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Abstract: Type 2 diabetes mellitus (T2DM) is frequently accompanied by affective disorders with
a prevalence of comorbid depression of around 25%. Nevertheless, the biomarkers of affective
symptoms including depression and anxiety due to T2DM are not well established. The present
study delineated the effects of serum levels of copper, zinc, β-arrestin-1, FBXW7, lactosylceramide
(LacCer), serotonin, calcium, magnesium on severity of depression and anxiety in 58 men with T2DM
and 30 healthy male controls beyond the effects of insulin resistance (IR) and atherogenicity. Severity
of affective symptoms was assessed using the Hamilton Depression and Anxiety rating scales. We
found that 61.7% of the variance in affective symptoms was explained by the multivariate regression
on copper, β-arrestin-1, calcium, and IR coupled with atherogenicity. Copper and LacCer (positive)
and calcium and BXW7 (inverse) had significant specific indirect effects on affective symptoms, which
were mediated by IR and atherogenicity. Copper, β-arrestin-1, and calcium were associated with
affective symptoms above and beyond the effects of IR and atherogenicity. T2DM and affective
symptoms share common pathways, namely increased atherogenicity, IR, copper, and β-arrestin-1,
and lowered calcium, whereas copper, β-arrestin-1, calcium, LacCer, and FBXW7 may modulate
depression and anxiety symptoms by affecting T2DM.

Keywords: depression; mood disorders; inflammation; oxidative stress; nitrosative stress; neuro-
immune; antioxidants; psychoneuroimmunology

1. Introduction

Diabetes mellitus (DM) is a major public health issue with an increasing epidemic
worldwide, accounting for 11.3 percent of all deaths [1]. In 2017, there were 451 million
people aged over 18 years with DM worldwide, and it is with expected that this figure
will increase to reach 693 million by the year 2045 [2]. Type 2 DM (T2DM) is initiated by
insulin resistance (IR) in target tissues, high circulating insulin levels, β-cell dysfunction
and subsequent β-cell failure [3]. IR is a condition whereby insulin-sensitive target tissues,
such as adipose tissue, pancreas, skeletal muscles, and liver, do not react adequately to the
physiological activities of insulin [4]. IR is part of the metabolic syndrome (MetS) cluster,
which also involves aberrations in lipid profile, such as hypertriglyceridemia and low high
density lipoprotein (HDL) cholesterol, abdominal obesity, and high blood pressure [5].

There is a significant comorbidity between mood disorders including major depressive
and bipolar disorder and T2DM and MetS-associated features, including atherogenicity and
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IR [6–11]. According to the WHO (2017), T2DM is frequently accompanied by mood disor-
ders and a systematic review and meta-analysis showed that the prevalence of depression
in T2DM is around 25% [12]. For example, 10.6% of 2783 T2DM patients suffer from MDD
and 17.0% from moderate to severe depressive symptoms [13]. Moreover, a meta-analysis
reported that depression is associated with a significant elevated risk of T2DM and that the
latter is associated with a slightly increased risk of depression [14], indicating that there
are bidirectional relationships between T2DM and mood disorders. Nevertheless, mood
disorders are more strongly associated with atherogenicity indices than with IR [10].

The comorbidity between mood disorders (either MDD or BD) and T2DM may be
explained by multiple overlapping pathways, including IR, atherogenicity, activation of
immune-inflammatory and nitro-oxidative stress pathways, an acute phase response, com-
plement activation, T helper (Th)-17 activation, lowered antioxidant levels, mitochondrial
dysfunction, and breakdown of the blood-brain-barrier (BBB) and the gut tight junctions
barriers (leaky BBB and gut) [11]. Moreover, lowered plasma albumin, an inflammatory
marker, predicts T2DM [15] and is a hallmark of MDD [16]. The same shared pathways un-
derpin the comorbidity between mood disorders and MetS [17–21]. Shared biomarkers of
mood disorders, T2DM, and MetS comprise increased levels of pro-inflammatory cytokines,
malondialdehyde (MDA, indicating lipid peroxidation), nitric oxide (NO) metabolites
(indicating increased NO production), and advanced protein oxidation products (AOPPs),
and lowered paraoxonase (PON)-1 activity [10,11,22,23]. Nevertheless, the biomarkers
of affective symptoms (depression and anxiety) in T2DM are not well established and,
consequently, research should focus on the up- or downstream biomarkers of the above-
mentioned pathways that play a role in depression and anxiety due to T2DM. Therefore,
the present research focuses on the role of β-arrestin-1, FBXW7, CD17, copper, zinc, calcium,
and magnesium in depression/anxiety due to T2DM.

β-arrestin-1 controls β-cell functions and survival and mediates insulin secretion [24].
β-arrestin-1 is reduced in the white blood cells of depressed patients while antidepressants
increase β-arrestin-1 levels in leukocytes of depressed patients and rat brain [25,26]. β-
arrestin-1 desensitizes G-protein coupled receptor (GPCR) signaling, which plays a role
in depression [26] and links GPCRs to downstream pathways including ERK1/2 [25],
which plays a role in T2DM and mood disorders [27,28]. Moreover, β-arrestin-1 inter-
acts with cAMP-Response Element Binding protein (CREB), thereby regulating neuro-
biological processes including cell replication, survival, and plasticity [29]. Aberrations
in CREB-mediated transcription are associated with depression, anxiety, and cognitive
impairments [30].

FBXW7 (F-box/WD repeat-containing protein 7), also known as human CDC4, is
an E3 ubiquitin ligase which targets cyclin E for ubiquitin-mediated degradation [31].
Lowered FBXW7 in animal models and humans is associated with hyperglycemia, IR, and
the development of T2DM [32]. In primary neurons, peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1α) and mechanistic target of rapamycin complex
1 (mTORC1) are FBXW7 substrates and regulate glucose homeostasis [33,34]. Moreover,
FBXW7 regulates neurogenesis by antagonizing c-Jun and Notch, which is a key regulator
of neuronal differentiation and synaptic plasticity [35]. Furthermore, lowered FBXW7
is accompanied by aberrations in stem cell differentiation in the brain [36]. FBXW7 also
regulates the turnover and stability of disrupted in schizophrenia (DISC) which orchestrates
neural cell signaling and differentiation [37]. Aberrations in neurogenesis, mTOR, DISC,
PGC-1α are thought to play a role in neuroprogressive mental disorders, including mood
disorders [36,38,39].

Lactosylceramides (LacCer or CD17) form lipid rafts on the membrane of neutrophils
and are involved in chemotaxis, phagocytosis, and superoxide generation [40,41]. LacCer
activates NADPH oxidase, which produces superoxide radicals (O2

-) [42] and inducible
nitric oxide synthase (iNOS) and NO [43]. Mild diabetes is accompanied by an increased
conversion of glucosylceramide (GluCer) to LacCer [44]. Ceramides including LacCer are
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significantly elevated in depressed patients [45–47] and the activity of sphingomyelinase
may be increased in mood disorders [45].

Alterations in peripheral serotonin levels may be another shared biomarker among
T2DM and affective symptoms. Serotonin is synthesized within β-cells [48] and is stored
together with insulin in their secretory β-granules [49], and it is co-released when pancreatic
islets are stimulated by glucose [50]. Lowered levels of serotonin including in platelets are
observed in depressed patients [51]. Other biomarkers that may link mood disorders and
T2DM comprise copper, zinc, calcium, and magnesium. Recent reviews and meta-analyses
reported that zinc and copper are involved in the pathogenesis of diabetes and IR [52]
while reduced zinc and increased copper levels are hallmarks of depression [53,54]. A
meta-analysis showed that increased plasma calcium levels are associated with T2DM [55],
whereas Al-Dujaili et al. [56] established lowered calcium levels in major depression.
Magnesium deficiency and/or low magnesium dietary intake may cause IR, glucose
tolerance, T2DM and MetS [55,57] and depression [58]. In patients with atherosclerosis
and unstable angina, IR is associated with lowered magnesium and zinc and increased
copper, whereas comorbid depression is associated with IR coupled with lowered zinc
and increased calcium [59]. Nevertheless, no research has delineated the effects of the
above-mentioned biomarkers on the severity of affective symptoms including depression
and anxiety due to T2DM.

Hence, the present study was conducted to delineate the effects of serum levels of
β-arrestin-1, FBXW7, CD17, serotonin, albumin, calcium, magnesium, zinc, and copper on
severity of depression and anxiety above and beyond the effects of IR and atherogenicity
in T2DM.

2. Subjects and Methods
2.1. Subjects

The current case-control study recruited 58 T2DM male patients and 30 age, BMI and
education matched healthy controls. We selected male subjects to exclude possible effects of
the female hormonal status and the menstrual cycle. The subjects were recruited at Al-Sader
medical city, Najaf governorate, Iraq during the period November 2020 till January 2021.
The diagnosis of T2DM was made using the World Health Organization criteria [60,61]
and fasting plasma glucose (FPG) ≥ 7.0 mM and glycated hemoglobin (HbA1c) > 6.5%.
Included were T2DM patients with and without affective symptoms. Nevertheless, we
excluded any subjects with psychiatric axis-I diagnosis according to DSM-5 criteria except
T2DM patients with a “mood disorder due to a general medical condition, depressed mood
or diminished interest or pleasure in all or almost all activities”. Moreover, patients were
excluded if their serum FPG was greater than 25 mmol/L and their fasting insulin was
greater than 400 pM, to comply with the requirements of the HOMA calculator program.
In addition, we excluded subjects who had overt diabetic comorbidities such as cardiac
failure, liver disease, or kidney disease. We also excluded patients (a) who are receiving
metformin because the latter may affect IR [62] and insulin sensitivity [63]; and (b) with an
albumin/creatinine ratio > 30 mg/g [64]. All participants had serum CRP concentrations
<6 mg/dL excluding people with overt inflammation. Before taking part in the study, all
participants gave written informed consent. Approval for the study was obtained from
the IRB of the University of Kufa (T1375/2020), which complies with the International
Guidelines for Human Research protection as required by the Declaration of Helsinki.

2.2. Assessments

Severity of depression was assessed using the total score on the 17-item Hamilton De-
pression Rating Scale (HDRS) score [65] and severity of anxiety was assessed using the total
score on the Hamilton Anxiety Rating Scale (HAM-A) [66]. As explained previously [67] we
computed three HDRS subdomain scores, i.e., (a) key depressive symptoms (key_HDRS)
computed as the sum of depressed mood + feelings of guilt + suicidal ideation + loss of
work and activities; (b) physiosomatic symptoms (physiosomatic_HDRS) computed as
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the sum of anxiety somatic + somatic symptoms, gastrointestinal + somatic symptoms,
general + genital symptoms + hypochondriasis; and c) melancholic symptoms (melan-
cholia_HDRS) computed as sum of insomnia late + psychomotor retardation + diurnal
variation + loss of weight. As reported by Almulla et al. (2021) [67], we computed two
different HAM-A subscores, i.e., key anxiety symptoms (key_HAM-A) as sum of anx-
ious mood + tension + fears + anxious behavior at interview; and HAM-A physiosomatic
symptoms (physiosomatic_HAM-A) computed as sum of somatic muscular + somatic
sensory + cardiovascular symptoms + respiratory symptoms + gastrointestinal symptoms +
genitourinary symptoms + autonomic symptoms. Body mass index (BMI) was determined
by dividing weight in kilograms by height in meters squared.

After an overnight fast, five milliliters of blood were drawn in the morning from
patients and controls. After full clotting, blood was centrifuged at 3000 rpm for 10 min to
separate serum, which was then frozen at −80 ◦C until thawed for assay. Serum copper and
zinc were measured spectrophotometrically using kits supplied by Spectrum Diagnostics
Co. (Cairo, Egypt). LacCer (CD17), serotonin, and FBXW7 were measured in sera by ELISA
kits supplied by Melsin Medical Co, Jilin, China, while β-arrestin-1 was estimated using
ELISA kits provided by Bioassay Technology Laboratory (Shanghai, China). The processes
were carried out precisely as prescribed by the manufacturer, with no deviations. Serum
insulin was measured by commercial ELISA sandwich kit supplied by DRG® International
Inc., New Jersey, USA. The sensitivities of the kits were 12.22 pM for insulin, 0.05 ng/mL
for β-arrestin-1, 1.0 ng/mL for serotonin, 0.1 ng/mL for LacCer, and 0.1 ng/mL for FBXW7.
Sera were diluted 1:4 to estimate LacCer levels. Fasting serum levels of albumin, calcium,
magnesium, glucose (FBG), total cholesterol (TC), and triglycerides (TG) were measured
spectrophotometrically by a ready for use kits supplied Spinreact®, Girona, Spain. Serum
high-density lipoprotein cholesterol (HDLc) was determined after precipitating other
lipoproteins with a reagent comprising sodium phosphotungstate and MgCl2. Then, the
cholesterol contents in the supernatant were assessed using same kit of total cholesterol.
Low-density lipoprotein cholesterol (LDLc) was calculated from Friedewald’s formula:
LDLc = TC − HDLc–TG/2.19. The intra-assay coefficient of variation (CV) (precision
within an assay) was < 10.0% for all ELISA assays. Serum CRP was measured using a kit
supplied Spinreact®, Girona, Spain. The test is based on the principle of latex agglutination.

In the current study, two atherogenic indices were computed, namely z score of total
cholesterol—z HDL cholesterol (zCastelli), which reflects the Castelli risk index 1, and z
triglyceride—z HDL cholesterol (zAIP), which reflects the atherogenic index of plasma
(AIP) [68,69]. In the current study, there were significant correlation between zTC—z
HDL and the Castelli risk index 1 (r = 0.995, p < 0.001, n = 88) and between zTG-zHDL
and the AIP index (r = 0.904, p < 0.001, n = 98). In the current study, we also computed
z unit-weighted composite scores reflecting IR as z glucose + z insulin (IRI), and β cell
function as z insulin—z glucose (zβCell). We found significant correlations between IRI and
HOMA2IR as defined with the HOMA2 Calculator© (Diabetes Trials Unit, University of
Oxford) (r = 0.881, p < 0.001, n = 88) and between zβCell and HOMA2B (r = 0.781, p < 0.001,
n = 88).

2.3. Statistical Analysis

We employed analysis of variance (ANOVA) to check differences in scale variables
between sample groups. Analysis of contingency tables (chi-square test) was employed
to assess associations among nominal variables. Correlation matrices based on Pearson’s
product-moment were used to examine associations between biomarkers. We used au-
tomatic multiple regression analysis to define the significant biomarkers (β-arrestin-1,
FBXW7, CD17, serotonin, albumin, calcium, magnesium, zinc, and copper) predicting the
HDRS and HAM-A total and subdomain scores and checked whether these biomarkers had
significant effects above and beyond the effects of the Castelli, AIP, IRI, and z β-cell indices
(or FBG, insulin or the fatty acids) while allowing for the effects of age, education, and
BMI. We employed an automatic stepwise (step-up) method with a p-to-enter of 0.05 and



J. Pers. Med. 2022, 12, 23 5 of 23

p-to-remove 0.06 while checking R2 changes, multivariate normality (Cook’s distance and
leverage), multicollinearity (using tolerance and VIF), and homoscedasticity (using White
and modified Breusch–Pagan tests for homoscedasticity). In case of heteroscedasticity, we
used HC3 parameter estimates with robust standard errors. We also conducted automatic
binary logistic regression analysis with T2DM as dependent variable and biomarkers as
explanatory variables and calculated Odds ratios with 95% confidence intervals. For classifi-
cation purposes, we used the random oversampling method to adjust the class distribution
of the normal control class. All results were bootstrapped (5000 bootstrap samples) and the
latter results are shown if the results are not concordant. All tests are two-tailed, with a
p value of 0.05 used to determine statistical significance. Statistical analyses were carried
out using IBM SPSS Windows version 25, 2017, manufactured by IBM Corp., New York,
NY, USA.

Partial Least Squares (PLS) path analysis (SmartPLS) [70] was used to measure the
causal association between biomarkers, T2DM (atherogenicity and IR) and the phenome
of affective symptoms. The variables were entered as latent vectors (LVs) extracted from
their reflective manifestations or as single indicators. We performed complete PLS path
analysis on 5000 bootstrap samples only when the inner and outer models complied with
quality data, namely (a) the overall model fit is accurate as indicated by SRMR < 0.08,
(b) all LVs have an accurate construct validity as indicated by average variance extracted
>0.5; composite reliability (>0.7), Cronbach’s alpha (>0.7), and rho_A (>0.8), (c) all outer
model LV loadings are >0.666 at p < 0.001, (d) Monotrait–Heterotrait analysis indicates
adequate discriminatory validity, (e) blindfolding shows that the construct cross-validated
redundancies or communalities are adequate, and (f) Confirmatory Tetrad analysis in-
dicates that the LV models are not mis-specified as reflective models. PLS predict with
10-fold cross-validation was employed to check the predictive performance when analyz-
ing new data [71]. Prediction-Oriented Segmentation analysis, Multi-Group Analysis and
Measurement Invariance Assessment were employed to examine compositional invariance.

A priori estimation of the required study sample showed that at least 70 individuals
should be included to obtain a power of 0.8 with an effect size of 0.2, alpha level of 0.05,
and 5 predictors in a linear multiple regression model. The same power analysis can be
applied when examining PLS path analysis indicating that the power of this PLS analysis
was >0.8 [72].

3. Results
3.1. Socio-Demographic and Clinical Characteristics

Table 1 shows the socio-demographic and clinical data of subjects with a normal IRI, a
medium IRI, and a high IRI. There were no significant differences in age, BMI, education,
residency, marital status, and employment among these three groups. The family history
of DM was significantly different among those three groups with an increasing frequency
from the normal IRI -> medium IRI -> high-IRI group. In the patient group, 12 patients
were drug free, 19 were on diabetes diet, and 27 were treated with glibenclamide 5 mg/day.
The treatment regimen showed a significant difference among groups with the highest
ratio of subjects treated with glibenclamide in the high IRI group as compared with the two
other groups. Nevertheless, the drug/diet state of the patients was entered in all multiple
linear regression analyses as explanatory dummy variables. However, neither diabetes
diet nor glibencamide showed a significant effect on the dependent variables. FBG, insulin,
IRI, and zAIP were significantly different between the three study groups and their values
increased from normal IRI -> medium IRI -> high IRI. The zβcell index, and HDL- and
LDL cholesterol showed no significant differences among the three study groups. Total
cholesterol and TG were significantly higher in the medium and high IRI groups than in
the normal IRI group. The zCastelli index was significantly higher in subjects with a high
IRI as compared with those with a normal IRI.
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Table 1. Socio-demographic and clinical data in patients with T2DM subdivided according to the
insulin resistance index (IRI) values into normal IRI values, medium increased IRI, and very high
IRI values.

Variables Normal-IRI A

(n = 30)
Increased-IRI B

(n = 33)
Very High-IRI C

(n = 25)
F/χ2 df p

Age (years) 48.5 ± 5.5 48.6 ± 7.4 49.0 ± 5.2 0.06 2/85 0.944

Body mass index
(kg/m2) 26.98 ± 3.29 27.50 ± 2.75 26.29 ± 4.57 0.83 2/85 0.439

Education (years) 10.0 ± 3.9 10.1 ± 4.6 9.3 ± 3.9 0.32 2/85 0.727

Single/Married 4/26 5/28 4/21 0.08 2 0.959

Rural/Urban 12/18 21/12 6/19 1.68 2 0.433

Employment Yes/No 17/13 17/16 12/13 0.42 2 0.809

Family history
Yes/No 15/15 B,C 12/21 A,C 19/6 A,B 9.05 2 0.011

Drug free/Diet
only/drugs 16/6/8 C 12/10/11 C 0/9/16 A,B FEPT - 0.001

FBG mM 6.79 ± 2.09 B,C 9.53 ± 3.95 A,C 13.29 ± 3.68 A,B 25.75 2/85 <0.001

Insulin pM 42.80 ± 10.36 B,C 53.45 ± 16.74 A,C 62.14 ± 19.70 A,B 10.27 2/85 <0.001

IRI (z score) −1.073 ± 0.451 B,C 0.002 ± 0.321 A,C 1.196 ± 0.527 A,B 188.25 2/85 <0.001

zβcell (z score) 0.057 ± 0.570 0.016 ± 1.113 −0.243 ± 1.143 0.76 2/85 0.472

Triglycerides mM 1.38 ± 0.47 B,C 1.80 ± 0.57 A 2.03 ± 0.59 A 10.47 2/85 <0.001

Total cholesterol
mmol/L 5.25 ± 0.89 B,C 5.77 ± 0.97 A 5.91 ± 0.80 A 4.22 2/85 0.018

HDLc mmol/L 1.04 ± 0.15 1.05 ± 0.16 0.99 ± 0.16 0.85 2/85 0.432

LDLc mmol/L 3.58 ± 0.76 3.90 ± 0.84 3.99 ± 0.58 2.34 2/85 0.102

zCastelli (z scores) −0.348 ± 0.983 C 0.067 ± 1.110 0.458 ± 0.553 A 5.09 2/85 0.008

zAIP (z scores) −0.435 ± 0.800 B,C 0.047 ± 1.040 A,C 0.572 ± 0.885 A,B 8.31 2/85 0.001

All results are shown as mean (SD); A,B,C: pairwise comparisons between group means; F: results of analysis of
variance; χ2: results of analysis of contingency analysis; FBG: fasting blood sugar; HDLc: high-density lipoprotein
cholesterol; HDLc: low-density lipoprotein cholesterol; AIP: atherogenic index of plasma.

3.2. Rating Scale Scores and Biomarkers in the IRI Subgroups

The total and subdomain scores on the HDRS and HAM-A and biomarker levels
are presented in Table 2. The total HDRS and key HDRS scores were significantly higher
in the high IRI group as compared with the two other IRI groups. The physiosomatic
and melancholia subdomains of the HDRS were significantly higher in subjects with high
IRI as compared with those with a normal IRI. The total HAM-A, key_HAM-A, and
physiosomatic_HAM-A scores were increased in the high IRI group as compared with the
medium and normal-IRI groups.

β-arrestin-1, serotonin, albumin, magnesium, calcium, copper, and zinc were not
significantly different between the three IRI subgroups. FBXW7 was significantly decreased
in the high IRI subgroup as compared with the two other groups, whereas sCD17 was
significantly increased in the high IRI group as compared with the two other groups.
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Table 2. Measurements of the Hamilton Depression Rating Scale (HDRS) and Hamilton Rating Scale
for Anxiety (HAM-A) total and subdomain scores and biomarkers in patients with type 2 diabetes
mellitus (T2DM), subdivided into those with normal insulin resistance index (IRI) values, medium
increased IR, and very high IR values.

Variables Normal-IRI
(n = 28)

Increased-IRI
(n = 33)

Very High-IRI
(n = 25) F/χ2 df p

Total HDRS 8.33 ± 6.16 C 10.30 ± 5.45 C 13.20 ± 3.96 A,B 5.68 2/85 0.005

Key HDRS 2.20 ± 1.83 C 2.70 ± 1.61 C 4.00 ± 1.50 A,B 8.42 2/85 <0.001

Physiosomatic HDRS 2.47 ± 2.08 C 3.24 ± 2.05 3.92 ± 1.98 A 3.50 2/85 0.035

Melancholia HDRS 1.63 ± 1.65 C 2.03 ± 1.69 2.64 ± 1.25 A 2.84 2/85 0.064

Total HAM-A 9.17 ± 6.32 C 10.67 ± 5.99 C 14.92 ± 4.13 A,B 7.47 2/85 0.001

Key HAM-A 2.77 ± 2.10 C 3.15 ± 2.03 C 4.28 ± 1.40 A,B 4.59 2/85 0.013

Physiosomatic HAM-A 4.27 ± 3.14 C 4.94 ± 3.08 C 7.16 ± 2.81 A,B 6.69 2/85 0.002

β-arrestin-1
ng/mL 12.81 ± 7.21 15.60 ± 7.86 17.39 ± 6.93 2.71 2/85 0.072

Serotonin
ng/mL 143.1 ± 73.0 142.75 ± 81.1 184.4 ± 114.4 1.92 2/85 0.153

FBXW7
ng/mL 16.40 ± 0.62 C 16.73 ± 8.40 C 11.26 ± 6.71 A,B 4.32 2/85 0.016

Lactosylceramide
ng/mL 27.05 ± 11.35 C 30.49 ± 15.01 C 38.80 ± 16.78 A,B 4.69 2/85 0.012

Albumin
g/L 45.47 ± 6.95 45.82 ± 5.47 46.68 ± 4.79 0.31 2/85 0.738

Total magnesium
mM 0.736 ± 0.161 C 0.682 ± 0.192 0.637 ± 0.124 A 2.49 2/85 0.089

Total calcium
mM 2.287 ± 0.156 2.259 ± 0.168 2.265 ± 0.179 0.24 2/85 0.791

Copper
mg/L 0.975 ± 0.206 0.931 ± 0.242 C 1.050 ± 0.113 B 2.53 2/85 0.086

Zinc
mg/L 0.716 ± 0.158 0.685 ± 0.200 0.638 ± 0.156 1.36 2/85 0.262

All results are shown as mean (SD); A,B,C: pairwise comparisons between group means; HDRS: Hamilton
Depression Rating Scale; HAM-A: Hamilton Rating Scale for Anxiety; F-box/WD repeat-containing protein
7 (FBXW7).

3.3. Prediction of HDRS Score Using Biomarkers

Table 3 shows the results of the two types of multiple regression analysis with the total
and subdomain scores of the HDRS and HAM-A as dependent variables and the biomarkers
listed in Table 2 (a type) and zCastelli, zAIP and IRI indices (b type) as explanatory variables
while allowing for the effects of age, education, and BMI. Regression #1a shows that 47.8%
of the variance in the total HDRS-17 score could be explained by CD17, copper and β-
arrestin-1 (all positively associated) and calcium (inversely associated). Figure 1 shows
the partial regression plot of the total HDRS score on β-arrestin-1 after adjusting for the
variables listed in Table 3, regression #1a. In Regression #1b, 49.9% of the variance in
the total HDRS-17 score could be explained by zCastelli index, copper, and β-arrestin-1
(all positively associated) and calcium (inversely associated). We found that 34.4% of
the variance in the key_HDRS score could be explained by the regression on β-arrestin-1
and copper and negatively with calcium (Regression #2a). Regression #2b showed that
43.2% of the variance in the key_HDRS score could be explained by the regression on the
zCastelli index, copper and β-arrestin-1 (all positively associated) and calcium (inversely
associated). Regression #3a showed that 27.2% of Physiomatic_HDRS could be explained by
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the regression on FBXW7 and calcium (both inversely) and copper (positively associated).
Figure 2 shows the partial regression plot of the physiosomatic_HDRS scores on calcium
after adjusting for the other variables. Regression #3b shows that 28.2% of the variance
in the physiomatic_HDRS could be explained by the regression on the IRI and copper
(positively associated), and calcium (both inversely). Regression #4a shows that 26.5% of
the variance in the melancholia_HDRS score could be explained by the regression on the
copper and β-arrestin-1 (both positively associated) and zinc (negatively). Regression #4b
shows that 35.8% of the variance in the melancholia_HDRS score could be explained by the
regression on the zCastelli index, copper, albumin, and β-arrestin-1.

Table 3. Results of multiple regression with the Hamilton Depression Rating Scale (HDRS) scores as
dependent variables and biomarkers as explanatory variables.

Dependent Variables Explanatory Variables B t p F Model df p R2

#1a. Total HDRS-17

Model

19.03 4/83 <0.001 0.478

Calcium −0.358 −4.39 <0.001

Copper 0.273 3.25 0.002

β-arrestin-1 0.275 3.33 0.001

Lactosylceramide 0.187 2.19 0.031

#1b. Total HDRS-17

Model

20.66 4/83 <0.001 0.499

Calcium −0.326 −3.99 <0.001

Copper 0.302 3.79 <0.001

β-arrestin-1 0.240 2.90 0.005

Castelli risk index 1 0.245 2.90 0.005

#2a. Key_HDRS

Model

14.66 3/84 <0.001 0.344
β-arrestin-1 0.327 3.60 0.001

Copper 0.283 3.12 0.002

Calcium −0.271 −3.01 0.004

#2b. Key_HDRS

Model

15.75 4/83 <0.001 0.432

Castelli risk index 1 0.323 3.58 0.001

Copper 0.261 3.07 0.003

β-arrestin-1 0.243 2.76 0.007

Calcium −0.194 −2.23 0.029

#3a. Physiom_HDRS

Model

10.45 3/84 <0.001 0.272
Calcium −0.351 −3.73 <0.001

Copper 0.233 2.42 0.018

FBXW7 −0.216 −2.27 0.026

#3b. Physiom_HDRS

Model

11.01 3/84 <0.001 0.282
Calcium −0.353 −3.78 <0.001

Copper 0.255 2.72 0.008

Insulin Resistance Index 0.236 2.54 0.013
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Table 3. Cont.

Dependent Variables Explanatory Variables B t p F Model df p R2

#4a. Melanch_HDRS

Model

10.10 3/84 <0.001 0.265
Copper 0.285 2.98 0.004

β-arrestin-1 0.286 3.00 0.004

Zinc −0.233 −2.49 0.015

#4b. Melanch_HDRS

Model

11.55 4/83 <0.001 0.358

Castelli risk index 1 0.334 3.59 0.001

Copper 0.228 2.49 0.015

Albumin 0.226 2.52 0.014

β-arrestin-1 0.195 2.08 0.041

Key_Dep: key depressive symptoms; Phys_Dep: physiosomatic symptoms of the HDRS (Hamilton Depression
Rating Scale); Melanch: melancholic HDRS symptoms; Key_Anx: key anxiety symptoms of the Hamilton Anxiety
Rating Scale (HAM-A); Phys_Anx: physiosomatic HAM-A symptoms.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 9 of 24 
 

 

Insulin Resistance 
Index 

0.236 2.54 0.013 

#4a. Melanch_HDRS  

Model    

10.10  3/84  <0.001  0.265  
Copper 0.285 2.98 0.004 

β-arrestin-1  0.286 3.00 0.004 
Zinc −0.233 −2.49 0.015 

#4b. Melanch_HDRS 
 

Model    

11.55 
 

4/83 
 

<0.001 
 

0.358 
 

Castelli risk index 1 0.334 3.59 0.001 
Copper  0.228 2.49 0.015 

Albumin  0.226 2.52 0.014 
β-arrestin-1 0.195 2.08 0.041 

Key_Dep: key depressive symptoms; Phys_Dep: physiosomatic symptoms of the HDRS (Hamilton 
Depression Rating Scale); Melanch: melancholic HDRS symptoms; Key_Anx: key anxiety symp-
toms of the Hamilton Anxiety Rating Scale (HAM-A); Phys_Anx: physiosomatic HAM-A symp-
toms. 

 
Figure 1. Partial regression plot with the total 17-item Hamilton Depression Rating Scale (HDRS) score as the dependent 
variable and β-arrestin-1 as explanatory variable. 

Figure 1. Partial regression plot with the total 17-item Hamilton Depression Rating Scale (HDRS)
score as the dependent variable and β-arrestin-1 as explanatory variable.



J. Pers. Med. 2022, 12, 23 10 of 23J. Pers. Med. 2021, 11, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 2. Partial regression plot with the physiosomatic component of the Hamilton Depression Score (HDRS) as depend-
ent variable and total calcium as explanatory variable. 

3.4. Prediction of Hamilton Anxiety Rating Scale (HAM-A) Scores 
Table 4 presents the results of multiple regression analysis with the HAM-A total and 

subdomain scores as dependent variables and biomarkers as explanatory variables. Re-
gression #1a shows that 47.7% of the variance in the HAM-A total score could be explained 
by the regression on copper, β-arrestin-1, and LacCer (all positively associated) and cal-
cium (negatively). Figure 3 shows the partial regression plot of the total HAM-A score on 
serum copper after adjusting for the other variables in this regression. We found that 
52.9% of the variance in HAM-A total score could be explained by the regression on β-
arrestin-1, zCastelli, and copper (all positively associated) and calcium (negatively) (Re-
gression #1b). Regression #2a shows that 46.6% of the variance in the key_HAM-A score 
could be explained by the regression on copper and β-arrestin-1 (all positively associated) 
and FBXW7, calcium and age (all negatively). We found that 49.4% of the variance in the 
key_HAM-A score could be explained by β-arrestin-1, zCastelli, and copper (all positively 
associated) and age, calcium, and FBXW7 (negatively) (Regression #4). Regression #3a 
show that 43.7% of the variance in the physiosomatic_HAM-A score could be explained 
by the regression on copper, LacCer, and β-arrestin-1 (positively associated) and calcium 
(negatively associated). We found that 47.4% of the variance in the physiosomatic_HAM-
A score could be explained by the regression on copper, β-arrestin-1, and zAIP (all posi-
tively associated) and calcium (negatively) (regression #3b). 

Figure 2. Partial regression plot with the physiosomatic component of the Hamilton Depression
Score (HDRS) as dependent variable and total calcium as explanatory variable.

3.4. Prediction of Hamilton Anxiety Rating Scale (HAM-A) Scores

Table 4 presents the results of multiple regression analysis with the HAM-A total
and subdomain scores as dependent variables and biomarkers as explanatory variables.
Regression #1a shows that 47.7% of the variance in the HAM-A total score could be
explained by the regression on copper, β-arrestin-1, and LacCer (all positively associated)
and calcium (negatively). Figure 3 shows the partial regression plot of the total HAM-A
score on serum copper after adjusting for the other variables in this regression. We found
that 52.9% of the variance in HAM-A total score could be explained by the regression
on β-arrestin-1, zCastelli, and copper (all positively associated) and calcium (negatively)
(Regression #1b). Regression #2a shows that 46.6% of the variance in the key_HAM-A score
could be explained by the regression on copper and β-arrestin-1 (all positively associated)
and FBXW7, calcium and age (all negatively). We found that 49.4% of the variance in the
key_HAM-A score could be explained by β-arrestin-1, zCastelli, and copper (all positively
associated) and age, calcium, and FBXW7 (negatively) (Regression #4). Regression #3a
show that 43.7% of the variance in the physiosomatic_HAM-A score could be explained
by the regression on copper, LacCer, and β-arrestin-1 (positively associated) and calcium
(negatively associated). We found that 47.4% of the variance in the physiosomatic_HAM-A
score could be explained by the regression on copper, β-arrestin-1, and zAIP (all positively
associated) and calcium (negatively) (regression #3b).
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Table 4. Results of multiple regression analysis with the Hamilton Anxiety Rating Scale (HAM-A)
scores as dependent variables and biomarkers as explanatory variables.

Dependent Variables Explanatory Variables β t p F Model df p R2

#1. HAM-A total score

Model

18.95 4/83 <0.001 0.477
Copper 0.354 4.21 <0.001

β-arrestin-1 0.289 3.50 0.001

Calcium −0.267 −3.27 0.002

Lactosylceramide 0.175 2.05 0.043

#2. HAM-A total score

Model

23.34 4/83 <0.001 0.529

Castelli risk index 1 0.306 3.72 <0.001

Copper 0.376 4.87 <0.001

β-arrestin-1 0.237 2.96 0.004

Calcium −0.219 −2.76 0.007

#3. Key_HAM-A

Model

14.33 5/82 <0.001 0.466

Copper 0.366 4.32 <0.001

FBXW7 −0.307 −3.50 0.001

Calcium −0.244 −2.96 0.004

β-arrestin-1 0.229 2.61 0.011

Age −0.213 −2.51 0.014

#4. Key_HAM-A

Model

13.21 6/81 <0.001 0.494

Copper 0.360 4.34 <0.001

Castelli risk index 1 0.191 2.12 0.037

FBXW7 −0.252 −2.81 0.006

Calcium −0.196 −2.33 0.022

Age −0.201 −2.42 0.018

β-arrestin-1 0.195 2.23 0.029

#5. Physiosom_HAM-A

Model

16.10 4/83 <0.001 0.437

Copper 0.320 3.67 <0.001

Calcium −0.281 −3.32 0.001

β-arrestin-1 0.256 2.98 0.004

Lactosylceramide 0.186 2.10 0.039

#6. Physiosom_HAM-A

Model

18.70 4/83 <0.001 0.474

Atherogenic index
of plasma 0.284 3.25 0.002

Copper 0.327 3.96 <0.001

β-arrestin-1 0.231 2.77 0.007

Calcium −0.228 −2.70 0.009

Key_HAM-A: key anxiety symptoms of the HAM-A; Physiosom_HAM-A: physiosomatic HAM-A symptoms.
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3.5. Prediction of T2DM Using Biomarkers

Table 5 shows the results of binary logistic regression analysis with T2DM as dependent
variable and controls as the reference group. Binary logistic regression is used to predict
the odds of being a patient using the biomarkers as independent variables. T2DM was
significantly predicted by LacCer, copper, and serotonin (positively associated) and FBXW7
and calcium (inversely associated) with a Nagelkerke pseudo-R2 value of 0.803 and accuracy
of 92.3% (sensitivity = 93.3% and specificity = 91.2%). Binary regression analysis also
showed significant positive associations between T2DM and β-arestin-1 and an inverse
association with magnesium (all after FDR p correction).

3.6. Biomarker Predictors of IRI, β-Cell Function, Castelli, and AIP Indices

Table 6 shows the outcome of different automatic multiple regression analysis with IRI,
zβcell function, zCastelli or zAIP as dependent variables. Regression #1 shows that 14.6%
of the variance in IRI was explained by the regression on FBXW7 and LacCer. Regression
#2 shows that β-arrestin-1, calcium, copper, albumin, and a DM family history explained
45.0% of the variance in the zβcell index. In regression #3 we found that calcium, FBXW7,
and a positive DM family history explained 29.5% of the variance in the zCastelli index.
Regression #4 shows that 24.2% of the variance in the zAIP index could be explained by
calcium, magnesium, and serotonin.
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Table 5. Results of binary logistic regression analysis with T2DM as dependent variable and biomark-
ers as explanatory variables.

Dependent Variables Explanatory Variables B SE Wald df p OR 95% CI

#1. T2DM Patients vs.
Controls

Serotonin 1.224 0.386 10.05 1 0.002 3.40 1.60–7.25

FBXW7 −1.107 0.414 7.15 1 0.008 0.33 0.15–0.74

Lactosylceramide 1.929 0.568 11.52 1 0.001 6.88 2.26–20.96

Calcium −1.502 0.401 14.02 1 <0.001 0.22 0.10–0.49

Copper 1.863 0.506 13.57 1 <0.001 6.44 2.39–17.37

#2. T2DM Patients vs.
Controls β-arrestin 1 1.014 0.317 10.26 1 0.001 2.76 1.48–5.13

#3. T2DM Patients vs.
Controls Magnesium −1.082 0.302 12.80 1 <0.001 0.34 0.19–0.61

Table 6. Results of multiple regression analysis with insulin resistance, β-cell function, Castelli risk
index 1, and atherogenic index of plasma (AIP) as dependent variables.

Dependent Variables Explanatory
Variables β t p F Model df p R2

#1. Insulin resistance
index

Model

7.26 2/85 0.001 0.146FBXW7 −0.239 −2.28 0.025

Lactosylceramide 0.237 2.26 0.026

#2. β-cell function index

Model

13.410 5/82 <0.001 0.450

B-arrestin −0.284 −3.30 0.001

Calcium 0.324 3.79 <0.001

Copper −0.277 −3.12 0.003

Albumin 0.251 2.93 0.004

Family history −0.186 −2.00 0.049

#3. Castelli Risk index 1

Model

11.70 3/84 <0.001 0.295
Family history 0.325 3.38 0.001

FBXW7 −0.274 −2.93 0.004

Calcium −0.207 −2.20 0.031

#4. AIP

Model

8.94 3/84 <0.001 0.242
Magnesium −0.239 −2.38 0.020

Serotonin 0.282 2.97 0.004

Calcium −0.247 −2.25 0.016

3.7. Results of PLS Path and PLS Predict Analysis

Figure 4 shows the final PLS model obtained after feature selection, prediction-oriented
segmentation with multi-group analysis and PLSpredict analysis. T2DM was entered
as a reflective LV extracted from FBG, T2DM, triglycerides, and total cholesterol (the
mediator) and the depression and anxiety phenome was entered as a reflective LV ex-
tracted from key_HDRS, physiosomatic_HDRS, melancholia_HDRS, key_HAM-A, and
physiosomatic_HAM-A (the endogenous variable). The other variables were entered as
single indicators. The overall fit of the PLS model was adequate with SRMR = 0.051 and
also the construct reliabilities of the LV were adequate, namely for the T2DM LV we found
a composite reliability of 0.883, Cronbach α: 0.832, rho A: 0.934, and AVE: 0.655; and for the
affective symptom LV a composite reliability: 0.915, Cronbach α 0.882, rho A 0.890, and
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AVE: 0.683. All outer model loadings on both LVs were > 0.708 at p < 0.0001. The construct
cross-validated redundancies were adequate, namely the T2DM LLV: 0.245 and affective
symptom LV: 0.410. Complete PLS path analysis performed on 5.000 bootstrap samples
showed that 61.7% of the variance in the affective symptom LV could be explained by the
regression on the T2DM LV, copper, β-arrestin-1, and calcium, while 44.4% of the variance
in the T2DM LV was explained by copper, β-arrestin-1, LacCer (all positively) and calcium
and FBXW7 (both negatively). There were specific indirect effects of copper (t = −2.72,
p = 0.007), calcium (t = 2.54, p = 0.011), FBXW7 (t = 2.05, p = 0.040), and LacCer (t = 2.23,
p = 0.026) on affective symptoms which were mediated by the T2DM LV. There were sig-
nificant total effects (in descending order of importance) of copper (t = −4.39, p < 0.001),
calcium (t = −4.19, <0.001), β-arrestin-1 (t = 3.35 p = 0.001), LacCer (t = 2.29, p = 0.026),
age (t = 2.27, p = 0.023), and FBXW7 (t = −2.05, p = 0.040) on the affective symptom LV.
PLS predict with 10-fold cross-validation [71] showed that a) the Q2 Predict values of the
affective and T2DM LVs were positive, indicating that the PLS prediction error is smaller
than that of the most naïve benchmark; (b) in comparison with the linear regression model,
the PLS results showed a lower prediction error; and (c) all indicators except one have a
lower RMSE compared to the naive linear regression benchmark indicating medium to
strong predictive power. Prediction-Oriented Segmentation analysis followed by Multi-
Group Analysis and Measurement Invariance Assessment showed that full compositional
invariance was established.
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Figure 4. Results of partial Least Squares (PLS) path analysis. Shown are the significant path
coefficients with exact p-values, and the explained variances (white figures in the circles). LacCer:
lactosylceramide; FBG: fasting blood glucose; T2DM: type 2 diabetes mellitus; TG: triglycerides;
TC: total cholesterol; Key_Dep: key depressive symptoms; Phys_Dep: physiosomatic symptoms of
the HDRS (Hamilton Depression Rating Scale); Melanch: melancholic HDRS symptoms; Key_Anx:
key anxiety symptoms of the Hamilton Anxiety Rating Scale (HAM-A); Phys_Anx: physiosomatic
HAM-A symptoms.
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4. Discussion
4.1. Biomarkers of T2DM

The first major finding of the current study is that copper, LacCer, (positively associ-
ated) and FBXW7 and calcium (inversely associated) predict around 44.4% of the variance
in a composite score comprising IR and atherogenicity. Both copper and LacCer were the
best predictors of this composite score and T2DM, although also magnesium contributed
to the prediction of T2DM.

A recent meta-analysis reported increased copper levels in 1079 DM patients including
those with T2DM and T1DM as compared with 561 healthy controls [73]. Tanaka et al. [74]
showed that in diabetic C57BL/KsJ-db/db mice, serum copper was significantly increased
in association with increased reactive oxygen species, while copper chelating attenuated IR
and triglyceride levels and improved glucose intolerance. The increased copper levels in
T2DM are positively associated with increased production of reactive oxygen species [75]
and glycated hemoglobin A1C [76] and negatively with ceruloplasmin and thiol levels [77].
These findings indicate that copper-induced oxidative stress plays a key role in T2DM and
glycemic control [78]. Although abnormal zinc metabolism may play a role in the onset and
maintenance of diabetes and IR [52,79] we could not find significant associations between
T2DM and lowered zinc.

In our study, LacCer appears to be a highly significant predictor of T2DM and IR
as well. As reviewed in the Introduction, mild diabetes is accompanied by an increased
conversion of GluCer to LacCer [44]. Our findings may be explained by the effects of
LacCer on pattern recognition receptors leading to activated immune, oxidative and ni-
trosative pathways [40–43]. Moreover, LacCer is a direct cytosolic phospholipase alpha
2 activator (cPLA2α) by stimulating phosphorylation signals and attachment of the enzyme
to substrate membranes [80], a phenomenon that is associated with activated inflammatory
pathways. Furthermore, increased levels of serum LacCer predict cardiovascular disease
progression and mortality above and beyond the effects of established risk factors [81].

We found that T2DM is also accompanied by lowered serum FBXW7, a factor pro-
tecting against IR and atherogenicity. For example, in ob/ob mice, FBXW7 expression
decreases blood glucose and insulin levels, IR and glucose intolerance, and prevents expres-
sion of lipogenic genes and triglyceride accumulation [82]. Liver-specific FBXW7 knockout
mice develop hyperglycemia, glucose sensitivity, and IR [82]. Moreover, FBXW7 controls
fetuin-A expression in obese humans, where the increase in fetuin-A may lead to IR and
T2DM [83,84]. Inactivation of FBXW7 causes the sterol regulatory element-binding protein
1SREBP1 to accumulate, and the expression of SREBP1 increases the expression of genes
that are involved in lipid metabolism and synthesis of triglycerides [85]. On the other
hand, hyperglycemia may suppress FBXW7 expression in renal mesangial cells, resulting
in increments in inflammatory responses [86], and treatment of human kidney proximal
tubular cells with glucose significantly lowers FBXW7 expression [87].

In our study, increased serum β-arrestin-1 is another biomarker of T2DM and lowered
beta-cell function. Increased expression of wild-type β-arrestin-1 decreases insulin-induced
degradation of insulin receptor substrate 1 (IRS-1), leading to increased insulin signaling,
and attenuation of β-arrestin-1 enhances IRS-1 degradation, thereby accentuating cellular
IR [88]. β-arrestin-1 may desensitize the glucagon-like peptide-1 (GLP-1) receptor on pan-
creatic cells, which potentiates glucose-stimulated insulin secretion [89]. Both β-arrestin-1
and -2 are critical regulators of immune-inflammatory responses and exert multiple effects
on immune pathways, including macrophage, neutrophil and T lymphocyte, and Toll-Like
Receptor functions, nuclear factor-κB activity, explaining that these molecules play a key
role in many immune disorders, including atherosclerosis [90,91]. Overall, β-arrestin-1
shows anti-inflammatory effects, although this intracellular scaffolding protein also shows
some pro-inflammatory effects in some models [92]. Furthermore, β-arrestin-1 reduces
oxidative stress via Nrf-2 activation [93], although overexpression of β-arrestin in car-
diac fibroblasts significantly elevates Nox-4 mitochondrial superoxide production in an
ERK-dependent manner [94]. β-arrestin-1 shows a strong plasma membrane represen-
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tation, and interactome analysis show that β-arrestin-1 interactome activity modulates
many downstream signalers that play a role in ageing, including cell cycle regulation, G-
protein associated functions, and opioid signaling [95]. By inference, in T2DM, β-arrestin-1
may play a role in the global reduction in homeostatic stability and/or compensatory
mechanisms characterized by a switching of the metabolism to less efficient processes [95].

Magnesium deficiency is a risk factor for IR, diabetes, hypertension, atherogenicity, and
cardiovascular disease [96] and has a detrimental effect on blood glucose homeostasis [97–99].
Our calcium findings do not concur with those of a meta-analysis showing that increased
plasma calcium levels are associated with T2DM [55]. Nevertheless, in non-diabetic adults,
calcium supplementation may reduce plasma glucose levels and IR [100].

In our study, increased levels of peripheral serotonin are associated with T2DM after
considering the impact of copper, calcium, LacCer, and FBXW7. Previously, it was shown
that inhibiting peripheral serotonin synthesis and signaling may effectively treat T2DM, obe-
sity, and nonalcoholic fatty liver disease [101]. Moreover, genome-wide association studies
found associations between genetic polymorphisms in tryptophan hydroxylase and sero-
tonin receptors and obesity [102]. As described in the Introduction, serotonin may control
glucose metabolism [103] and affect insulin secretion through serotonin receptors [104,105].
Intracellular serotonin, through serotonylating GTPases including Rab3a and Rab27a,
regulates insulin secretion, resulting in serotonin and insulin co-release [106].

4.2. Biomarkers of Affective Symptoms Due to T2DM

The second major finding of this study is that we were able to construct a reliable and
replicable nomothetic model of affective symptoms due to T2DM [72,107,108]). Our model
provided a 10-fold cross-validated prediction in a holdout sample, indicating accurate
predictive performance when analyzing new data. Direct predictors of affective symptoms
were copper, calcium, and β-arrestin, whereas FBXW7 and LacCer showed indirect effects
that were mediated by T2DM. Nevertheless, lowered zinc was a significant predictor of
depressive melancholia scores.

Importantly, we found that increased atherogenicity had a greater impact on affective
symptoms than IR. In this respect, primary mood disorders were consistently charac-
terized by increased atherogenicity, whereas IR was not always associated with mood
disorders [109,110]. There is now also evidence that atherogenicity, as indicated by an
increased Castelli risk index 1 and AIP, significantly contributes to the pathophysiology of
mood disorders via immune-inflammatory and nitro-oxidative pathways [111–113].

In our nomothetic model, the most important predictors of depression and anxiety
symptoms were increased copper and lowered calcium. A recent meta-analysis showed
increased copper levels in 1787 depressive patients versus 943 controls [54]. Copper
toxicity may also cause anxiety, cognitive impairments, sleep disorders, and physiosomatic
symptoms, including muscle pain and tension, autonomous symptoms, heart palpitation,
headache, excessive perspiration, etc. [114]. The depressogenic and anxiogenic effects
of serum copper may be explained by increased oxidative stress and lowering levels of
serum zinc [115]. Nevertheless, there are also more recent studies showing that copper
may be decreased or unchanged in patients with depression [115,116]. In our study, zinc
was inversely associated with melancholia symptoms. Recent meta-analyses showed
significantly lower zinc levels in depressed patients than in controls [117,118]. Lowered
serum zinc predisposes towards immune-inflammatory and nitro-oxidative toxicity and,
therefore, affective disorders [119].

The results of the present study are also in agreement with previous findings that lowered
serum calcium is associated with major depression and with self-rated depression, irritability,
agitation, and physiosomatic symptoms, including neuromuscular excitability [56,120]. Nev-
ertheless, comorbid depressive ratings in unstable angina were not only associated with
atherogenicity, IR, lowered zinc but also with increased IL-6 and calcium levels [121]. The
latter may, however, be explained by specific effects of calcium mineralization of arteries
and calcification of plaques in unstable angina [121].
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Our results showing that β-arrestin-1 is positively associated with depressive symp-
toms contrasts, at first sight, with those of previous reports that β-arrestin-1 is reduced in
the white blood cells of depressed patients and that reductions in β-arrestin-1 are signifi-
cantly associated with the severity of depressive symptoms [25,122]. Those previous reports
suggest that β-arrestin-1 is involved in the pathophysiology of affective disorders and
in the pathways that mediate antidepressant effects [25,123,124]. Nevertheless, increased
plasma β-arrestin levels may be ascribed to leakage of β-arrestin out of the tissues [125].
Therefore, our results suggest that increased β-arrestin-1 levels may be associated with the
onset of affective symptoms due to T2DM following desensitization of GPCR signaling and
GPCR-associated effects on ERK1/2 and CREB (see Introduction). Furthermore, β-arrestin-
1 exerts stimulatory effects on microglia-mediated inflammation and STAT1 and nuclear
factor-κB activation [126], processes that are associated with affective symptoms [127].

As described in our Introduction, LacCer and serum levels of other ceramides are
significantly increased in mood disorders [45–47], which may in part be explained by
increased sphingomyelinase activity [45]. Interestingly, ceramide and sphingomyelin
species are involved in the pathophysiology of depressive symptoms in coronary artery
disease [128]. Increased levels of pro-inflammatory cytokines and oxidized LDL (which
play a role in depression, T2DM, and MetS) may increase the biosynthesis of LacCer,
which consequently may induce oxygen-specific pathways, thereby generating reactive
oxygen and nitrogen species as well as peroxynitrite, and inducing immune-inflammatory
pathways [129,130]. Moreover, high ceramide levels in the hippocampus are associated with
decreased neurogenesis, neuronal maturation, and neuronal survival [131] and increased
amygdala sphingolipids are associated with anxiety-like behaviors in animal models [132].

This is a first report that lowered FBXW7 may be associated with depressive and
anxiety symptoms, although these effects may be mediated via increased IR because
lowered FBXW7 is associated with hyperglycemia, IR, and the development of T2DM [32].
Moreover, as explained in the Introduction, FBXW7 modulates some pathways that play a
role in mood disorders, including neurogenesis, mTOR, DISC, and PGC-1α [36,38,39].

4.3. Limitations

The results of the current study should be interpreted regarding its limitations. Firstly,
this is a cross-sectional, case-control study and, therefore, we cannot make conclusive causal
deductions. Second, it would have been more interesting if we had assayed other immune
and oxidative biomarkers of affective disorders, including pro-inflammatory cytokines,
MDA, oxidized LDL, and PON1 activity.

4.4. Conclusions

The most important predictors of affective symptoms due to T2DM are in descending
order of importance: copper, calcium, β-arrestin-1, LacCer, and FBXW7. T2DM and
affective symptoms share common pathways, namely increased atherogenicity, IR, copper,
and β-arrestin-1, and lowered calcium. Moreover, copper, calcium, β-arrestin-1, and
LacCer (positive) and FBXW7 (inverse) may also induce affective symptoms by effects on
IR and atherogenicity.
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