapy drugs, including
cisplatin, docetaxel, paclitaxel, and rapamycin. Next, based
on The Cancer Immunome Atlas (TCIA) [26], we further
explored the correlation between different m6ASig score
groups and immunophenoscore (IPS), which act as a marker
for immune response. The results were visualized by
“ggpubr” R package.

2.10. Statistical Analysis. Statistics analysis was conducted on
R platform v3.6.3. Mann–Whitney U tests were performed

to compare m6A regulators and m6A-related gene expres-
sion levels in different subgroups (normal tissues, tumor tis-
sues, and different clusters). Chi-squared test or Fisher’s
exact test was exerted to compare the clinical phenotypes
between different clusters, as well as the immune responses
between high-m6ASig score group and low-m6ASig score
group. Pearson correlation analysis was conducted to assess
the correlation between m6ASig score and different gene
clusters. Univariate and multivariate cox regression analyses
were utilized to determine the independent prognostic fac-
tors for STAD patients. Kaplan-Meier (K-M) curves and
log-rank test were performed to compare the survival differ-
ences. All tests were two-tailed, and a P value of 0.05 or spe-
cifically specified was considered statistically significant.

3. Results

3.1. Expression Patterns of m6A RNA Methylation Regulators
in STAD. Our study firstly analyzed the expression levels of
the 23 m6A regulators in STAD and adjacent normal tissues
based on the TCGA cohort. As shown in Figure 1(a), 22 of
the 23 m6A regulators had significantly higher expression
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Figure 3: Consensus clustering based on the expression of 17 m6A regulators and the survival differences, distinct immune landscapes, and
clinicopathologic characteristics of the three clusters. (a) The overlap among clusters when k = 3. (b) Scatter plot of principal component
analysis (PCA) for m6A regulators in the TCGA-GEO metacohort. (c) Kaplan-Meier curves for cluster A, cluster B, and cluster C (log-
rank test, P < 0:001). (d) TME cell infiltration characteristics in the three clusters in the TCGA-GEO metacohort (∗P < 0:05, ∗∗P < 0:01,
and ∗∗∗P < 0:001). (e) Heatmap showing the relationship among the clinicopathological characteristics of the three clusters.
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in STAD tissues than normal ones, while the expression level
of the “reader” IGF2BP2 was notably lower in STAD tissues.

3.2. Genetic Alteration of m6A Regulators in STAD. The
CNV and SNV data of 23 m6A regulators were analyzed
using TCGA data to assess the impacts of genetic changes
on the gene expression. The results demonstrated that CNVs
of the 23 m6A regulators could be frequently spotted. More
specifically, the m6A “reader” gene YTHDF2 owned the
highest frequency of CNV events, which mainly had
decreased copy numbers in STAD tissues (Figure 1(b)).
The chromosome location of the 23 m6A regulators is
shown in Figure 1(c). Next, we explored the SNV mutations
in the 23 m6A regulators. As shown in Figure 1(d), the m6A
“writer” gene ZC3H13 had the highest frequency of genetic
alteration (8%), and Frame Shift Del was the most frequent
alteration.

3.3. Survival Analysis of m6A Regulators. A total of 17 m6A
regulatory genes (METTL3, WTAP, RBM15, RBM15B,
YTHDC1, YTHDC2, TYHDF1, YTHDF2, YTHDF3,
HNRNPC, FMR1, LRPPRC, IGFBP1, IGFBP2, IGFBP3,
FTO, and ALKBH5) were assessed and recruited for survival
analysis in the metadata cohort by combining the TCGA
and the three GEO datasets (GSE57303, GSE62254, and
GSE84437). Kaplan-Meier curves showed that higher
expression levels of ALKBH5, FTO, IGFBP1, IGFBP2,
IGFBP3, and YTHDF1 were significantly associated with
poorer OS in STAD patients (Figure 2(a)), while patients
with lower expression levels of HNRNPC, LRPRPC,
RBM15, RBM15B, WTAP, YTHDC2, YTHDF2, and
YTHDF3 showed shortened OS (Figure 2(a)). In cox regres-
sion analysis, high expression levels of YTHDF1, FMR1,
IGFBP1, IGFBP2, IGFBP3, FTO, and ALKBH5 were unfa-
vorable factors for STAD patients’ OS (Figure 2(b)), while
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Figure 4: Consensus clustering based on the 229 m6A hallmark genes and the survival differences, distinct immune landscapes, and
clinicopathologic characteristics of the three clusters. (a) The overlap among clusters when k = 3. (b) Scatter plot of principal component
analysis (PCA) of m6A hallmark genes in the TCGA-GEO meta-cohort. (c) Kaplan-Meier curves for cluster A, cluster B, and cluster C
(log-rank test, P < 0:001). (d) The gene expression patterns of 17 m6A regulators among the three clusters (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗

P < 0:001). (e) Heatmap showing the relationship among the clinicopathological characteristics of the three clusters.

10 BioMed Research International



1.00

0.75

0.50

0.25Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0 1 2 3 4 5 6

Time (years)

7 8 9 10 11 12

Low
High

13

130
585 457 347 299 271 225 181 136 111 81 55 31 10 1
586 440 284 231 186 151 121 91 64 53 33 13 4 0

1 2 3 4 5 6

Time (years)

7 8 9 10 11 12

p < 0.001

m
6A

 sc
or

e Number at risk

m6A score
Low
High

(a)

m6A cluster

A

B

C

A

B

C

Alive

Dead

High

Low

Gene cluster m6A score Status

(b)

pvalue Hazard ratio

Age

Gender

T

N

M

Stage

m6A score

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

1.021 (1.012–1.029)

0.082 1.185 (0.979–1.435)

1.277 (1.151–1.417)

1.625 (1.475–1.790)

3.890 (2.853–5.303)

2.124 (1.871–2.411)

0.975 (0.968–0.982)

0 1 2 3 4 5

Hazard ratio

(c)

pvalue Hazard ratio

Age

Gender

T

N

M

Stage

m6A score

<0.001

0.249

<0.001

<0.001

<0.001

<0.001

1.034 (1.026–1.043)

0.031 1.237 (1.020–1.501)

1.074 (0.951–1.213)

1.282 (1.123–1.464)

2.437 (1.655–3.588)

1.505 (1.225–1.848)

0.971 (0.963–0.979)

0.0 1.0 2.0 3.0

Hazard ratio

(d)

Figure 5: Continued.

11BioMed Research International



patients with higher levels of WTAP, RBM15, YTHDC2,
TYHDF2, YTHDF3, HNRNPC, and LRPPRC were con-
nected with better OS (Figure 2(b)). In addition, correlations
among the expression patterns of the 17 m6A regulators
were further explored. Results demonstrated that the major-
ity of the m6A regulators were positively connected with one
another, expect for two connections: LRPPRC and IGFBP3
and YTHDF3 and IGFBP2 (Figure 2(c)).

3.4. Consensus Clustering of m6A Regulators with Different
Clinical Characteristics and Survival. Since m6A regulatory
genes are connected with STAD prognosis, consensus clus-
tering and PCA analysis were performed according to the
expression patterns of 17 m6A regulatory genes. When the
clustering stability ranging from 2 to 9, k = 3 was proved to
be the optimal point to acquire the biggest differences
between different clusters. A total of 1171 STAD patients
from both TCGA and GEO cohorts were clustered into three
subtypes: cluster A (n = 442), cluster B (n = 442), and cluster
C (n = 287) (Figures 3(a) and 3(b)). As shown in Figure 3(c),
the overall survival (OS) of cluster C was significantly longer
than other clusters (P < 0:001). Next, we analyzed the
immune infiltration levels in different clusters. Cluster A
had higher infiltration levels of activated B cell, and cluster
B had higher infiltration levels of eosinophil, immature B
cell, immature dendritic cell, MDSC, mast cell, regulatory
T cells (Tregs), and type 2 T helper cell, whereas cluster C
was more associated with activated CD4 T cells, activated

dendritic cells, gamma delta T cells, natural killer cells, and
neutrophil infiltration (Figure 3(d)). The comprehensive
landscapes of correlations between the different clusters
and clinicopathological characteristics were visualized in
the form of heatmaps (Figure 3(e)). Next, GSVA was per-
formed to assess the potential mechanisms leading to the
differences in the immune infiltration among the three sub-
groups. Compared with cluster B, cluster C was mainly
involved in base excision repair and homologous recombi-
nation pathways (Figure S2).

3.5. Consensus Clustering of m6A-Related Gene Cluster.
Next, we investigated whether there was a persistent dysreg-
ulation of certain genes among the three m6A clusters. A
total of 292 DEGs were identified through comparing the
expression patterns of mRNAs across the three clusters
(Table S2, Figure S3A). Then, 229 genes were identified as
m6A hallmark genes via cox regression analysis (Table S3).
GO and KEGG enrichment analyses demonstrated that
those DEGs were mainly involved in the signal pathways
related to cancer development and metastasis, such as
transcriptional misregulation and Wnt signaling pathway
(Figure S3B, C). To examine the clinical significance of the
DEGs, STAD samples were classified into 3 clusters using
the ConsensusClusterPlus tool (Figures 4(a) and 4(b)).
Prognostic analysis revealed that cluster B had a better OS
than clusters A and C (P < 0:001). In addition, we explored
the m6A regulator expression in different gene clusters.
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METTL3, WTAP, RBM15, RBM15B, YTHDC2, YTHDF1,
YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC, and
IGFBP1 expressions were significantly higher in cluster B,
while YTHDC1, IGFBP2, IGFBP3, FTO, and ALKBH5 had
lower expression levels in cluster B. Figure 4(e) depicts the
heatmap of the association between the different clustering
subgroups and the clinicopathological parameters of STAD
patients.

3.6. Construction and Validation of a Novel Signature
m6ASig Based on DEGs. To further quantify the m6A mod-
ification patterns of each STAD patient, a scoring system,
named as m6ASig, was constructed. STAD patients were
separated into two groups according to the m6ASig: the
high-m6ASig score group (n = 585) and low-m6ASig score
group (n = 586) (Table S4). K-M curves showed that
patients in the high-m6ASig score group had a notably
better OS than the low-m6ASig score group (Figure 5(a), P
< 0:001). The Sankey map depicted that patients with high
m6ASig were mainly connected with gene cluster B and

showed better living status (Figure 5(b)). The univariate
analysis revealed that the age (P < 0:001, HR = 1:021, 95%
CI = 1:012‐1:029), T stage (P < 0:001, HR = 1:277, 95% CI
= 1:151‐1:417), N stage (P < 0:001, HR = 1:625, 95% CI =
1:475‐1:790), M stage (P < 0:001, HR = 3:890, 95% CI =
2:853‐5:303), stage (P < 0:001, HR = 2:124, 95% CI = 1:871
‐2:411), and m6ASig (P < 0:001, HR = 0:975, 95% CI =
0:968‐0:982) were significantly correlated with the OS
(Figure 5(c)). Moreover, when all the parameters were
enrolled in the multivariate cox regression model, the age
(P < 0:001, HR = 1:034, 95% CI = 1:026‐1:043), N stage
(P < 0:001, HR = 1:282, 95% CI = 1:123‐1:464), M stage
(P < 0:001, HR = 2:437, 95% CI = 1:655‐3:588), stage
(P < 0:001, HR = 1:505, 95% CI = 1:225‐1:848), and
m6ASig (P < 0:001, HR = 0:971, 95% CI = 0:963‐0:979)
were identified as independent prognostic predictors
(Figure 5(d)). Patients with high m6ASig also had better
OS in patients from different TNM stages (Figure S4).

Additionally, an independent dataset GSE15459 was
applied to validate the prognostic role of the m6ASig model
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Figure 6: Associations of the tumor microenvironment with different m6ASig groups in STAD patients. (a) Differences in m6ASig score
among three m6A clusters in TCGA-GEO metacohort (P < 0:001). (b) Differences in m6ASig score among three gene clusters in TCGA-
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(Figure S5). Collectively, all the analyses demonstrated that
patients in the high m6ASig group had better prognosis
than the low score group. To further strengthen the
predictive accuracy, a nomogram according to the results
of cox regression analyses was established. As shown in
Figure 5(e), higher total points were related to worse 1-
year, 3-year, and 5-year OS. For instance, if a 55-year-old
female patient with low m6ASig was diagnosed with
T4N0M0 (IIB) STAD, she would get a total score of 412

points, which predicted the 1-year, 3-year, and 5-year OS
rates of 91.4%, 75.1%, and 67.8%, respectively. The
calibration curves illustrated excellent predictive
performance compared with the ideal model of the 1-year,
3-year, and 5-year OS curves (Figure 5(f)).

3.7. Association between Different m6ASig Groups and
Tumor Immune Landscape. To better illustrate the features
of m6ASig scoring system, we further assessed the
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Figure 7: Associations of tumor mutation burden (TMB) with different m6ASig groups in STAD patients. (a) Stratified analysis of the
m6ASig score for STAD patients by TMB (P < 0:001, Wilcoxon test). (b) A scatter plot of correlation analysis revealed a positive
connection between TMB level and m6ASig score. (c) Kaplan-Meier curves for OS for high and low TMB groups (log-rank test, P <
0:001). (d) Kaplan-Meier curves for OS for the patients stratified by both the m6ASig score and TMB (log-rank test, P = 0:002).
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correlation between m6ASig score and m6A clusters/m6A
gene clusters. Results demonstrated that there were statisti-
cally differences of m6ASig score level among different sub-
types (Figures 6(a) and 6(b), all P < 0:001). The correlation
between m6ASig score and 22 types of infiltrating immune
cells was analyzed via Spearman correlation analysis. As
shown in Figure 6(c), m6ASig score was most connected

with activated CD4 T cell, while mast cell and plasmacytoid
dendritic cell had a strong negative connection with m6ASig.
Next, our study assessed the relationship between m6ASig
score and MSI in the TCGA database. Results showed that
there was a notably difference of m6ASig score level among
patients with different MSI status (P < 0:01). Specifically,
patients with MSI-H showed the highest m6ASig score
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Figure 8: Prediction of immunotherapy and chemotherapy response. (a–d) Sensitivity analysis of four common chemotherapeutic drugs in
STAD patients with high or low m6ASig scores. Drugs including cisplatin (a), docetaxel (b), paclitaxel (c), and rapamycin (d). (e–h) The
relative distribution of immunophenoscore (IPS) between high or low m6ASig score groups. P < 0:05 was considered significant.
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(Figure 6(d)). In addition, we also found that patients with
high m6ASig score had higher PD-L1, CTLA4, and ERBB2
expressions than patients with low score in the metacohort
(Figures 6(e)–6(g), all P < 0:001).

The correlation between TMB and m6ASig was also
explored in TCGA cohort. Patients with high m6ASig score
exhibited higher TMB levels than those with low score
(Figure 7(a), P < 0:001). The correlation analysis revealed
that TMB level was positively associated with higher m6ASig
score (Figure 7(b)). K-M survival analysis showed that H-
TMB patients had longer OS (Figure 7(c), P < 0:001). What
is more, combination of TMB and m6ASig in K-M analysis
demonstrated that STAD patients with higher TMB and
m6ASig score had the most satisfying outcome
(Figure 7(d), P = 0:002).

3.8. Clinical Application of m6ASig Model for Chemotherapy
and Immunotherapy Response Prediction. Then, we went
further to assess the clinical value of our m6ASig scoring
model in chemotherapy and immunotherapy response pre-
diction. IC50 was used to predict the drug sensitivity of four
common drugs for treatment of STAD: cisplatin, docetaxel,
paclitaxel, and rapamycin. We found that patients in the
high-m6ASig score group were more sensitive to all of the
4 drugs compared with the low score group (Figures 8(a)–
8(d), all P < 0:001). Subsequently, the association between
IPS and m6ASig score in immunotherapy was assessed.
Results showed that high-m6ASig groups had higher IPS
scores in the IPS-CTLA-NEG-PD1-POS, IPS-CTLA-POS-
PD1-NEG, and IPS-CTLA-POS-PD1-POS groups
(Figures 8(e)–8(g), P < 0:001, P = 0:017, and P < 0:001,
respectively), which indicated that high m6ASig score
patients had better opportunity to benefit from
immunotherapy.

4. Discussion

The TCGA project was launched in 2005 to improve our
understanding on the genetic diversity of different cancers
via innovative genome analysis methods, assisting clinicians
to generate new ideals for cancer treatment [27]. Here, in
our study, using multiple bioinformatics algorithms, we
identified three distinct m6A regulators and m6A-related
gene clusters which were correlated tightly with STAD
patients’ survival and TME immune cell infiltration. More-
over, we also established a scoring system: m6ASig to associ-
ate m6A mediation patterns with tumor immune landscape
and predict immunotherapeutic and chemotherapy efficacy
on each STAD patients.

Firstly, our study assessed the RNA expression and
genetic mutations of 23 m6A regulators. Our prognostic
analyses demonstrated that YTHDF1, IGFBP1, IGFBP2,
IGFBP3, FTO, and ALKBH5 were unfavorable factors for
STAD patients’ OS while patients with higher levels of
WTAP, RBM15, YTHDC2, TYHDF2, YTHDF3, HNRNPC,
and LRPPRC were connected with better OS. Among which,
YTHDF1 [8], IGFBP1 [28], IGFBP2 [29], FTO [30],
ALKBH5 [31], WTAP [32], YTHDC2 [33], and LRPPRC
[34] have been previously reported to predict the prognosis

of STAD patients. For instance, YTHDF2 could induce deg-
radation of the transcripts by selectively recognizing and
binding to m6A sites [35]. Shen et al. previously reported
that overexpression of YTHDF2 could inhibit tumor prolif-
eration in gastric cancer through regulating FOXC2 signal-
ing pathway and may serve as a favorable prognostic factor
[36]. In our prognostic analysis, patients with higher levels
of YTHDF2 were also connected with better OS. Based on
17 m6A regulators, we built three distinct m6A regulator
clusters. These three clusters had significantly distinct sur-
vival outcomes and immune cell infiltration levels. Cluster
C had the best OS compared with the other two clusters
and could be characterized as an immune-inflamed pheno-
type [37], with the presence of activated CD4 T cells, acti-
vated dendritic cells, gamma delta T cells, and natural
killer cells. However, though cluster B had a relatively rich
abundance in tumor-infiltrating immune cells, including B
cells, and MDSC, the patients in cluster B did not show sur-
vival benefit compared with other clusters. This phenome-
non may be explained that those immune cells are
restricted in the stroma surrounding the tumors but are
not penetrated into the tumors, thus making the antitumor
activity ineffective [37]. Furthermore, in GSEA analysis,
compared with cluster B, cluster C was mainly involved in
base excision repair and homologous recombination
pathways.

Next, our study identified 229 m6A hallmark genes from
the three m6A clusters. These differentially expressed genes
were considered as products of m6A regulators’ posttran-
scriptional modifications. Just alike to the results of m6A
regulator clustering, the three gene clusters could distinguish
STAD patients with different clinical outcomes. GO and
KEGG enrichment analyses demonstrated that those hall-
mark genes were mainly involved in the signal pathways
related to cancer development and metastasis, such as tran-
scriptional misregulation and Wnt signaling pathway.
Among the 229 m6A hallmark genes, some of them had
been well studied in STAD. For instance, RIPK2 had been
previously reported to play an important role in modulating
gastric cancer (GC) cell proliferation, migration, and apo-
ptosis through the NF-κB signaling pathway [38]. A recent
study found that DHRS3 was hypermethylated and down-
regulated in GC patients and reduced expression of DHRS3
is implicated in gastric carcinogenesis, which suggested
DHRS3 could be a tumor suppressor [39]. However, the
exact biological functions of most hallmark genes in STAD
patients have not been well explored which needed further
evaluation in future studies.

To further quantify the m6A modification patterns in
individual patients, we constructed m6ASig scoring system
based on the gene clusters, aiming to predict the survival
and therapeutic strategies for each STAD patients more
accurately. Our results demonstrated that the m6A cluster
C, which was characterized as immune-inflamed phenotype,
had higher scores of m6ASig. Survival analysis further vali-
dated that high m6ASig score was correlated with better
OS. Our study also used a nomogram according to the
results of cox regression analyses to improve the accuracy
of prognostic prediction and help clinical decision-making.
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The prognostic role of the m6ASig model was further vali-
dated in an independent dataset GES15459. Moreover, our
study found that higher m6ASig score was positively associ-
ated higher levels of TME immune cells, such as activated
CT4 cells, CD8 cells, dendritic cells, gamma delta T cells,
type 2 and type 17 T helper cells, and neutrophils. All these
results indicated that our m6ASig was a reliable scoring sys-
tem for the comprehensive analysis of m6A modification on
individual STAD patients and could predict the level of
immunotherapy response by characterizing the TME
immune cells.

Immunotherapy is arising as a powerful clinical strategy
for cancer treatment. However, only a limited number of
patients could benefit from current immunotherapies. Clin-
ical trials revealed that MSI-H patients have better prognosis
than microsatellite stable patients, owning to the activation
of T lymphocyte recognition of neoantigens [40, 41]. In con-
sistent with previous researches, we found that patients with
high m6ASig score exhibited higher MSI-H status. Other
well-recognized immune response predictors, such as PD-
L1, CTLA4, and ERBB2, were all positively connected with
m6ASig score. High TMB is linked to prolonged survival
in various cancers [42–44]. Our study found that patients
with higher m6ASig score exhibited higher TMB level and
STAD patients with higher TMB and m6ASig score had
the most satisfying survival compared with other groups.
Immunophenoscore (IPS) was used to assess response to
immune checkpoint inhibitors. Results showed that high
m6ASig score group had higher IPS scores in the IPS-
CTLA-NEG-PD1-POS, IPS-CTLA-POS-PD1-NEG, and
IPS-CTLA-POS-PD1-POS groups, which indicated that
those treatments were more efficacious in patients with high
m6ASig scores. Besides immunotherapy response predic-
tion, our study also evaluated the clinical use of our m6ASig
model in chemotherapy response. We found that patients in
the high m6ASig score group were more sensitive to the
common drugs for STAD treatment. All these findings sug-
gested that our m6ASig could not only predict STAD
patients’ clinical responses to immunotherapy but also the
efficiency of chemotherapy.

Several recent studies on m6A modification have out-
lined its key role in STAD patients. Zhang et al. were the first
to reveal that the m6A modification played a nonnegligible
role in formation of TME diversity and complexity [45]. In
a recent study, Meijing et al. reported that STAD patients
in the high m6A score group had a better prognosis than
those in the low m6A score group [46], which were similar
with our results. However, there are still many differences
between the two articles. First of all, the sample size of Meij-
ing et al.’s study was relatively small (TCGA + GSE84437,
total patient number: 876), while our study included 1246
STAD patients. It was known that bigger sample size might
present more solid results. Secondly, after construction of
the m6A scoring system, our study further used a predictive
nomogram by integrating different prognostic factors to fur-
ther strengthen the predictive accuracy. The calibration
curves illustrated excellent predictive performance com-
pared with the ideal model of the 1-year, 3-year, and 5-
year OS curves. Thirdly, our study assessed the clinical value

of our m6ASig scoring model both in chemotherapy and
immunotherapy response prediction. However, Meijing
et al. did not conduct drug sensitivity analysis, thus making
their m6A scoring system lack of information for chemo-
therapy response prediction. Last but not least, we further
selected GSE15459 dataset as an external validation cohort
to confirm the prognostic value of m6A regulators in gastric
cancer. Results demonstrated that the external validation
cohort presented the consistent results thus confirming our
findings.

However, several limitations should be noticed in our
study. First, TCGA and GEO cohorts only shared the infor-
mation of 17 m6A regulators; 6 of the 23 regulators were
excluded from our study. Second, since our study was a ret-
rospective study based on bioinformatics analysis, future
prospective researches are needed to validate our findings,
and mechanism researches at cellular and molecular levels
are needed to fully elucidate the exact function of m6A reg-
ulators and hallmark genes.

In conclusion, our study comprehensively evaluated the
m6A modification patterns among STAD patients and
established an m6ASig scoring system that could character-
ize TME immune cell infiltration, thus predict patient’s
prognosis and immunotherapy and chemotherapy efficacy,
offering a novel tool for the individualized therapeutic impli-
cations for STAD patients.
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