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Abstract: Exosomes are the main actors of intercellular communications and have gained great
interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost
all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-
coding RNA, especially micro-RNAs (mi-RNAs). Exosomes’ cargo is released in the neighboring
microenvironment but is also expected to act on distant tissues or organs. Different biological
processes such as cell development, growth and repair, senescence, migration, immunomodulation,
and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs.
Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers
for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived
mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a
promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate
tissue functionality and regeneration by targeting different tissues and involving different pathways
but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related
to the biological fluids that are reported differently between young and old individuals. However,
their underlying mechanisms modulating cell senescence and aging are still not fully understood,
and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we
summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes’ cargo.
Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA
regulation in the different aging processes.
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1. Introduction

Almost every cell, including stem cells, naturally release extracellular vesicles (EVs)
responsible for cell-to-cell communication. Based on the evolution of the collective knowl-
edge for the last decade, the International Society for Extracellular Vesicles endorsed EV
as the generic term for particles deprived of the nucleus and delimited by a lipid bilayer
without replication capacity [1]. EVs are differently sized vesicles released in vivo and
in vitro and are classified based on the mode of release, size, and method of purification [1].
They are split into three categories: microvesicles or ectosomes are submicron vesicles
with a diameter of 100 nm–1000 nm, distinguished by biogenesis mechanisms including
cytoskeleton remodeling and phosphatidylserine externalization. These microvesicles
are formed by the outward budding and fission of the plasma membrane (PM) after cell
stimulation or stress [2–6]. The other EVs are apoptotic bodies with a diameter between
50 nm–4000 nm and are usually released during the stage of cell apoptosis [7]. Compared to
the microvesicles, the apoptotic bodies contain contact organelles, chromatin, histones, and
glycosylated proteins [3]. Exosomes are the most common EVs studied and the smallest
ones with a diameter of 30 nm–100 nm. They were first considered as a cell metabolic prod-
uct by the inward blebbing [6] and described as a part of disposal mechanisms discarding
unwanted material from cells [8,9]. Their biogenesis is orchestrated from PM followed by
the maturation process determining their cargo composition [7,10,11].
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Exosomes are considered key regulators of many biological settings and are present
in several extracellular fluids to mediate cellular communication. Recently, they were
suggested as biomarkers for several diseases to set up diagnosis and disease progression.
Their characteristics hold a great interest in designing therapeutic purposes in metabolic
and genetic disorders, neurodegenerative and cardiovascular diseases, and cancer [12–15].
Nevertheless, different characterizations and validation methods have been developed
whereby exosome purification and drug delivery are improved [1,15–17]. A recent study
used a high-efficiency 3D nanostructured microfluidic ship to capture intact exosomes
and a dual ligand to encapsulate the drug as an innovative and promoting methodology
compared to ultracentrifugation and ultrafiltration [18]. The same team has also developed
an engineered biological and synthetic hybrid designer exosome with photoresponsive
functionalities targeting cancer cells [19].

Advancements in exosome identification and analysis have concluded on their en-
richment of micro-RNAs (mi-RNAs), proteins, lipids, and DNA [1,14,20]. Mi-RNAs are
described as a ~22-nt RNA, binding to their targets messenger RNAs (mRNAs) by base-
pairing between 5′ end sequences of mi-RNA and mRNAs sequences located at 3′ untrans-
lated regions (3′ UTR) [21]. Consequently, gene expression levels were found to contribute
to fine-tuning and buffering the activity of different signaling pathways [22]. Increasing
evidence has involved mi-RNAs in the regulation of different biological processes such as
immune responses, apoptosis, metabolism, cancer, and cell aging [23–28]. These mi-RNAs
are expressed differently according to the age and age-related diseases in blood [29–31],
plasma [32–34], and serum [35]. Their expression was associated with aging mechanisms
and targeted the transcription and translation of the molecular pathways involved in
human longevity [32,34,36,37].

Epigenetic factors might also be age predictors through mi-RNAs expression lev-
els [37]. Recently, different authors have proposed the involvement of lin-4, let-7, mi-RNA-
17, and mi-RNA-34 as age and longevity-related mi-RNAs [36]. Other mi-RNAs were
reported significantly different in long- versus short-lived individuals [36,38]. Most of
these mi-RNAs were downregulated and predicted to target hundreds of genes outlined in
many mi-RNAs databases making it difficult to understand the physiological pathways
involved in longevity.

On the other side, the first signature of human aging is the decrease of tissue regen-
eration and repair, leading to the accumulation of senescent cells. These cells have been
described to release more exosomes with different compositions than a normal cell [39].
Moreover, the senescence-associated secretory phenotype (SASP) was described to induce
pro-inflammatory cytokines, chemokines, and tissue-damaging proteases [40]. Senescent
cells were shown to accumulate senescence-associated ß-galactosidase (SA β-gal) activity
and the senescence marker p16Ink4a [41,42]. In vitro, early expanded mesenchymal stem
cells (MSCs) also presented a stemness profile, while the long-term expanded were as-
sociated with a senescence phenotype [43,44]. A cellular transcriptional program is thus
induced whereby the number and composition of exosomes are changed, consequently
reflecting the current parent cell profile [45–47].

Much evidence has increasingly involved exosomes and exosome-derived mi-RNAs
in both normal and pathological aging processes [48–53]. Evidence has also increasingly
involved exosome-derived mi-RNAs in aging-associated diseases. In this work, we review
exosome biogenesis and its involvement in the mechanisms related to aging with a focus
on the different pathways described for their secreted mi-RNAs.

2. The INS and Outs of Exosomes
2.1. The INS of Exosomes: The Biogenesis

Exosome biogenesis remains incompletely understood even though different strategies
have been described, especially the involved pathways. Biogenesis starts with the selective
removal of the PM by an inward budding into the cell, constituting the intraluminal vesicles
(ILVs). These endocytic vesicles mainly emerge from the lipid raft domains of PM and
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occur quite fast, so that 50–180% PM of reticulocyte can be recycled in only one hour [54],
resulting in the intracellular generation of early endosomes [3,4,54,55]. Thereafter, these
early endosomes can have different destinations depending on the enclosed cargo. The
PM can be directly recycled by endosomes, and the MVBs can fuse with the lysosome if
the content is targeted for degradation [3,55,56]. Early endosomes might mature to the
late endosome by ILVs accumulation to multivesicular bodies (MVBs) [3,57]. Finally, these
MVBs might fuse with the cellular membrane to release the ILVs as exosomes into the
extracellular space [2,3,54,55,57] (Figure 1).

Figure 1. The biogenesis of exosomes, starting from the early endosomes, including both endosomal-sorting complex
required for transport pathway (ESCRT). In the ESCRT pathway family (in the upper half of the cell), four sub-proteins 0, I,
II, III, and charged multivesicular body protein- 4 (CHMP-4), hepatocyte growth factor-regulated tyrosine kinase substrate
(Hrs), Programmed cell death 6-interacting protein (ALIX), signal-transducing adapter molecule 1 (STAM-1), vacuolar
protein sorting proteins (Vps), and tumor susceptibility gene 101 (TSG-101) are identified. The ESCRT independent pathway
(in the lower half of the cell) includes tetraspanin protein (CD9, CD84, CD81, CD63, CD47) and syndecan-Syntenin-ALIX.
Exosome release results from the interaction of the Rab family, including Rab-7, 11, 35, 27 with Tspan and the Soluble
N-ethylmaleimide-sensitive-fusion attachment protein receptor (SNARE).

ILV formation or exosome biogenesis can be performed by two distinct processes.
Both mechanisms occur depending on the physiological state and the type of the parent cell
and are involved synergistically but might not be separated [58]. ESCRT proteins consist of
four different protein complexes ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III [3,11,59]. One
of the most complete studies about ESCRT proteins was made by Colombo et al. in 2013,
using an RNA interference screen targeting 23 ESCRT and their associated proteins VP4,
VTA1, and ALIX [59]. Depleting ESCRT-0 and ESCRT-I and its associated proteins “Hrs,
TSG101, and STAM-1,” respectively, reduced exosome secretion. Nonetheless, exosome
oversecretion was reported as one of ESCRT-III, and its associated protein ALIX, CHMP-4C,
VPS4B, and VTA1 were knockdowns, suggesting the involvement of the VPS4B protein [59].
In addition, silencing ALIX protein changed the exosome protein content rather than
secretion, indicating its contribution to the exosomes cargo process [60]. Sterzenbach et al.
used the L-domain containing protein Ndfip1 to increase ALIX protein recruitment in the
ESCRT-pathway, thus loading exogenous proteins and delivering active proteins across
the blood-brain barriers [61]. Moreover, depletion of Hrs, ESCRT-0 associated protein was
associated with a decrease in exosome secretion and a reduced level of Wnr3A and Evi in
human embryonic kidney 293 cells (HEK293) [62].

Tspans are other actors implicated in exosome biogenesis and can be used as exosome
markers. The most-reported Tspans are CD9 and CD82 enhanced in the exosomal release
of β-catenin from HEK293 cells. Knockdown of CD9 bone marrow dendritic cells secrete
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less affiliated flottin-1 suggesting the importance of this Tspan in exosome formation and
release [63]. CD81 is involved in mRNA and protein composition in rat adenocarcinoma
cell-derived exosomes [64]. A knockout of Tspan63 reduced exosome formation and
secretion. A recent finding has demonstrated that the latent membrane protein-1 (LMP-1)
is a major viral oncogene expressed in most Epstein-Barr viruses, suggesting a role in
packaging and particle secretion by CD63 [65]. Actually, TSG101 and CD9, CD63, LMP-1,
CD81, CD82 are used for exosome identification and characterization [1,60,66–68]. In a
follow-up, the Syndecan-syntenin-ALIX pathway is a non-ESCRT-mechanism facilitating
the ILV formation, exosome-containing syntenin, syndecan, and CD63 are released by
heparanase and play a key role in endosomal membrane budding controlled by ARF-6 and
PLD-2 [3,57,69]. This mechanism controls approximately 50% of the secreted exosome in
the Michigan Cancer Foundation-7 (MCF-7) cells [70].

2.2. The Out of Exosomes: The Release

Several key molecules are involved in exosome secretion. The Rab families are small-
molecule GTP-binding proteins known to play a pivotal role in transferring vesicles be-
tween intracellular compartments and trafficking MVB to the plasma membrane (Figure 1).
Rab-5 and Rab-7 are common markers of early and late endosomes, respectively. In MCF-7
cells, Rab-7 was reported to regulate the secretion of syndecan and syntenin [69], resulting
in the enrichment of exosomes with ALIX and syntenin [69]. Furthermore, blocking Rab-27
GTP prevented exosome secretion while silencing Rab-27-a and Rab-27-b resulted in the in-
hibition of docking with the cellular membrane redistribution to the perinuclear space [71].
Moreover, Rab-11 involvement is differently appreciated in exosome secretion. In the
K562 human leukemic cell line, a recent study showed that this CD47 expression allows
exosomes to escape from phagocytosis by macrophages and monocytes, consequently
increasing their life shelf in blood circulation. However, CD47 does not play a significant
role in exosome cell but enhanced micropinocytosis in Kras mutant cells and favored
exosomes uptake [72]. Rab-11 also inhibits the exosomal release where no consequence
was demonstrated in Henrietta Lacks (HeLa) cells [60].

Another point of view, the ionophore MON was shown to induce the formation of
a large MVB and stimulates the release of exosome through a Ca2+ dependent manner
in K562 cells. The same results were obtained by chloroquine and bafilomycin as they
elevate the Ca2+ [73]. The dissociation of the subunit of V1-ATPase by autophagy protein
5 (Atg5) and autophagy protein 6L1 abolishes its proton transporter activity, and both
reduce the acidification of the MVBs, increasing exosome release in human cells [74]. The
Ca2+ dependent SNAP receptor Munc13-4 also regulates exosome release in metastatic
cells [75]. The soluble N-ethylmaleimide-sensitive-fusion attachment protein receptor
(SNARE) complex is another mechanism reported to facilitate the fusion of vesicles with
their target membrane. In the K562 leukemic cell line, overexpression of VAMP-7, one of
the SNARE proteins, reduced exosome release [76]. Another SNARE protein, YKT6, was
related to exosome release in HEK293 human embryonic kidney cells and A549 human
lung cells and involved in the secretion of Wnt-bearing exosome and sny-5 [62].

3. Composition of Exosome’s Cargo

Different technologies were used to characterize the exosome’s cargo, including
transmission electron microscopy, scanning electron microscopy, atomic force microscopy,
nanoparticle tracking analysis, dynamic light scattering, resistive pulse sensing, enzyme-
linked immunosorbent assay, flow cytometry, fluorescence-activated cell sorting, microflu-
idics, and electrochemical biosensors [77]. Under electron microscopy, exosome morphol-
ogy is cup-shaped after ultra-centrifugation and sucrose gradient step; they are highly
enriched in CD63, ALIX, TSG-101, and HSC-10 [78]. Two sub-populations were described
by Layden et al.: large exosomes with 90–120 nm average and small exosomes with 60–80
nm average [79].
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Based on the type and size, exosomes cannot be distinguished from small microvesicles
and other soluble molecules like exomeres [80]. Surprisingly, the same exosomes are
expected to contain similar protein, nucleic acid, and lipid composition; however, their
content might differ even from the same parental cell [81]. It was demonstrated that high
cholesterol content is a maturation marker of MVBs and can participate in exosome release
by fusing with plasma. However, exosomes secreted from the apical and basolateral sides
of polarized cells are reportedly different in their composition, probably explaining the
differences observed in MVB populations [60]. Moreover, exosome secretion levels can be
increased, and their cargo can be enriched in specific proteins or mi-RNA by using genome
editing [11,50,82,83].

Exosomes play an important role in the circulating secretome stability in blood and
tissues; nonetheless, their composition remains dependent on their surrounding micro-
environment [46]. On one side, Salomon et al. have published a large panel of proteins
secreted by exosomes after MSCs exposition to different O2 concentrations. Different
proteins such as Annexin A1, A2, and A3, ADP-ribosylation factor, BMP-1, COL6-A1, A2
and A3, BCL3, Heat Shock-90, PI3KR-4, TIMP-1, IL-25, actin, myosin, and integrin were
differently quantified [47]. On the other side, exosome RNA levels reflect the cytoplasm
composition [84]. The formation of these RNAs requires both nuclear and cytoplasmic
phases leading to several non-coding RNA (long non-coding RNAs, mi-RNAs, circular
RNA). Besides mi-RNA, other nucleic acids have been discovered in exosomes: PIWI-
interacting RNA, small nucleolar RNAs, yRNAs, and vault RNAs [11,85]. Mi-RNAs are
transcribed by RNA polymerase II and III, leading to the formation of pri-mi-RNA with
a cap and a poly-A tail in the nucleus and a hairpin structure [86,87]. This pri-mi-RNA
contains a terminal consisting of two flanking unstructured single-stranded tails and a
double-stranded tail with about 30 base pairs [88]. Thenceforward, pri-mi-RNA is cleaved
by a class 2 ribonuclease III enzyme (Drosha) and DiGeorge syndrome critical region 8
(DGCR-8), an RNA binding protein giving to a pre-mi-RNA of ~70 nt [87]. This pre-miR
is transferred from the nucleus to the cytoplasm by exportin-5 [89] and further cleaved
by an enzymatic complex set up by the Dicer endonuclease and TRBP or PACT protein
activator of the interferon-induced protein kinase to deliver a mature duplex of mi-RNA of
~22 nt [90]. Thereafter, Dicer/TRBP assists the mature duplex mi-RNA complex loading
into one of the four Argonaute proteins (AGO2), which are part of the RNA-induced
silencing complex (RISC). Thus, heat shock protein-70 (Hsp-70) and heat shock protein-90
(Hsp-90) is also needed [91]. Once loaded, one of the mi-RNA strands, «the passenger
strand» is expulsed, and the «guide strand» mi-RNA is retained in this complex to bind the
functional mRNA target [12,92].

Moreover, various mechanisms were suggested describing mi-RNA loading into
exosomes. Indeed, hnRNPA2B1, a ribonucleoprotein, has been reported to recruit mi-RNAs
bearing exosomes by interacting with a four nucleotide motif (GGAG) [93,94]. The latter
plays a crucial role in exosome formation but was not incorporated in it [94,95]. Mi-RNA
is released through a ceramide-dependent secretory whose biosynthesis is regulated by
neutral sphingomyelinase-2 (nSMase-2) [96]. Overexpression of this protein increased
extracellular amounts of exosome-derived mi-RNA, as it is also described in exosome
biogenesis [96]. The association of the AGO2 and the RISC complex are involved in RNA
silencing and are believed to control the loading of mi-RNAs into exosomes [97]. Bone
marrow mononuclear cells and myeloma cancer cell 9 showed that exosome contains
mRNA and mi-RNA at a sufficient level to support complementary DNA synthesis even
after treatment with RNase, suggesting the protective role of exosome [98].

4. General Molecular Mechanisms Related to Aging Dysfunction

Molecular science advancements have underlined the aging mechanisms and led
to the identification of multiple key drivers. Cellular aging is due to various biological
features and changes accelerating or delaying the longevity process. These hallmarks
include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis,
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deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell
exhaustion, and altered intercellular communication [11,99]. Understanding these mecha-
nisms might increase our knowledge of the multiple intracellular interactions governing
cell aging and the balance between cell senescence and rejuvenation.

4.1. Genome Instability and DNA Damages

In normal conditions, cells do not divide indefinitely because of the termed process of
replicative senescence as a permanent state of growth arrest. It was estimated that tens of
thousands of damaging events occur each day in every single cell. The genotoxic attacks
can originate from extrinsically inflicted radiation damage or chemicals as well as from
endogenous sources [100]. One cannot define and explain aging without the cell changes
during senescence induction.

DNA damages occur with age when single-stranded or double-stranded DNA breaks.
These changes are mostly generated extrinsically by radiation or chemical toxicity. Two
distinct outcomes are identified: cancer by erroneous repair leading to mutation and
chromosomal aberration and cellular senescence by blocking transcription and replication
to prevent tumorigenesis [100]. However, some studies have reported the crucial role of the
mini-chromosome maintenance 2-7 (MCM2-7) [101,102]. The protein family is essential for
DNA replication and binds to replication origins during the G1 phase of the cell cycle along
with members of the pre-replication complex (origin recognition complex, cell division
cycle 6, chromatin licensing, and DNA replication factor 1). Once DNA replication is
initiated, the MCM2-7 proteins were shown to move along with the replication fork, further
supporting their possible role as a replicative DNA helicase [103]. P53 is another protein
considered as a tumor suppressor gene playing an important role in controlling cellular
proliferation in the context of DNA damage. During genomic DNA duplication, p53
transcriptionally activates the mi-RNA-34, thus downregulating the MCM2-7 factor and
resulting in cell cycle arrest and senescence [49,101]. Additionally, Zhang et al. found
that mi-RNA-124 inhibited keratinocyte proliferation and collagen biosynthesis, while
activation of Wnt/β-catenin occurred by targeting stress-associated endoplasmic reticulum
protein-1 [104]. This mi-RNA-124 was also reported to inhibit proliferation, migration,
and invasion of malignant melanoma cells (A375) [105]. Moreover, UVB irradiated normal
human epidermal keratinocytes resulted in DNA damage and increased mi-RNA-124
expression after a comparison between young and old skin. Mi-RNA-124 was found
to be upregulated in aged humans, thus inducing a senescent profile. Interestingly, a
forced expression of mi-RNA-124 in squamous cell carcinoma resulted in a decrease in
cell number [106].

4.2. Mitochondrial Decline

Mitochondrial activity is crucial for cell function and is implicated in a plethora of
metabolic networks, and plays a significant role in sustaining the life and health of hu-
mans [107]. For instance, mitochondria do not display any repair mechanisms to eliminate
DNA lesions; they reveal a base excision against oxidative damage, and the mutation
frequencies in mtDNA are greater than nuclear DNA. When this happened, dysfunctional
or damaged mitochondria are removed by autophagy and restored by fusion with healthy
elements of the mitochondrial network. However, during aging, autophagy declines, and
fission outpaces fusion leading to the accumulation of dysfunctional mitochondria [49].
The first evidence that mitochondrial DNA (mtDNA) might be important for aging and
aging-related diseases was derived from the identification of human multisystem disorders,
which were caused by mtDNA mutations that partially phenocopy aging. Besides, mtDNA
doesn’t have histones, which increases its susceptibility to oxidative stress-induced dam-
age [108]. Defective mitochondria will generate ROS, resulting in cellular aging and related
disorders. Cells from mutant mice deficient in mtDNA polymerase showed impaired mito-
chondrial function but were not accompanied by an increase in reactive oxygen species
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(ROS) production [99]. One of the common features of aging is mitochondrial dysfunction
associated with the decline of cell function and tissue decay [109].

Degenerated mitochondria are identified by PINK1, then E3 ligase parkin is recruited,
and the channel protein VDAC1 is localized to the outer mitochondrial membrane. Finally,
the autophagic adaptor p62/SQSTM1 recognizes and triggers mitophagy [110]. A recent
study reported that the upregulation of mi-RNA-155 disturbed mitophagy in MSCs by
targeting BCL2 associated athanogene 5 (BAG5), which directly interacts with PINK1 and
protects mitochondria from degradation and mitophagy through the ubiquitin-proteasome
system [111]. Therefore, mi-RNA-103a-3p was upregulated and target Parkin/Ambra-1
mRNA in the human brain and Parkinson’s disease leading to their decrease. A defect in
the mitophagy process occurs, suggesting that mi-RNA-103a-3p inhibition shows protective
effects in neuronal aging-related disease [112].

Moreover, the free-radical theory of aging implies that the production of ROS results
in aging where the antioxidative system fails to remove oxidative damages such as DNA,
protein, and lipids. Mi-RNA-335 and mi-RNA-34a can modulate mesangial cell senescence
via inhibition of the expression and function of the mitochondrial antioxidative enzymes
superoxide dismutase 2 (SOD2) and thioredoxin reductase 2 (Txnrd2), both suspected to
play a key role in modulating cellular aging by detoxifying ROS generated in the mito-
chondria. Aging mesangial cells exhibited significant upregulation of mi-RNA-335 and
mi-RNA-34a, inducing premature senescence with a concomitant increase in ROS [113].
In line with ROS production, Sirtuins (SIRT) were largely described for the regulation of
lifespan and metabolism control due to the progress of mitochondrial function during di-
etary restriction. In mammals, seven members of the SIRT protein family known as class III
histone deacetylase have been identified for their enzymatic activities, molecular functions,
and involvement in diseases [114]. For instance, SIRT-1 was described to regulate longevity
through maintenance of mitochondrial homeostasis [115] and may have a central role in
mitophagy through regulation of mitochondrial uncoupling protein 2 (UCP-2) by targeting
PPARG coactivator 1 alpha (PCG-1α). SIRT-1 inhibited mitophagy by depressing PCG-1α
and UCP-2, and its inhibition may lead to the activation of DNA damage [116]. Lang et al.
linked SIRT with cellular senescence and mitochondrial function. The upregulation of
mi-RNA-15b negatively impacted stress-induced SIRT-4 expression countering senescence-
associated mitochondrial dysfunction and possibly regulating organ aging [117]. SIRT-3
plays a key role in human physiology; its impact on nuclear and muscular function reduces
the aging effect by its ability to regulate thermogenesis, DNA repair, and anti-oxidative
stress. Knockout of SIRT-3 in mice led to mitochondrial dysfunction in the heart with
cardiac hypertrophy [118]. Additionally, SIRT-3 interacts with the transcription factor
forkhead box-O3-a and appears to regulate intracellular processes like cellular resistance
to oxidative stress and general metabolism [119]. Interestingly, SIRT-7-catalysed H3K122
is significantly implicated in DNA-damage response and cell survival, suggesting its im-
plication in cellular function during aging [120]. SIRT-6 is shown to play different roles
in the metabolism of aging. The intensification of mitochondria stress signaling through
the change of NAD+ levels is described as a target to improve mitochondrial function and
prevent or treat age-associated decline [115].

4.3. Telomeres Involvement

Telomere constitutes a repetitive DNA sequence “TTAGGG” located at the end of
chromosomes, playing a protective role from degradation. Human telomeres typically
range between 10 to 15 kb. In 1961, Leonard Hayflick discovered the in vitro limit of
somatic cell division called later the “Hayflick limit”. Telomeres were proposed as mitotic
clocks for cell division [121]. Accordingly, human fibroblasts dividing in a cell culture died
after nearly 50 divisions. The cells stopped dividing and underwent a programmed cell
death [122]. Telomere shortening is explained by the fact that adult cells do no express
DNA telomerase to replicate telomeres [49]; 30 to 200 sequences present at the end will
be lost at every replication [123]. Additionally, telomeres are covered by a complex of six
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proteins called shelterin: TRF-1 determines the structure of telomeric end, TRF-2 implicated
in telomerase protection and telomerase length homeostasis, TIN-2, RAP-1 POT-1, and
TPP-1 [124].

When a telomere shortens to a certain length, the cell acquires the senescence sta-
tus. This finding has been observed in several diseases such as cardiovascular diseases,
cancer initiation, type 2 diabetes, and weakened immune function [99,125]. Nonetheless,
mi-RNA has been described to regulate telomerase activity. Hrdličková et al. determined
six mi-RNAs, mi-RNA-133a, mi-RNA-138-5p, mi-RNA-491-5p, mi-RNA-342-5p, and mi-
RNA-541-3p regulating the telomerase catalytic subunit through TERT and involving the
Wnt pathway [126]. Mi-RNA-138 has been reported to regulate cell longevity by control-
ling the telomerase reverse transcriptase, while mi-RNA-155 targets TRF-1 [49,127]. On
the other side, mi-RNA-490 was reported to regulate the telomere maintenance program
by directly targeting TRF-2 [128]. Besides, acute exercise can transcriptionally regulate
several key telomeric genes. Four mi-RNAs were involved in telomeric gene mRNAs
mi-RNA-15-a, mi-RNA-96, mi-RNA-181, and mi-RNA-186 after 60 min post-exercise [129].
The mi-RNA-34 family is related to telomere length and displays a regulatory role in stem
cell division and cancers, and is actually proposed as the mi-RNA of longevity [36,125].
Recently, mi-RNA-185 was shown as a key aging-related biomarker accelerating the replica-
tive senescence process in primary human fibroblasts in a POT-1 dependent manner [130].

4.4. Epigenetic Impact

Epigenetic means “outside conventional genetics” and is considered a key regulator of
the aging process allowing genome changes without sustainable modification of the DNA
sequence [49,99]. These modifications can be spontaneous or driven by external or internal
factors. Those affecting longevity acted primarily via the modification of the epigenome,
adding complexity to the aging process [131]. Different epigenetic mechanisms have been
described, including DNA methylation [132–134], histone modification (including post-
transcriptional modifications, structural and functional variants of the histones) [134,135],
and transcription of noncoding mi-RNA [49,132,136].

The most described epigenetic mechanism is DNA methylation, where DNA is cat-
alyzed by the DNA methyltransferase (DNMTs) family and transfers the methyl group from
S-adenyl methionine to the fifth carbon of cytosine residue to form 5mC. This mechanism
regulates gene expression by restraining or repressing the binding of a transcription factor
by recruiting proteins [133]. Dnmt3a and Dnmt3b are described as a new methylation
pattern adding the methylation to the unchanged DNA, while Dnmt1 functions during
DNA replication and copies the existing parental DNA methylation [137]. DNMT1 plays a
key role in maintaining genomic methylation patterns, and its activity seems to decrease
during aging [138].

The methylation of mi-RNA-9-1 was found to increase the chance of contracting dia-
betic retinopathy disease by five-fold, and both methylations of mi-RNA-9-1 and mi-RNA-
9-3 increased this chance by eight-fold [139]. Additionally, downregulation of mi-RNA-29b
is promoted via Dnmt3b, and its overexpression is found to prevent osteoarthritis through
the Dnmt3b/mi-RNA-29b/PTHLH/CDK4/RUNX2 axis, thus suppressing chondrocyte
apoptosis and extracellular matrix degradation [140]. Furthermore, communication be-
tween mitochondria and the nucleus is a must for any cell, and the disruption of this
mechanism is implicated in cancer development. Mi-RNA-663 is regulated epigenetically
by mitochondria, and its downregulation by DNA methylation and was described to
reduce patient survival [141].

Epigenetic modification has also opened the way to post-transcriptional changes
restoring specific cell functions. Although, their use in therapeutic purposes raised hope in
treating metabolism, degenerative, and even genetic diseases. Chronic myelomonocytic
leukemia is one of the most aggressive cancers affecting hematopoietic stem and progenitor
cells. Downregulation of mi-RNA-125a is mediated by hypermethylation of its upstream
region and was used as leukemic treatment [142]. Also, increasing Wnt10-b was associated
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with the decrease of mi-RNA-7113 and the H3K4me3 methylation increase, which resulted
in an inflammatory profile of immune cells [143].

5. Exosomes Implication in Aging Process

During aging, cells accumulate genetic damages, epigenetic changes, gene expres-
sion alterations leading to cancer, age-associated diseases, and neurodegenerative dis-
orders [87,99,125]. Moreover, defects in molecular secretomes such as growth factors,
chemokines, mRNA, mi-RNA, and signaling molecules could highly interfere with the ag-
ing machinery where exosomes could be the key. Adding to that, exosomes are responsible
for intercellular communications mediating signal transmissions between surrounding and
distant tissues in normal and pathological conditions [6,8,12]. These characteristics have
opened the way to their use as biomarkers of tissue dysregulations and as intercellular
drug delivery [50,55,56,63,70,76].

Since the last two decades, evidence has increasingly identified the pivotal role of
exosomes in regulating aging mechanisms [52,53,144]. By targeting mRNA transcrip-
tion and translation, the exosome ‘s cargo is presumably related to and impacted by
the status of the parent cell and its microenvironment. Despite exosomes containing
several proteins, lipids, and DNA, among other compounds, mi-RNAs have attracted
more attention because of their implication and interconnection with biological mech-
anisms; their expression is considered the main reflection of the responses induced by
exosomes [55,84,119,144]. It is largely accepted that exosomes act through their mi-RNAs
in paracrine and autocrine pathways to modulate their micro-environment and induce
cell senescence [28,36,41,107,145–148]. Moreover, exosome implication in the aging process
is also closely related to their parent cells [47,149]. When released from senescent cells,
SASP, including exosomes, spread senescence to the surrounding microenvironment and
to young cells [42,145,146,150,151]. Additionally, senescent cells seemed to secrete more
exosomes than the younger ones, especially in cancer conditions [152], while their human
plasma concentration decreased during age in normal conditions [153]. However, exo-
somes were identified to promote cell migration, proliferation, and anti-senescence when
released from stem cells [145]. Interestingly, their cargo was correlated to the proliferation
and lifespan of fibroblasts [146]. In the same way, highly purified exosomes derived from
induced pluripotent stem cells (iPSCs) reduced the level of ROS expression when added
to senescent cells and resulted in an anti-aging phenotype [51]. Normal human dermal fi-
broblast aging and photoaging have also been alleviated phenotypically and genotypically
after adding iPSCs conditioned medium containing exosomes [52,154].

Another point of view is that aging is associated with the reduction of the regenerative
and reparative activity in organs and tissues, leading to the increase of senescent cells.
Different findings have highlighted the interaction of aging with exosomes’ composition.
Exosomes from young donors appeared more proliferative, promoting osteogenic differen-
tiation and maturation of MSCs through the enriched protein Galectin-3 being decreased
in plasma exosomes of aged individuals [155]. During aging, senescent cells are negatively
impacted in their exosome composition of mi-RNAs and proteins, including transforming
growth factors (TGF-β), growth differentiation factor-11 (GDF-11), interleukin-6 (IL-6),
toll-like receptor 2 (TLR-2), TLR-4, tumor necrosis factor-α (TNF-α), insulin-like growth
factor (IGF), hepatocytes growth factor (HGF), and IL-1 [53]. Some miRs mi-RNAs are
upregulated or downregulated in senescent cells and are identified as targeting specific
genes and pathways of senescence, such as p53-p21 and p-16p-RB [147,156–159].

Nevertheless, inflammatory cytokine secretion and release, including TNF-α, IL-6,
and IL-1β, induced the secretion of larger and irregular-shaped exosomes from stem cells.
Therefore, these signaling pathways are involved in the modulation of different gene ex-
pression and signaling molecules involved in the cell cycle arrest, including MAPK, VEGF,
Wnt, NF-kB, JNK, CD4/6, SIRT1, Cyclin D1, E2F, PI3K-AKT, and IL-6 [53,68,147,148,158–161].
These interaction mechanisms might explain the changes induced by inflammatory cy-
tokines in biological aging, also called inflamm-aging [162]. Actually, MSCs implication in
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aging process remains indisputable; among their role in secreting the rejuvenating factor
GDF-11 within exosomes, these cells might change the polarization of macrophages from
M1 to M2 profile in response to exosome derived anti-inflammatory cytokines under stress
conditions, thus improving tissue regenerative capacity [158,163,164]. Moreover, stimula-
tion of MSCs by interferon-gamma (IFN-γ) and TNF-α increased exosomes secretion and
inhibited CD4+ T-cell proliferation, therefore, inducing an anti-inflammatory effect largely
accepted as the main actor in tissue regeneration and aging, especially in the skin [40,53].

6. The Importance of mi-RNA in Aging Function

Different aging pathways involving mi-RNAs have been described to influence lifes-
pan [27,36]. Otherwise, the rate of aging and lifespan is regulated by several signaling path-
ways controlling metabolism, nutrient sensing, endocrine signaling, and stress resistance.
The mi-RNA discovery enhanced a lot of understanding in intracellular communication,
making a new area of research as a biological marker in human serum and other biological
fluids such as saliva, plasma, and urine. Established in 2008 as a biomarker for cancer, they
were since mentioned for numerous diseases [144]. Different mi-RNAs can take part in
multifunctional mechanisms but using a similar pathway. Inversely, the same mi-RNA can
be the key modification of numerous biological functions and display a specific role in sev-
eral recipient cell networks [28]. Understanding the multiple interactions between mi-RNA
secretion and release, tissue-specific function, and signaling mechanisms interconnection
remains challenging and needs further investigation.

In the aging context, mi-RNAs represent adaptative mechanisms to maintain organis-
mal homeostasis in response to different alterations. They are recognized to modify the
translation of mRNAs in target cell unbalancing, thus cell development between senescence
and tumorigenesis [165]. Moreover, mi-RNAs and exosome-derived mi-RNAs circulate
freely in the body and targeted neighboring cells, different adjacent tissues, or distant
organs. Several mi-RNAs have been reported in age-related diseases like cardiovascular
and neurodegenerative diseases and cancer, but their involvement in the aging process
still needs to be elucidated. Different profiled circulating mi-RNAs in serum and long-
versus short-lived individual studies have identified differently expressed age-dependent
mi-RNAs [31,38,166]. Mi-RNA-92a, mi-RNA-222, mi-RNA-375 were found upregulated
while mi-RNA-29b, mi-RNA-106b, and mi-RNA-130b were downregulated. Other mi-RNA
levels are significantly associated to longer lifespan individuals and found upregulated
including mi-RNA-211-5p, mi-RNA-1225-3p, mi-RNA-5095, let-7a-5p, mi-RNA-30b-5p,
mi-RNA-126-3p, and mi-RNA-210 [32,35].

Table 1 summarizes some of the mi-RNAs and related molecular signaling involved
in aging. Mi-RNA-29 was decreased in human serum in long-lived individuals [38]. In
the human brain, an extensive alteration of gene expression occurs during aging, and
principally mi-RNA-29 was upregulated to regulate intracellular iron homeostasis to limit
excessive iron exposure in neurons [167,168]. Therefore, the loss of mi-RNA accelerated the
expression of aging phenotypes in both global gene expression and histological levels in
short-lived turquoise killifish brains [169]. In another report, mi-RNA-29 was established
as the first mammalian mi-RNA that is directly implicated in the lifetime tradeoff between
lifespan and reproduction in mutant mice [168]. Interestingly, mi-RNA-29 was upregulated
in aged rodent muscle after individual analysis and led to the senescence of muscle by
activation of Wnt-3 and the suppression of the expression of signaling proteins (p85α,
IGF-1, and B-myb), thus contributing to muscle atrophy [149]. Moreover, a protective role
was described in cardiac aging through the TGF-β/Smad pathway. The activation of TGF-β
induces the accumulation of mi-RNA-29a and mi-RNA-29c, directly suppressing Suv4-20h
histone methyltransferases and reducing H4K20me3 compromising thus DNA damage
repair and genome maintenance. In this regard, this endogenous mechanism aimed to
accentuate the age-dependent cardiac damage like hypertrophy and fibrosis [159,169].
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Table 1. Mi-RNA interaction in organs in the aging process. IRP: Iron responsive proteins; Wnt-3a: Wingless-type MMTV
integration site family member-3A; p85α: Phosphatidylinositol 3-kinase regulatory subunit alpha; IGF-1: insulin-like growth
factor I; B-myb: Myb-related protein B; DNMT: DNA methyltransferase; TGF-β1: transforming growth factor beta 1; Cx43:
Connexin 43; RANKL: receptor activator of NFκB ligand; HMGB1: high-mobility group box-1; PTEN: phosphatase and
tensin homolog; Akt: protein kinase B; HaCaT: spontaneously immortalized human skin keratinocytes; TIMP-3: tissue
inhibitor of metalloproteinase 3; TIAM-1: T-lymphoma invasion and metastasis-inducing protein 1; Rho-B: RAS homolog
family member B; MeCP2: methyl CpG binding protein 2; XIAP: X-linked inhibitor of apoptosis; ECM: extracellular
matrix; COL16A-1: Collagen XVI; DEJ: dermal–epidermal junction; TNF-α: tumor necrosis factor-α; SIRT: Sirtuins; mTOR:
mechanistic target of rapamycin; BMP2: bone morphogenetic proteins 2; Hmox1: heme oxygenase-1; P38-MAPK: p38
mitogen-activated protein kinases; c-Jun: N-terminal protein kinase; IP3: Inositol 1,4,5-trisphosphate; NPC: neural precursor
cells proliferation; NA: not available; hUCB-MSC: human umbilical cord blood-derived mesenchymal stem cells; Foxg-1:
forkhead box G1.

mi-RNA Organ Target Interactions Reference

mi-RNA-29

Brain IRP

- mi-RNA-29 upregulation appears to be conserved
as an aging signature and a common mechanism
across different tissues. Neuronal-specific
mi-RNA-29 loss of function induces accelerated
expression of aging phenotypes.

- Directly implicated between lifespan
and reproduction.

[149,168]

Muscle Wnt-3a

- Aging-induced muscle senescence via Wnt-3a
leading to the suppression of several signaling
proteins (p85α, IGF-1, and B-myb) that act
coordinately to impair the proliferation and
contributing to muscle atrophy.

[159]

Heart DNMT
TGF-β1

- mi-RNA-29 down-modulation is responsible for the
accumulation of collagens and 5′methyl-cytosine. [169,170]

mi-RNA-21

Bone
- RANKL
- HMGB1

- The reduced level of Cx43 in osteocytes in old mice
leads to apoptosis.

- The release of RANKL and HMGB1 induce
osteoclast resorption.

- Gap junction communications by Cx43 channels
maintain osteocyte viability via downstream
regulation of mi-RNA-21, leading to the subsequent
inhibition of PTEN activity and preservation of the
Akt survival pathway.

[171]

Skin TGF-β1

- Promotes keratinocyte migration and boosts
re-epithelialization during skin wound healing in
HaCaT cells.

- mi-RNA-21 might promote keratinocyte migration
by inhibiting the expression of TIMP-3 and TIAM-1.

[172]

Endothelial
cells Rho-B

- mi-RNA-21 acts as a negative modulator of
angiogenesis. Its over-expression reduced
endothelial cell proliferation, migration and to form
tubulogenesis through the repression of
RhoB expression.

[173]
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Table 1. Cont.

mi-RNA Organ Target Interactions Reference

mi-RNA-181

Brain MeCP2
XIAP

- Overexpression of mi-RNA-181c in cultured
astrocytes results in increased cell death when
exposed to lipopolysaccharide as a model
of inflammation.

- mi-RNA-181 expression is regulated by
inflammatory stimuli and modifies the proliferation
of astrocytes and their sensitivity to death in an
experimental model of neuroinflammation.

[174]

Skin COL16A-1

- Collagen XVI is a minor component of the skin
ECM and is expressed in the DEJ zone of the
papillary dermis connecting ECM proteins to cells,
ensuring mechanical anchorage of the cell and
outside-inside signal transduction.

- mi-RNA-181a is increased during the human
dermal fibroblast’s senescence, and its
overexpression is sufficient to induce cellular
senescence in early-passage cells.

[175]

mi-RNA-34

Heart TNF-α

- mi-RNA-34a can inhibit autophagy after
ischemia-reperfusion by targeting TNF-α and
reduce myocardial injury (playing a protective role
by reducing cell death, functional decline).

[176]

Bone Sirt1

- mi-RNA-34a expression is significantly increased
with age in mice.

- Induce senescence and decrease Sirt1 expression of
primary bone marrow cells.

[147]

Brain SIRT1/mTOR
- Upregulated in aged mice, its downregulation has a

protective role against aging-associated
cognitive impairment.

[148]

mi-RNA-204 &
mi-RNA-211 Heart BMP2

- Attenuate vascular calcification and aging in a
paracrine manner through an exosomal
mi-RNA-204/ mi-RNA-211.

[177]

mi-RNA-183-5p Bone Hmox1

- Transfection of bone marrow stromal cells with
mi-RNA-183-5p mimic reduces cell proliferation
and osteogenic differentiation, increases senescence,
and decreases protein levels of Hmox1.

[178]

mi-RNA-570 Epithelial cells p38 MAP
kinase-c-Jun

- Inhibiting mi-RNA-570-3p rejuvenates cells via
restoration of sirtuin-1, reducing many of the
abnormalities associated with cellular senescence.

[158]

mi-RNA-135-a-5p Brain IP3 pathway
- mi-RNA-135a inhibition stimulates NPC leading to

increased neurogenesis, but not astrogliogenesis,
and re-activates NPC proliferation in aged mice.

[179]

mi-RNA-127
-3p Skin NA

- mi-RNA-127-3p is an epigenetic activator
regulating the transition from repair to remodeling
during skin wound healing and may also induce
age-related defects, pathological scarring, and
fibrosis, all linked to myofibroblast senescence.

[180]
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Table 1. Cont.

mi-RNA Organ Target Interactions Reference

mi-RNA-124

Skin NA
- mi-RNA-124 increases skin senescence and

decrease during tumorigenesis. [181]

Liver Foxg-1
- hUCB-MSC derived exosomal mi-RNA-124 could

promote rat liver regeneration partial hepatectomy
via downregulation of Foxg-1.

[106]

Bone aging naturally results in the apoptosis of osteocytes through Cx43 decrease.
Indeed, Cx43 maintains osteocytes viability through the gap junction communication via
mi-RNA-21 downstream regulation leading to PTEN activity inhibition and preserving
the Akt pathway. In old osteocytes, reduced Cx43 levels resulted in apoptosis and lib-
eration of RANKL and HMGB1 and finally resorption of osteoclasts signal associated
bone surfaces [171]. Furthermore, in wound healing, mi-RNA-21 overexpression pro-
moted keratinocyte migration and boosted re-epithelialization through TGF-β, while in
endothelial cells, angiogenesis was inhibited via RhoB repression [172,173]. Induction of
epithelial-mesenchymal transition was also attributed to this mi-RNA [182].

Nevertheless, mi-RNA-181 plays an identical role in skin and brain, inducing cell death
and senescence through different pathways, including SIRT [174,175]. The SIRT pathways
have a great ability to induce longevity and decrease the appearance of age-related diseases,
especially in skeletal development and homeostasis [147,182]. This mi-RNA is found to be
down-regulated in elderly humans and is mostly found associated with the inflammatory
pathways associated with age-related diseases [183,184].

Upregulation of exosomal mi-RNA-34 was reported in aged mice and induce senes-
cence phenotype and decrease of SIRT expression in primary bone marrow cells. Similarly,
cognitive impairment and brain aging mediated through SIRT1/mTOR signaling pathways
was also demonstrated [148]. Interestingly, in myocardial injury, which is an age-related
disease, mi-RNA-34a plays a protective role by reducing cell death and functional decline
and inhibiting autophagy after ischemia-reperfusion by targeting TNF-α [176]. In humans,
serum mi-RNAs profiling has demonstrated that mi-RNA-34 promotes lifespan prolonga-
tion [36]. These findings suggested that microenvironment and epigenetic factors are of
great interest in defining the functional effect of mi-RNA.

Thenceforward, multiple studies have described different mi-RNAs playing a protec-
tive role in vascular calcification. Mi-RNA-204/mi-RNA-211 attenuated vascular calcifi-
cation and induced aging in a paracrine way through BMP2 [177]. On the contrary, bone
marrow stromal cells expressing mi-RNA-183-5p showed a decreased ability of Hmox1 to
protect from oxidative stress and excessive inflammatory reactions resulting in senescence
and a reduced osteogenic differentiation [185].

In epithelial cells, inhibiting miR-570-3p associated with oxidative stress by p38 MAP
kinase-c-Jun restores the rejuvenating effect of SIRT, and therefore reduces the abnormalities
related to cellular senescence [158]. Mi-RNA-135a-5ip inhibition was described to stimulate
neural cell proliferation [179], suggesting that both mi-RNA-570-3p and mi-RNA-135a-5p
might play a key role in aging regulation and considered as aging markers.

In the skin, both mi-RNA-127-3p and mi-RNA-124 were reported to induce dermo-
fibroblast senescence by remodeling the extracellular matrix leading to age-related de-
fects [106,180]. However, mi-RNA-124 promotes regeneration in rat liver after partial
hepatectomy [183], indicating once again a tissue-dependent functionality.

7. Discussion

The aging process affects the whole body, including organs and biological systems,
with a decrease in their reparative and regenerative potential and distinguishable and/or
visible changes. Albeit different processes have already provided evidence in regulat-
ing the physio pathological aspect of aging, exosomes and mi-RNAs have progressively
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been associated with these age-associated diseases and also to lifespan expectancy and
cell senescence [27,32,37,45,51,117,186,187]. In aged cells, DNA damages would lead ei-
ther to apoptosis or senescence, the first one would result in complete cell removal, and
surprisingly, increasing apoptosis fastens the aging process [188]. Senescence is rather char-
acterized by an irreversible growth arrest and a combination of changes in cell morphology,
function, and behavior [8]. According to Kowald et al., three theoretical scenarios related to
senescent cell accumulation were considered: (i) the immune system declines with time due
to the aging process, (ii) the immune system cannot recognize all senescent cells, and (iii) the
SASP converts healthy cells into senescent cells [51,188]. A recent finding has demonstrated
that avoiding SASP in long-term culture expansion resulted in less senescence-associated
exosomes, thus being able to impact genetic information and immunoregulatory potential
of the micro-environment [2]. Therefore, targeting senescence-associated exosomes would
be relevant for clinical application.

The introduction of exosomes as biologically active carriers and as specific biomarkers
for life expectancy and age-associated diseases is likely due to the protection of their cargo
from degradation and the immune system [1]. The use of the ESCRT and non-ESCRT
pathways to enrich this cargo is becoming a step forward for personalized medicine,
especially as biologically active carriers to deliver specific biomolecules [189].

Intracellular communication requires exosome-based mi-RNAs production and exosome-
mediated uptake. Mi-RNAs use the RISC complex on their mRNA targets for translational
repression or degradation. There are currently 7068 identified mature human mi-RNA se-
quences, and each of them can target 3.5 million genes [36,190]. Among all the theories
describing aging and health deterioration, we point out homeostasis biology at genetic, molec-
ular, and organismal levels [189]. Despite the growing findings arguing the therapeutic benefit
of exosome and exosome-derived mi-RNA, their key mechanism involved in aging remains
to be elucidated. Indeed exosome enriched fractions are recognized as active pharmaceutical
components of MSC-based therapies with increased scalability of manufacturing [191]. Also,
the model of isolation have been developed lately [17] and several research findings have been
describing the different way to increase the release and loading protein into exosomes [61].

Actually, young and senescent cells differ in their exosomes’ secretion levels, but also
in their mi-RNAs secretion panel identified in biological fluids, which has a biological
significance in metabolism, glycolysis, renal function, immunocompetence, tumor evolu-
tion, and brain memory function [8]. Recent findings have identified a different mi-RNA
secretion profiling related to individual aging and the selected biological fluid [36,38,184].
The detection of mi-RNAs involved in longevity will provide important insights into the
molecular basis of aging, low expression of mi-RNA-34, mi-RNA-425-5p, mi-RNA-21-5p,
and mi-RNA-212-3p speculating that centenarians have survived diseases and cancer due
to their lifestyle but also to a low inflammation level [192].

Some reports have also indicated that mi-RNA changes depend on the tissue and
global mi-RNA across all cell types [36,193]. Most of these circulating mi-RNAs are report-
edly downregulated probably to restore the altered function, while others are upregulated
to delay or inhibit a target function, principally senescence. In addition, evidence sug-
gests up-regulated mi-RNAs targeting STAT3 and JAK/STAT pathways in senescent cells,
and their inhibition can alleviate age-related tissue dysfunction [194]. Nevertheless, the
identification of the mechanism pathway might be hampered by the increasing number
of the predicted targets outlined in the different mi-RNA databases. One can speculate
that tissue specificity is primordial in modulating (promoting or inhibiting) synthesis,
loading inside exosomes, and release of a mi-RNA or a panel of mi-RNAs whose combined
action is pivotal for the target function. Further studies of multiple mi-RNA and their
interaction in health, youth, and the elderly can make a real difference in our understanding
of the mechanism of aging and aging-related diseases. For example, exosomes isolated
from bone marrow stromal cells of young and aged C57BL/6 mice showed a similar size
distribution and concentration. Mi-RNAs were differently enriched, and the amount of
mi-RNA-183-5p was increased in aged cells [178]. Preclinical studies are actually develop-
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ing mi-RNA mimics and mi-RNA inhibitors using exosomes as therapeutic drug delivery
in vivo [195]. Interestingly, adipose tissue-derived exosomes from rats and pork have
shown that xenogeneic injection of exosomes between these two species induced tissue
repair and regeneration proving then their low immunogenicity [196].

Importantly, the results reported with exosomes highlight the potential of broad
overlapping observations suggesting the need for shrewdly studying design through the
identification of the parent cell, the active mi-RNA to be packaged in the exosome cargo and,
the interaction with the specific target. For instance, exosomes were used in pre-clinical and
clinical reports and induced anti-inflammatory responses as an indirect functionality or a
side-effect. On the other side, variations in the culture conditions of parent cells (somatic
cells, MSCs) and purification techniques lead to different inconsistencies in comparing the
pools of the reported pre-clinical results. Therefore, we have already stated the need to
standardize the operating procedures of MSCs. Similar approaches are required to prevent
any changes in exosome cargo composition and downstream functional characteristics.
Studies should be deeply investigated probably by using the considerable insights from the
growing clinical trials conducted with exosomes in the treatment of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) or the experienced MSC-based drug development.

Robust purification and characterization have been performed in designing release
criteria of exosomes. More than 200 pre-clinical studies have used MSC-derived exosomes,
mostly in cardiovascular, neurological, and kidney diseases [197]. Exosomes can be isolated
from several sources: cultured cells, cell culture conditioned media, tissues, and biological
fluids [1]. On one side, the purity of the exosome’s liberation depends on criteria such
as (i) the state of the cell (in stress, stimulated, cryopreserved cell); (ii) its generation rate
(exosome cargo and shape are affected in rapidly dividing cells); (iii) its nature (stem cells,
tissue cells, cancer cells, etc.). On the other side, the used protocol for purification plays
a crucial role in the exosome purity. For example, the gold standard for density-based
purification is density gradient ultracentrifugation. Based on the size, the size-exclusion
chromatography and tangential flow filtration are the most used. Based on exosome surface
and immune affinity, CD63 and CD9 are the most used for their characterization [1,198,199]
(Figure 2).

Figure 2. Steps for therapeutic exosome scale-up.

Recently, developed technologies like the three-dimensional nanostructured microflu-
idic chip, using arrays of micropillars, were used to capture exosomes with high efficiency
through a combination of a specific recognition molecule [18]. Therefore, it is crucial
to optimize the purification for high recovery and high reproducibility of exosomes for
further manipulation.

Otherwise, cargo enrichment of exosomes is the most critical step in their manip-
ulation, and numerous approaches have been mentioned. Exosome lipid membranes
can be temporarily disrupted by physical or chemical treatment, sonication, and freeze-
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thaw cycles [200–202]. The fact that exosomes are negatively charged, manipulating the
surface charge using magnetic and electric fields will lead to the encapsulation of the
molecules [203]. These approaches are non-specific and can negatively affect the integrity
of the membrane leading to a low exosome recovery.

In the same context, several studies used the ALIX protein from the ESCRT-dependent
pathway to enrich exosomes with mi-RNAs [204]. Another passive cargo loading method
consists simply of overexpressing our target in the media of parental cells until the up-
take [198]. However, enriching exosomes by using gene editing and targeting ALIX in
combination with other ESCRT seems to be more precise and specific.

Exosome release has not been fully evaluated. Although, different approaches were
carried out to stimulate their secretion, such as the use of SNARE proteins [62], Rab27,
Rab11, and Rab35 [73], ionophores like calcium signaling [73], and ARF6 [205]. However,
intracellular pathways of the parent cells could be affected, impacting all the processes of
exosome secretion and cargo enrichment.

Once these criteria are optimized and standardized, the final exosome should also
fulfill the GMP requirements for therapeutic use, providing that functional assays are
confluent successful. In aging-related diseases, the therapeutic properties of exosomes are
promising and have opened the way to free-cell regenerative medicine. Nevertheless, little
is reported on the underlying involvement of exosome-derived mi-RNA on the cellular
and molecular mechanisms of aging.

It is intriguing to say that one mi-RNA has different pathways, and one can ask how
this mi-RNA discerns which target and which pathway to activate; (i) is it depending on the
tissue or the organ; (ii) the expression or expression level of their mRNA target and their
niche; or (iii) all the interactions and mechanisms underlying the disease or the disorder.
The aged individuals in the global population are increasing, adding a huge weight to the
health care system. Comprehensive knowledge is still needed for more understandings of
the relationships between mi-RNAs in the aging process and the improvement of exosomes’
cargo enrichment and delivery as drug vehicles.
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kinase substrate (Hrs); programmed cell death 6-interacting protein (ALIX); signal trans-
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(ESCRT); Tetraspanins (Tspan); soluble N-ethylmaleimide-sensitive-fusion attachment
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pluripotent stem cells (iPSCs); growth differentiation factor-11 (GDF-11); Interleukin- (IL-);
toll-like receptor (TLR-); insulin-like growth factor (IGF); hepatocyte growth factor (HGF);
senescence-associated secretory phenotype (SASP); Rapamycin (TOR).
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