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ABSTRACT

Gene expressions measured using microarrays
usually suffer from the missing value problem.
However, in many data analysis methods, a complete
data matrix is required. Although existing missing
value imputation algorithms have shown good
performance to deal with missing values, they also
have their limitations. For example, some algorithms
have good performance only when strong local
correlation exists in data while some provide the
best estimate when data is dominated by global
structure. In addition, these algorithms do not take
into account any biological constraint in their
imputation. In this paper, we propose a set theoretic
framework based on projection onto convex sets
(POCS) for missing data imputation. POCS allows
us to incorporate different types of a priori know-
ledge about missing values into the estimation
process. The main idea of POCS is to formulate
every piece of prior knowledge into a corresponding
convex set and then use a convergence-guaranteed
iterative procedure to obtain a solution in the inter-
section of all these sets. In this work, we design
several convex sets, taking into consideration the
biological characteristic of the data: the first set
mainly exploit the local correlation structure among
genes in microarray data, while the second set
captures the global correlation structure among
arrays. The third set (actually a series of sets) exploits
the biological phenomenon of synchronization loss
in microarray experiments. In cyclic systems, syn-
chronization loss is a common phenomenon and
we construct a series of sets based on this phe-
nomenon for our POCS imputation algorithm.
Experiments show that our algorithm can achieve a

significant reduction of error compared to the
KNNimpute, SVDimpute and LSimpute methods.

INTRODUCTION

DNA Microarray has been widely used in numerous studies
over a broad range of biological disciplines, such as cancer
classification (1), identification of genes relevant to a certain
diagnosis or therapy (2), investigation the mechanism of drug
action and cancer prognosis (3,4). Using this technology, the
relative expression levels in two or more mRNA populations
can be analyzed for tens of thousands of genes simultaneously.
Despite the wide usage of microarray data, they frequently
contain missing values with up to 90% of genes affected (5).
Missing values occur due to various reasons, including hybrid-
ization failures, artifacts on the microarray, insufficient
resolution and image noise and corruption (6). Missing values
have been found to have nontrivial negative effect on some
popular algorithms, such as hierarchical clustering (7) and the
support vector machine classifier (8), by Oba et al. (9). To
make matters worse, many analysis methods such as principal
component analysis (PCA) (10) and singular value decomposi-
tion (SVD) (11) cannot be applied to data with missing values.

There are several simple methods which deal with missing
values, such as ignoring the entries containing missing values,
replacing missing values by zeros or imputing missing values
of row averages or medians. Current research demonstrated
that missing values estimation can be significantly improved
by exploiting the correlation between data. Several methods
including K-nearest neighbors (KNN) method (KNNimpute),
the SVD method (SVDimpute) (12), least square imputation
(LSimpute) (13), Bayesian principle component analysis
(BPCA) (9), local least square imputation (LLSimpute) (14)
and Gaussian mixture imputation (GMCimpute) (5) have all
been used. Although all these algorithms have shown good
performance at dealing with missing values when the required
condition is satisfied, they also have their limitations. KNNim-
pute performs better on non-time series data or noisy time
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series data, while SVDimpute works well on time series data
with a low noise level and with strong global correlation
structure. The spline interpolation method (15) is mainly
used for time series data. LLSimpute have the best per-
formance when strong local correlation exists in the data.
The BPCA method (9) is suitable when a global structure is
dominant in data. LSimpute notices this and makes a first try to
adaptively exploit the global structure and local structure in
the data. Nevertheless, all these algorithms do not consider
biological constraints related to the microarray experiments.

In this paper, we propose a new missing value imputation
algorithm that has superior performance compared with exist-
ing algorithms over the datasets as tested. This is an extension
of our earlier work presented at a conference (16). Besides
the good performance, the novelty of our method lies in two
aspects. The first novelty is the introduction of a flexible and
powerful set theoretic framework called projection onto con-
vex sets (POCS) for information recovery from prior know-
ledge. This framework allows prior constraints of diverse
nature and precision to be utilized to find the optimal solution.
Although POCS has been a well-established methodology
in image restoration, as far as we know, this is the first
time it has been introduced into the problem of missing values
imputation. The second novelty is that our algorithm makes
explicit use of a biological phenomenon in microarray experi-
ments called the phenomenon of synchronization loss to
constrain the final solution of the imputation. We also ascribe
biologically plausible argument to the various constraint sets
in our algorithm, which we believe is important for this
application.

This paper is organized as follows. We first give a summary
of some popular missing value imputation algorithms and
lay the basis for some of the constraint set formulations we
adopted in our POCS framework. We then give sound
biological rationale behind our approach and introduce the
POCS imputation framework. This is followed by a detailed
discussion of the various constraint sets used in our algorithm.
Finally, we present experiment results to validate our approach
and draw some conclusions.

GENE EXPRESSION MISSING VALUE
IMPUTATION

Biological consideration

Missing value imputation is a very important aspect of gene
expression data analysis. However, most existing imputation
methods perform missing values imputation based solely on
the information gathered from the data. Better imputation
results can be achieved if domain knowledge about the prob-
lem can be incorporated into the imputation process. Having
such domain knowledge would also provide a plausible
explanation for the observed better performance of certain
methods over other methods and open up a possible avenue
for further improvement.

Nevertheless, such domain knowledge is very seldom used
due to possibly two reasons: the difficulty of formulating such
knowledge into a useful form and the difficulty of assimilating
such knowledge, usually of a diverse nature and very loosely
defined, into the computation framework. For microarray
data, the phenomenon of synchronization loss in the gene

expression experiments for time series data has been known
for some time (17). This is an example of biological know-
ledge that is related to the biological process in a microarray
experiment. However, as far as we know, such domain know-
ledge has not been exploited in many missing value imputation
algorithms.

Some existing imputation methods

In this paper, the following convention is adopted. In
a microarray experiment, the relative expression levels of
M genes of a model organism are probed simultaneously by
a single microarray. A series of N arrays probe the expression
levels in N different samples, or under N different experi-
mental conditions, or in the case of temporal changes in
expression, the N time points. We often use a matrix Y of
size M · N to tabulate the full expression data.

Zero imputation and mean imputation. The simplest imputa-
tion method is by replacing the missing values with zeros. This
zero replacement method does not utilize any information
about the data. In fact, the integrity and usefulness of the
data can be jeopardized by zero imputation since erroneous
relationships between genes can be artificially created due to
the imputation. Mean imputation is an improvement over zero
imputation. In mean imputation, the missing values in the
target gene j are estimated by the observed average expression
of gene j, where the average is taken over by the available
values of gene j in the n experiments. Obviously, mean
imputation does not make use of any information between
genes. Taking the average as the estimates does not have a
biologically plausible interpretation either.

KNN imputation. One approach to incorporate the information
between genes in a gene expression matrix is the KNN imputa-
tion. KNN uses pairwise information between the target gene
with missing values to be estimated and the K reference genes
that are nearest to the target gene. Let j be the missing com-
ponent in the target gene. The missing value is then estimated
as the weighted average of the jth component of the K refer-
ence genes expression vectors. Specifically, denote the expres-
sion profile vectors of K reference genes as xl ( l ¼ 1,2, . . . , K)
and assume that the Euclidian distances between K reference
genes and the target gene yi are yl (l ¼ 1,2, . . . , K). The
missing value is estimated by the following equation:

ŶY i‚ j ¼
XK
l¼1

wl ·xlð jÞ 1

with the weights given by wl ¼ 1=ylPK

i¼1
1 yi=

. The rationale for the

KNN imputation is that the reference genes closest to the
target gene are also the most informative, since the missing
values in the target gene are more likely to behave similarly to
that of the reference genes. Thus, when strong local correlation
exists between genes in the data, KNN imputation performs
well. A serious drawback of the KNN imputation using the
Euclidean distance is that it does not consider negative
correlations between data, which can lead to estimation
error (18). Although the KNN method is very simple, it
does give very good imputation results, as several comparative
studies have shown (12,19).
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SVD imputation. In contrast to the KNN imputation which
utilizes local pairwise information between genes in the
gene expression matrix, SVD imputation attempts to utilize
the global information in the entire matrix in predicting the
missing values. The basic concept is to find the dominant
components summarizing the entire matrix and then to predict
the missing values in the target genes by regressing against the
dominant components. If we perform SVD to matrix Y, we get
the following equation.

YM·N ¼ UM·MSM·NVT
N·N: 2

Let L ¼ min{M,N}, matrix VT now contains L eigengenes vl

(0 < l < L), and matrix U contains L eigenarrays ul (0 < l < L)
(11). In the algorithm SVDimpute, the k most significant
eigengenes from VT are selected, and missing value Yi,j is
estimated by first regressing the expression profile vector of
gene i against the K eigengenes and then using the coefficients
of the regression to reconstruct ŶY i‚ j from a linear combination
of the K eigengenes (12). If we denote the expression profile
vector of gene i in Y as y and assume that vl ( l ¼ 1,2, . . . , K) are
the eigengenes, ~vvl and ~yy are vectors that are obtained
by deleting the jth component of vl and y, then the missing
component Yi j is estimated as follows.

ŶY i‚ j ¼
XK

l¼1

ð~vvT
l � ~yyÞvl‚ j: 3

Since SVD can only be performed on complete matrices,
the iterative expectation maximization method is used.
SVDimpute performs best when global structure exists in
the expression data.

Least square imputation. Recently, a family of least square
optimal imputation method has been proposed (13). One of
them, called LSimpute_gene, is based on the K most correlated
genes. To estimate the missing value Yi,j, LSimpute_gene first
selects the K most correlated genes xl (l ¼ 1,2, . . . , K) in Y
whose expression profiles are similar to gene i except for the
jth component and with the jth component available. Then an
estimate of the missing value is obtained from the reference
gene xl using the single regression model. Finally, the K estim-
ates are linearly combined to form the final estimate ŶY i‚ j using
empirically chosen correlation-based weight. LSimpute_gene
performs best when the data has a strong local correlation
structure, owing to the use of linear regression and a weighting
based on correlation.

Bø et al. (13) also presents a method called LSimpute_array,
for estimating missing values from array correlations using a
multiple regression model. Furthermore, Bø et al. (13) pre-
sents two methods for estimating missing values by taking into
consideration the estimates from LSimpute_gene and
LSimpute_array. Among all these methods, LSimpute_
adaptive is the best performing one, which uses an adaptive
weighting scheme taking the data correlation structure into
consideration to determine an appropriate weighting.

The rationale behind our approach

By taking into account the available information in the data
as well as any biologically relevant domain knowledge, we
would expect a better imputation result. To achieve this

goal, there are two things to consider: (i) the identification
of all relevant information to be used in the imputation, and
(ii) a flexible computational framework for utilizing this
information.

For (i), we have identified three categories of information
that are useful for the imputation problem. They are informa-
tion between genes (between rows of the data matrix),
information between arrays (between columns of the data
matrix) and biological constraints.

Almost all existing algorithms utilize the information
between genes for missing value imputation. We have seen
that this gene-wise information can be classified as local
(in the sense that only a small subset of ‘closest’ genes in
the expression matrix are taken into consideration) or global
(in the sense that all genes in the expression matrix are taken
into consideration). The work of (12) and our own experience
showed that local information (as in KNNimpute or LSimpute)
is much preferred over global information (as in SVDimpute).
The imputation results from SVDimpute are generally inferior
to those from KNNimpute or LSimpute. This observation
agrees with our results in gene expression clustering (20),
where typically only a small number of genes are in a cluster
and are strongly correlated (i.e. co-expressed). We attempt to
suggest a biological explanation here. We suspect that this
may be a consequence of the characteristics of the gene
co-expression network. It has been shown by Agrawal (21)
and Noort et al. (22) that the gene co-expression network is a
small world and scale free network. In such a network, there
could be a large number of nodes but the network is sparse in
the sense that the average number of links per node is typically
much less than the total number of nodes, and there are many
nodes with few connections and a small (but significant)
number of nodes with many interactions. Hence, in such a
network, localized co-expressions between genes are much
more abundant. Arnone and Davidson (23) believe genes
are influenced on average by no more than eight to ten
other genes.

Information between columns (i.e. samples or time points)
of the gene expression matrix can provide useful informa-
tion for imputation. For temporal gene expression data,
samples from adjacent time points are highly correlated.
The decorrelation of the eigenarrays suggests the possibility
that some of the eigenarrays represent independent cellular
states. Alter et al. (11) have inferred that an eigenarray rep-
resents a state across all genes. Hence, by capturing this global
array-wise correlation in the imputation, more accurate
estimation should be obtainable.

One biological constraint we can make use of is the
phenomenon of synchronization loss in the gene expression
experiment. Cyclic systems, such as the cell cycle (24) and
circadian clock (25), play a key role in many biological
processes. Microarray experiments that study these systems
are usually carried out by synchronizing a population of cells.
Synchronization is achieved by first arresting cells at a specific
biological life point and then releasing cells from the arrest so
that all cells are at the same point when the experiment begins
(24,26).

However, even if cells are synchronized perfectly at the
beginning of the experiment, they do not remain synchronized
forever (17). For example, yeast cells seem to remain
relatively synchronized for two cycles (24) while wild type
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human cells lose their synchronization very early (27) or
halfway through the first cycle depending on the arresting
method. This causes the peak expression value to be lower
in the second cycle and the lowest expression value to be
higher for most cycling genes. A typical gene expression
profile with synchronization loss is given in Figure 1.

Owing to this phenomenon, we find that the average signal
power in successive cycles decreases significantly. Table 1
shows our statistical results of four datasets in Spellman
et al.’s experiment. In constructing Table 1, we need to
know the period of the corresponding cell cycle. However,
in some microarray experiments, this may not be available.
This problem can be circumvented by the following heuristic.
As noted by Bar-Joseph et al. (17), synchronization loss is
a continuous process. So if we compute our statistics on a
fixed-length time interval and as long as that interval is
long enough, synchronization loss will become obvious.

Obviously, the three classes of information discussed
earlier are not mutually independent. For example, the profiles
of a set of similar genes would also give information about the
correlation between sample points in the profiles. This obser-
vation is also noted in (14), where they showed that the local
least square formulations of gene-wise and array-wise
information are actually the same. To make efficient use of
the available information (possibly highly redundant) in a
coherent manner, we need a convenient and flexible compu-
tation framework. Hence, we have adopted the POCS frame-
work for recovering loss information from existing and prior
information about the data.

POCS FOR INFORMATION RECOVERY

The POCS provides a convenient framework to allow multiple
pieces of prior information of different nature to be utilized
to get an optimal solution. It has found many applications
in many fields (28–35). The main idea of POCS is to transform
every piece of a priori knowledge into a corresponding convex
set and then use a convergence-guaranteed iterative procedure
to search for a solution in the intersection of these sets (i.e.
the solution satisfies all the a priori knowledge).

In the POCS method, every known a priori property
about the original signal is formulated as a corresponding
convex set in a Hilbert space H (28,36). Given m closed
convex sets Ci‚ i ¼ 1‚2‚ . . . ‚m, and non-empty intersection
C0 ¼ \m

i¼1 Ci, the successive projections onto the convex sets,

anþ1 ¼ an þ lnðPnðmodulo mÞþ1ðanÞ � anÞ‚ 4

will converge to a point in the intersection C0 for any initial a0,
where an is the estimate of the signal at iteration n, and Pi is the
projector onto Ci defined by the following equation:

k x � PiðxÞ k ¼ min
g2Ci

k x � g k 5

and li 2 ð0‚2Þ is the relaxation parameter. li ¼ 1 is often used
for simplicity. Figure 2a depicts the POCS framework.

When the sets are not intersecting, i.e. C0 is empty, the
POCS framework can still be used with slight modification.
The modified framework is called simultaneous projections,
and Equation 4 is substituted by the following equation.

anþ1 ¼ an þ ln

Xm
l¼1

wlPlðanÞ � an

 !
‚ 6

where wl are the weights on the projections satisfyingXm

l¼1
wl ¼ 1 and wl > 0 for all l. With li ¼ 1, Equation 6

can be simplified as follows.

anþ1 ¼
Xm
l¼1

wlPlðanÞ: 7

The simultaneous projections converge weakly to a point
such that a weighted set-distance function is minimized
(36). The situation is illustrated in Figure 2b.

The POCS method provides a very flexible framework to
incorporate all a priori information to get an optimal solution.

Figure 1. The gene expression profile of Smc3 in Spellman et al.’s experiment.
The synchronization loss is significant (17).

Table 1. The statistical result of synchronization loss for four datasets in

Spellman et al.’s experiment

Dataset No. of
sampling
points

No. of
complete
genes

Average signal
energy for
first cycle

Average
signal energy
for second cycle

CDC28 17 1383 352.78 288.73
CDC15 24 4381 846.28 834.57
Alpha factor 18 4489 474.58 306.24
Elutriation 14 5766 898.48 435.32

Note that since the signal of Elutriation is available only for one cycle, we
compare the average signal energy for first-half cycle and the second-half cycle.

(a) (b)

Figure 2. The POCS algorithm: (a) iterations in sequential projections for a
consistent problem, in which the intersection set C0 is non-empty, (b) iterations
in simultaneous projections for an inconsistent problem, in which the intersec-
tion set is empty.
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Regardless of whether it is a consistent or inconsistent prob-
lem, the convergence of the algorithm is guaranteed. For gene
expression data, which is noisy and with imprecise prior
information, this tolerance to imprecision is very important.

Another useful feature of the POCS algorithm is its
adaptivity in finding a good solution. This can be explained
as follow. Suppose we have correlation information between
genes and between samples, and these two pieces of infor-
mation are modeled as two convex sets Cu and Cv, respect-
ively. In one dataset, the first piece of information may be
more reliable than the second. In another dataset, it may be the
opposite. This situation is depicted in Figure 3. When the
information is more reliable, the corresponding convex set
will be smaller in range. Since POCS always converge to
the intersection, the final solution will always be dominated
by the smaller set, while still satisfying the constraint imposed
by the less reliable set. In this manner, a good solution that
makes a wise trade-off between different prior information can
be obtained.

THE POCS-BASED IMPUTATION ALGORITHM

The POCS method requires the specification of convex sets
that incorporate the a priori constraints about the solution. We
propose convex sets here to capture gene-wise correlation,
array-wise correlation, and known biological constraint
based on the rationale in The rationale behind our approach
section.

Capturing gene-wise correlation

In gene expression data, genes that have close biological func-
tion would express similarly. In general, only a small subset of
genes would co-express similarly and using a subset of genes
for missing values estimation often results in good perform-
ance (5,13,14). To capture this localized gene-wise correlation
in the gene expression data, we construct a convex set based on
local least square regression as in (13) as follows. First, we
select the K-most correlated genes in Y whose expression
profile vectors are similar to gene i except the jth component
and with the jth component available. Then we estimate the
missing value in the target gene using each reference gene
based on the single regression model. If we denote the expres-
sion profile vector of the target gene as y, for a reference gene
x, we have

y ¼ aþ bx þ e‚ 8

where e is some random noise. The factors a and b are estim-
ated by the following equations.

âa ¼ �yy � b̂b and b̂b ¼ Sxy

Sxx
‚ 9

where

Sxy ¼
1

n � 1

Xn

j¼1

ðxj � �xxÞðyj � �yyÞ

and

Sxx ¼
1

n � 1

Xn

j¼1

ðxj � �xxÞ2:

Thus the least squares estimate of a variable f given a variable
t can be written as f̂f ¼ �yy þ ðSxy=SxxÞðt � �xxÞand the variance
of the residual error is given by the following equation.

t ¼ 1

n � 2

Xn

i¼1

ðyi � âa � b̂bxiÞ2: 10

Since we have K reference genes, we can obtain K estimates f̂f l
with variance of the estimation error as tl (l ¼ 1, 2, . . . , K) for a
missing value. A weighted average of the estimates and the
corresponding variance of the estimation error are computed
by the following equation.

ŶY i‚ j ¼
XK
l¼1

wl · f̂f l‚ 11

p ¼
XK
l¼1

w2
l ·tl: 12

Here we use

wl ¼
j ryxl

j
ð1 � j ryxl

j þ 10�6Þ

 !
:

Bø et al. (13) propose to use

wl ¼
r2

yxl

ð1 � r2
yxl

þ 10�6Þ

 !2

:

However we observed that the former definition can provide
better performance in most of the experiments we conducted.
Defining the positions in matrix Y of all missing values as set
I, we can get an estimate B̂BðlÞ, l 2 I for every missing value
using the above regression. Considering the possible estima-
tion error in this method, we obtain a set as follows.

Cu ¼ fY : B̂BðlÞ � t
ffiffiffi
p

p
< YðlÞ < B̂BðlÞ þ t

ffiffiffi
p

p
‚ l 2 Ig: 13

The projection Pu onto convex set Cu is then given by the
following equation.

PuðYðlÞÞ ¼
B̂BðlÞ�t ffiffiffi

p
p

for YðlÞ < B̂BðlÞ � t ffiffiffi
p

p

B̂BðlÞ þ t ffiffiffi
p

p
for YðlÞ > B̂BðlÞ þ t ffiffiffi

p
p

YðlÞ otherwise

:

8<
: 14

Capturing array-wise correlation

We use the PCA approach to capture the global array-wise
variation. In this approach, the dominant array-wise variation
of the entire dataset is summarized by a few principle

(a) (b)

Figure 3. POCS adaptivity: (a) in a data dominated by gene-wise correlation,
the final solution is dominated by Cu and (b) in a data dominated by array-wise
correlation, the final solution is dominated by Cv.
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components, which can be viewed as representing independent
cellular states across all genes (11).

Assume we have a complete data matrix with no missing
value. PCA represents the variation of each array vector y as a
linear combination of principle axis vector ul (0 < l < K):

y ¼
XK
l¼1

xlul þ e: 15

The linear coefficients xl (0 < l < K) are called factor scores
and e denotes the residual error. For each ul, there is a
corresponding eigenvalue ll. For gene expression data,
eigenvalue ll indicates the relative significance of the lth
eigenarray in terms of the fraction of the overall express-
ion they captured. In PCA for gene expression data, only
the K (0 < K < L) most significant eigenarray are used (10).
The other L–K eigenarray are treated as noise and the signal-
to-noise ratio (SNR) is given by the following equation:

p ¼

XK
k¼1

l2
k

XL

k¼Kþ1

l2
k

: 16

The estimation error is given by e. As in Equation 3, when a
solution ~yyi‚ j for a missing value is found using this method, a
more reliable estimate is that the missing value lies in an
interval ½ð1 � t ffiffiffi

p
p Þ~yy‚ð1 þ t ffiffiffi

p
p Þ~yy�, where t is a parameter

determined statistically [refer to Ref. (37)]. Defining the posi-
tions of all missing values in matrix Y as a set I, we can
construct a convex set as follows:

Cv ¼ fY : e1
~AAðlÞ < YðlÞ < e2

~AAðlÞ‚ l 2 Ig‚ 17

where the ~AAðlÞis the estimated missing value using the eigen-
arrays, and e1 ¼ ð1 � t ffiffiffi

p
p Þand e2 ¼ ð1 þ t ffiffiffi

p
p Þ. The projec-

tion onto set Cv is then given by the following equation:

PvðYðlÞÞ ¼
e1
~AAðlÞ for YðlÞ < e1

~AAðlÞ
e2
~AAðlÞ for YðlÞ > e2

~AAðlÞ
YðlÞ otherwise

:

8<
: 18

Capturing the phenomenon of synchronization loss

We propose here a series of convex sets to take advantage of
the phenomenon of synchronization loss. Define the positions
in matrix Y of all missing values belonging to the ith period as
a set Ii, and the positions of all observed values belonging to
the ith period as a set Wi. Let function u(I) be the cardinal
number of set I. We get the equation

Ci ¼
n

Y :
1

uðIiÞ
X
l2Ii

Y2ðlÞ ¼ ji

o
‚ 19

with ji ¼ 1=uðWiÞ
P

l2Wi
Y2ðlÞ and i ¼ 1, . . . , n denotes the

number of periods considered.The convex set in Equation 19
has a simple geometrical structure (Figure 4). If we arrange the
Y(l) (l 2 Ii) into a vector x, it can be rewritten as follows:

Ci ¼
n

x : kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ji ·uðIiÞ

q o
: 20

In other word, set C now becomes a constraint on the vector
length.

The projection of an arbitrary Y(i, j) onto the set Ci is then
given by the following equation:

PiðYðlÞÞ ¼

YðlÞffiffiffiffiffiffiffiffiffiffiffi
ji ·uðIiÞ

p for l 2 Ii and
X
l2Ii

Y2ðlÞ 6¼ 0

YðlÞ otherwise

:

8>><
>>: 21

It was pointed out by Kim et al. (14) that the local least
square formulation of gene-wise and array-wise information
is actually the same. So one may question the necessity of
having the gene-wise convex set and the array-wise convex
set. However, in our algorithm the two sets are constructed
differently. Hence, they are not exactly equivalent, although
their information may overlap significantly. We remark that
the redundancy in information between the two sets does
not pose a problem for our algorithm since the POCS frame-
work can handle the redundancy, without biasing the final
solution (28).

With the convex sets defined, the set theoretic estimation
yields the following missing values imputation algorithm:

(i) Select a initial estimation Y0.
(ii) For k ¼ 1,2, . . . , compute Yk from Yk ¼ w1Pu(Yk�1)+

w2Pv(Yk�1)+ w3P1 . . . Pn(Yk�1), where Pu,Pv,P1, . . . , Pn

denote the projectors onto the constraint sets Cu,Cv,
C1 . . . Cn, respectively, and w1, w2 and w3 are weighting
parameters of POCS with

P3
l¼1 wl ¼ 1and wl > 0 for all

l ¼ 1,2,3. A convenient choice is to let wl’s be equal.
(iii) If Yk ¼ Yk�1 , exit the iteration, else go to Step (ii).

In the above procedure, it is necessary to find a good initial
point. The solution of the POCS algorithm often converges to
a point in the intersection of all sets and with the least distance
to the initial point. When the average value of a gene is used
as the initial point for missing value estimation, the solution is
the one with the least variance among all solutions which
satisfy all a priori knowledge. So we propose to use the
average of the gene expression profile as the initial point
for our algorithm. Actually, we have also tested our algorithm
with other initial point, such as zero or spline interpolation
values. From the experiment results, we found that the effect
of initial point is trivial.

Figure 4. In Rn, the constraint set Ci represents a hyperspherical surface that is
centered at the origin.
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We remark that imputation method that takes into con-
sideration the gene and array correlation simultaneously to
obtain an estimate is not a new one and has been proposed
by Bø et al. (13) where they present two algorithms to use
weighted averages of the estimate from LSimpute_gene and
LSimpute_array. Nevertheless, POCSimpute uses a different
mechanism to combine the estimates from gene correlation
and array correlation. If we do not consider the cyclic
loss model, the main difference between POCSimpute
and LSimpute_adaptive can be concluded as follows:
LSimpute_adaptive is a weighted average of the estimates
from LSimpute_gene and LSimpute_array. However, POC-
Simpute is the nonlinear combination of two corresponding
sub-algorithms (sets Cu and Cv). As indicated in Figure 2,
when two convex sets are inconsistent, the estimate is the
weighted average where a weighted set-distance function is
minimized. When two convex sets overlaps (i.e. consistent),
the estimate is a point in the intersection, which is often a point
closest to the initial value used. Therefore, in POCSimpute,
the estimates are weighted averages of two sub-algorithms for
some missing values (the inconsistent constraints). For other
missing values, the estimates are nonlinear combination from
two constraint sets (the consistent constraints). POCSimpute
provides a framework to adaptively select the preferred
combination method. Weighted average of two estimates
used in LSimpute does not necessarily produce a solution
in the intersection set even if the constraint sets representing
the prior knowledge overlap. Thus, POCSimpute can provide
the optimal solution for all prior knowledge available while
simple weighted average of different estimates may not
produce the optimal solution.

EXPERIMENTAL EVALUATION

In this section, we apply our method to several microarray
data sets. The first one is the study of yeast cell cycle from
Spellman et al. (24) (http://cellcycle-www.stanford.edu). It
contains expression profiles for 6178 genes under different
experimental conditions, i.e. cdc15, and cdc28, alpha factor
and elutriation experiments. In addition, one of the time series

datasets contains less apparent noise than the other. Another
time series data set is from (38), we denote it as fkh1_fkh2.
We have also tested our algorithm on two non-time series
datasets. One is the study of response to environmental changes
in yeast from (26), which contains 173 samples and 6159 genes
for each sample. The other is hereditary breast cancer (39). It
contains 24 breast tumor samples from 21 breast cancer patients
and 3226 genes are used for each tumor sample.

Each dataset is pre-processed for evaluation by removing
rows containing missing expression values, yielding ‘com-
plete’ matrices. The missing value estimation techniques
are then tested by randomly removing data values and then
computing the estimation error. In the experiments, between
1 and 15% of the values is removed from each dataset. The
normalized root mean square (NRMS) error is calculated as
follows.

NRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

PN
j¼1 ðŶYði‚ jÞ � Yði‚ jÞÞ2PM

i¼1

PN
j¼1 ðŶYði‚ jÞÞ2

vuut ‚ 22

where Y is the original gene expression matrix and ŶY is the
estimation obtained by the missing value imputation
algorithm.

To assess the performance of our missing value estimation
algorithm, we also compare the NRMS error of our algorithm
with the KNNimpute, SVDimpute and LSimpute_adaptive
algorithms. It would be interesting to investigate how much
is gained in imputation accuracy using the cyclic loss model.
So we also test our method without using the cyclic loss
model and it is denoted as POCSnoncyclic. For KNNimpute
and LSimpute_adaptive methods, we choose K ¼ 10, i.e. we
use the 10 closest genes as the reference genes. The rationale
for this is that Troyanskaya et al. (12) observes that the best
result of KNNimpute is obtained when K is in the range 10–20
and Bø et al. (13) proposes using K ¼ 10 for LSimpute. For
SVDimpute method, 20% of the eigengenes are selected for
regression, as proposed by Troyanskaya et al. (12). In our
algorithm, there are two parameters: the number of genes
used as neighbors in set Cu and the number of eigenarrays
used in set Cv. We find that using 10 genes as neighbors for

Figure 5. Estimation performance (NRMS) by KNNimpute, SVDimpute, LSimpute_adaptive, POCSimpute without cyclic loss model and POCSimpute for 1%
missing values.
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set Cu and 20% of the eigenarrays for set Cv is a good choice
for the microarray data sets tested.

In the proposed algorithm, the parameter t that is associated
with both Cu and Cv are determined statistically as described

in (37) and in most cases, t should be a small value. In our
experiments, we find that the performance of our algorithm has
no dramatic change for t 2 [0.01,0.3] although a smaller value
is preferred. For simplicity, we set t ¼ 0.1 in all experiments.

Figure 6. Estimation performance (NRMS) by KNNimpute, SVDimpute, LSimpute_adaptive, POCSimpute without cyclic loss model and POCSimpute for 5%
missing values.

Figure 7. Estimation performance (NRMS) by KNNimpute, SVDimpute, LSimpute_adaptive, POCSimpute without cyclic loss model and POCSimpute for 10%
missing values.

Figure 8. Estimation performance (NRMS) by KNNimpute, SVDimpute, LSimpute_adaptive, POCSimpute without cyclic loss model and POCSimpute for 15%
missing values.
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The performance of our algorithm is evaluated in
Figures 5–8 for all time series and non-time series datasets.
In each of the data sets and at each level of missing values,
15 Monte Carlo simulations are performed with independent

selections of missing entries. The same test data with identical
entries missing are used for all imputation algorithms and the
average of the performance indices is regarded as the final
result. In the figures, the horizontal axis denotes the name of
the dataset. The vertical axis denotes the NRMS value. We can
say that our algorithm can achieve significantly less error
than the KNNimpute, SVDimpute and LSimpute_adaptive
methods.

A further illustration of the improved accuracy of POC-
Simpute is given in Figure 9, which shows the histograms
for the distribution of the RMS errors. The test data is
Elutriation with 4489 genes and 18 arrays and 5% missing
values. We find that POCSimpute has the narrowest error
distribution, i.e. there are very few large imputation errors
compared to the KNNimpute and LSimpute_adaptive.

Although the error histogram can give us an idea of how
the imputation errors are distributed, we may also be interested
to see how the imputation algorithms perform as a function
of the actual expression level. The box and whisker plots of
the estimation errors relative to the true expression values
(log2 expression ratio) in the range are provided in
Figure 10. The box depicts the median, the upper and lower
quartiles of the error distribution. The test data is Elutriation
with 4489 genes and 18 arrays and 5% missing values. From
the plots, we can find some interesting properties of our
estimation. When the magnitude of true values is small, the
performances of the three methods are close. However our
algorithm has lower error median and spread when true
expression values are medium or large (log2 ratio of between
0.68 and 1.5). A possible reason causing this is that when we
construct the set Cv to capture the array-wise correlation, we
use SNR instead of noise variance (we use the noise variance
in set Cu). SNR is a ratio and it allows Cv to change adaptively
with the magnitude of the estimated missing values (or true
values). In a microarray experiment, the expression ratios of
those genes with medium or high expression levels are
considered to be more reliable and hence are taken with greater
faith. If those values are missing due to experimental artifacts
or contaminations, we would like them to be more reliably
imputed as well. Our algorithm seems to provide a better
estimate for missing values whose true values have medium
or large magnitudes.

DISCUSSION AND CONCLUSION

In the microarray missing value estimation problem, we often
have different a priori knowledge about the missing value for
different experiments and different genes. By utilizing all avail-
able information about the missing values into their estimation,
the optimal result can be obtained. In this paper, we propose a
set theoretic approach based on POCS which we call POCSim-
pute for the problem of microarray missing value estimation.
POCSimpute can adaptively find an optimal solution regardless
of whether the global or local correlation structure is dominant
in the target data. Furthermore, it can conveniently make use of
biological constraints to get a better estimate. Experiments
show that our algorithm can achieve a significant reduction
of error compared to some available algorithms.

Even though POCSimpute shows good performances in
our experiments, our algorithm also has some shortcomings.
First, it is an iterative algorithm and has higher computation

Figure 9. Error histograms of different estimation methods and 5% data
missing rate for the Elutriation dataset: (upper) the KNNimpute, (middle)
the LSimpute_adaptive and (lower) the POCSimpute.
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Figure 10. Box and whisker plots of the estimation errors relative to the true values in the range: (upper) KNNimpute, (middle) LSimpute_adaptive and (lower)
POCSimpute.
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cost than SVDimpute and LSimpute_gene. However, for
imputation purposes, better estimation accuracy always has
higher priority than speed (18). In our experiments, for a
microarray data with 4381genes and 24 arrays and 10% miss-
ing values, it requires 2–3 min on a computer with 2.00 GHz
CPU and 512 MB RAM using MATLAB. We think that the
time cost of our algorithm is still acceptable for most experi-
ments. Second, in POCSimpute, the sets which make use of the
phenomenon of synchronization loss work best for time series
data. We hope that some other sets using more general
biological properties can be found in the future. Nevertheless,
we think that the POCS framework introduced here opens up a
convenient way for incorporating other biological constraints
that one can conceive of. If one can find convex sets with
strong biological meanings, the estimated values would then
be biologically even more relevant.

It is also important to point out here that we should avoid
skewing the estimate when using a priori knowledge for
estimation. To achieve this goal, we should follow two general
guidelines. First, the a priori information we used should be
well established and proven to be appropriate. The a priori
information frequently used in estimation problem is discussed
by Stark and Yang (28) and Combettes (36). Second, when we
construct a convex set based on the a priori knowledge, good
modeling method is important. Modeling of the reliability of
convex sets for medical image reconstruction is discussed by
Yan (30). Soft projections and regularizations can be used to
solve a number of problems due to overlapping and missing
data and nonintersecting convex sets (30). In the situation
where some a priori knowledge does not fit the data perfectly,
we should ensure that the corresponding convex set does not
skew or degrade the estimate. For example, the convex sets
based on cyclic loss property in this paper are used for time
series microarray dataset. In a dataset without cyclic loss
phenomenon, ji in Equation 19 will generally be equal.
The corresponding convex sets then degenerate to the require-
ment that the average power of all observed values and all
missing values are equal. Fortunately, this is a reasonable
assumption in microarray data and it would not skew our
estimate. In fact, we observed that this has contributed to
the slight improvement for the non-cyclic datasets
(Figures 5–8) even though the cyclic loss model does not really
apply in these cases.
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