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Organ transplantation is the most effective treatment for end stage organ failure, but there
are not enough organs to meet burgeoning demand. One potential solution to this organ
shortage is xenotransplantation using pig tissues. Decades of progress in
xenotransplantation, accelerated by the development of rapid genome editing tools,
particularly the advent of CRISPR-Cas9 gene editing technologies, have enabled
remarkable advances in kidney and heart xenotransplantation in pig-to-nonhuman
primates. These breakthroughs in large animal preclinical models laid the foundation for
three recent pig-to-human transplants by three different groups: two kidney xenografts in
brain dead recipients deemed ineligible for transplant, and one heart xenograft in the first
clinical grade study of pig-to-human transplantation. However, despite tremendous
progress, recent data including the first clinical case suggest that gene-modification
alone will not overcome all xenogeneic immunologic barriers, and thus an active and
innovative immunologic strategy is required for successful xenotransplantation. This
review highlights xenogeneic immunologic barriers, advances in gene editing, and
tolerance-inducing strategies in pig-to-human xenotransplantation.
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INTRODUCTION

Almost seventy years after the first successful kidney transplant by
Joseph Murray in 1954 (1), transplantation has become standard of
care for end organ failure. Murray’s transplant was termed
homotransplantation, as it occurred between genetically identical
twins; success in allotransplantation, or transplant between
genet ical ly different humans, required advances in
immunosuppression that soon came with azathioprine and later
cyclosporine (2, 3). As a result of this success, one of the central
problems in the field of transplantation is that there are simply not
enough organs to meet demand. Xenotransplantation, or transplant
across species barriers, has long been proposed to solve this organ
shortage, but interspecies immunologic barriers proved difficult to
overcome (4–7).

Early xenotransplantation efforts utilized nonhuman
primates (NHPs) as donors and achieved some notable
successes. In 1963-1964, Keith Reemtsma at Tulane University
in Louisiana transplanted chimpanzee kidneys into six patients
with end stage renal failure (without long-term dialysis options),
utilizing immunosuppression of azathioprine, actinomycin C,
and steroids. While most recipients rejected organs within eight
weeks of transplant, one patient survived for nine months (8).
Due to ethical concerns about the use of primates in terminal
procedures as well as practical issues of organ availability, the
xenotransplantation community shifted from primates to pigs as
donors (9–11). Pigs are more widely available, but present
greater immunologic barriers: much of xenotransplantation
research for the last thirty years has been devoted to
understanding the immunologic obstacles in pig-to-primate
transplantation and to modifying both donor pigs as well as
recipient NHP immunologic responses.

In addition to immunologic barriers limiting organ survival in
pig-to-primate transplantation, concerns about the transmission
of zoonotic infections tempered early enthusiasm for
xenotransplantation. These concerns were heightened with the
1997 discovery of porcine endogenous retroviruses (PERVs) that
could infect human epithelial cells in vitro (12), and catalyzed
additional research in PERVs – some groups have used genome
editing to inactivate PERVs in pigs used for xenotransplantation
(13) – as well as the development of diagnostic tools to assess for
other pig-derived pathogens, including porcine cytomegalovirus
(PCMV) (14). While comprehensive discussion of zoonosis is
outside the scope of this review, pre-clinical and early clinical data
suggest that zoonotic infection from swine will likely be rare –
there has been no evidence for infections of humans or nonhuman
primates caused by pig xenotransplantation products (14).

Decades of progress in xenotransplantation, accelerated by the
development of rapid genome editing technology, particularly the
advent of CRISPR-Cas9 technologies (15, 16), have enabled
remarkable advances in pig-to-NHP transplantation: >6 months
survival in life-supporting pig-to-baboon kidney transplants (17,
18), >6 months survival of heterotopic and orthotopic pig-to-
baboon heart models (19–21), and, more recently >1 year survival
in life-supporting pig-to-macaque kidney transplants (22). These
breakthroughs in large animal preclinical models laid the
foundation for clinical experiments in the United States. Over the
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last six months, three institutions have transitioned from preclinical
studies using NHP recipients to preclinical studies (and one clinical
study) using human recipients. Each of these approaches was
different. New York University (NYU) and the University of
Alabama (UAB) implanted kidneys into brain dead patients
(deemed ineligible for organ donation) for a short period of time
(less than 74 hours). The NYU team used kidneys from pigs that
were genetically engineered to remove a-1,3-galactosyltransferase,
called Gal “knock out” (GalTKO) pigs, while the UAB team used
kidneys from pigs that were the product of more extensive gene
editing: four genes “knocked out” (including a-1,3-
galactosyltransferase, and pig growth hormone receptor), and
multiple human genes (including genes encoding complement
regulatory proteins and other proteins involved in normal human
anti-coagulation) added. The University of Maryland Medical
Center (UMMC) identified a patient with heart failure in the
absence of liver or kidney failure who was not a candidate for
implanted mechanical circulatory support or allotransplant and
obtained FDA approval for compassionate use of a xenograft. They
used the same genetically modified pigs as those used in the
UAB study.

These recent experiments confirmed encouraging results
from NHP studies and have led to a resurgence of enthusiasm
for xenotransplantation. However, the UMMC clinical case also
suggests that additional strategies will be required for long-term
success of clinical xenotransplantation. Gene-modification alone
cannot overcome all xenogeneic immunologic barriers, and an
active and innovative immunologic strategy will be required for
successful xenotransplantation. Considering these developments
and the imminent future of clinical xenotransplantation, this
article provides a brief overview of immunologic barriers in pig-
to-human xenotransplantation, highlights progress achieved
through gene editing technologies, and outlines a way forward
through tolerance-inducing strategies.

IMMUNOLOGICAL BARRIERS IN PIG-TO-
PRIMATE XENOTRANSPLANTATION

Transplanted organs across species barriers elicit more robust
immune responses than are seen in allotransplantation. The
innate immune system plays a more active role in rejection of
xenografts than it does in rejection of allografts for reasons that
we will detail, but both the innate and adaptive immune systems
participate in these responses.

A. Innate Immune Barriers to
Xenotransplantation
The key components of the innate immune system that are
involved in rejection of xenografts are natural antibodies,
complement systems, and macrophages/natural killer cells.

Natural antibodies (Nabs) directed against carbohydrate
antigens on pig cells presented one of the first and most
important obstacles to pig-to-primate xenotransplantation.
These preformed antibodies – categorized as innate immunity
because they are present without specific exposure to pig cells – led
to hyperacute rejection within hours of transplantation. Galili et al.
discovered and isolated one important subset of these antibodies
May 2022 | Volume 13 | Article 899657
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that is directed against a carbohydrate component (a-1,3-
galactose, or “a-gal”) of a cell surface glycoprotein produced by
an enzyme (a-1,3-galactosyltransferase) that is not functional in
humans or old-world primates (23). Discovery of anti-gal
antibodies in humans that recognize a-1,3-galactose residues on
pig cells precipitated a decades-long effort to produce pigs without
a-1,3-galactosyltransferase (24–27). Two additional targets of
Nabs, NeuGc, a glycoprotein produced by cytidine-
monophosphate-N-acetyl-neuraminic acid hydroxylase (CMAH)
which is inactive in humans (28), and SDa, a blood group antigen
produced by porcine b-1,4-N-acetyl-galactosaminyltransferase 2
(b4GALNT2), have also been identified (29). Together, antibodies
to these three carbohydrate antigens make up more than 95% of
preformed antibodies against pig cells (30, 31).

Incompatibilities between pig and primate complement
systems were also recognized to be a significant barrier to pig-
to-primate xenotransplantation. Complement proteins, activated
by Nab-binding (classical pathway) or spontaneous binding
(alternative pathway), have also been shown to lead to vascular
injury and rejection, as porcine complement regulatory proteins
do not effectively inhibit human complement activation (32).
Accordingly, pigs expressing human complement regulatory
proteins were some of the first transgenic pigs made for the
purpose of xenotransplantation (33).

Macrophages and natural killer cells, too, have been shown to
play important roles in rejection of pig-to-primate xenografts.
Both cell types are present in rejecting xenografts, and studies
suggest that these cells may generate potent anti-graft responses
independent of T-cell activity (34, 35). Macrophages participate
in rejection of grafts both indirectly, as mediators of
inflammation, and directly, phagocytosing cells. Phagocytosis
of xenogeneic cells has been the subject of particular study: signal
regulatory protein (SIRP)a, an inhibitory receptor on
macrophages that binds to CD47 on human cells to prevent
phagocytosis, does not respond to porcine CD47 (36). As will be
discussed later in this review, this discovery of inhibitory
signaling species incompatibilities between pigs and primates
has made human CD47 (hCD47) a candidate transgene for
further genetic modifications of pig used in xenotransplantation.

B. Adaptive Immune Barriers to
Xenotransplantation
As detailed above, the innate immune system presents formidable
species-specific barriers to xenotransplantation that are not seen in
human-to-human transplantation. In allotransplantation, the innate
immune system plays a minor role, but the adaptive immune
responses are primarily responsible for rejection of grafts. This
disconnect led many to hypothesize that the innate immune system
was the critical barrier to xenotransplantation and that adaptive
responses were less important.

It was initially believed that differences between pig and
primate MHC proteins would inhibit effective MHC-binding
and adaptive immune responses across species barriers. Early
studies in a pig-to-mouse transplant model seemed to confirm
this theory, suggesting that xenogeneic adaptive immune
responses were weaker than allogeneic immune responses (37);
Frontiers in Immunology | www.frontiersin.org 3
however, this was later found to be a function of decreased
costimulatory signaling between mice and pigs, and not related
to TCR-MHC binding (38). Indeed, subsequent studies have
shown that human T cells are directly activated by antigens
exposed by porcine SLA molecules, that they respond to xeno-
MHC antigens at least as well as they do to allo-MHC antigens
(39) in vitro, and that costimulatory interactions between
porcine MHC and human MHC molecules are not limited by
species incompatibilities as in a pig-to-mouse transplant models
(40) in vivo.

In addition to direct human TCR and pig SLA interactions,
human B and T cells are activated indirectly via presentation of pig
antigens on human antigen presenting cells (41). In this way, B cells
presenting pig antigens are induced by cognate T cells to produce
anti-non gal antibodies (42). These antibodies precipitate antibody-
mediated rejection, which, as in humans, is difficult to control with
immunosuppressive medications. Given the large proportion of pig
proteins that are slightly different from their functional equivalents
in humans, there are countless other possible xenoantigens that may
trigger adaptive induced antibody production. While the innate
immune system presents an early barrier to survival of pig-to-
human xenografts, overcoming adaptive immune responses – in
particular, induced antibody production – will be essential for long-
term survival of pig xenografts.
GENETIC ENGINEERING FOR PIG-TO-
PRIMATE TRANSPLANTATION

As discussed earlier, hyperacute rejection in early pig-to-primate
transplants – due, in large part, to pre-formed Nabs – limited
enthusiasm for the use of pigs as organ donors. Isolation and
identification of these Nabs and their dominant target, a-1,3-
galactose, led to a race to eliminate a-1,3-galactosyltransferase
(Gal) from pig genomes. Once these genetically modified
GalTKO pigs were available in 2003, the senior author of this
review performed the first life-supporting GalTKO pig-to-
baboon kidney transplant. Hyperacute rejection was
successfully avoided in this case, and baboon survival was
extended further – from 29 days with hCD55 grafts (43) to 83
days (44) – when combining these genetically modified kidneys
with tolerance strategies (discussed later). Since this initial
breakthrough, the scientific community has made remarkable
recent strides in our ability to modify the pig genome to create
organs suitable for transplant in humans.

A. Early Application of Gene Editing
Technologies in Xenotransplantation
Before GalTKO pigs were available, researchers used various
techniques to deplete preformed Nabs, including plasmapheresis,
immunoadsorption columns, and use of a xenograft to act as a
sponge (i.e. transplanting one kidney to absorb antibodies, and
then removing it and replacing it with a second kidney) (45).
These methods achieved some success, especially when used in
combination with the first transgenic pigs, which were created
using recombinant DNA plasmid embryo microinjection and
May 2022 | Volume 13 | Article 899657
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expressed human complement regulatory proteins CD59 (Fodor,
PNAS, 1994) and then CD55 (33, 46). However, Nabs returned
after initial depletion and prevented long-term graft survival.

In 2002 and 2003, two groups created the first GalTKO pigs
using somatic cell nuclear transfer technology, and provided a
major breakthrough in the field of pig-to-primate
transplantation (25–27, 47). Subsequent preclinical studies
demonstrated that transplantation of heart or kidney
xenografts using GalTKO pigs were significantly less likely to
undergo hyperacute rejection (44, 48). Instead, these grafts –
with the exception of those that were co-transplanted with
thymus tissue – were rejected after weeks to months, and
rejection was correlated with elicited anti-non gal antibodies.

B. CRISPR-Cas9 and Current Targets of
Gene Modification
Because xenografts using GalTKO pigs were still ultimately
rejected, researchers sought to eliminate newly revealed targets
of anti-non-gal Nabs, and to further modify these knockout
animals with additional human transgenes. This process was
slow, and multiply modified pigs proved difficult to produce.
However, discovery of CRISPR-Cas9 facilitated rapid genome
manipulation and led to creation of animals – as were used by
UMMC and UAB – with ten genetic modifications (16).

The first category genetic manipulation involves removal of
genes to eliminate targets of Nabs. In addition to a-1,3-galactose
(carbohydrate produced by a-1,3-galactosyltransferase), two other
Nab targets were discovered, including Neu5Gc (produced by
cytidine-monophosphate- N-acetyl-neuraminic acid hydroxylase,
or CMAH, inactivated in humans), and SDa (produced by beta‐
1,4‐N‐acetyl‐galactosaminyltransferase 2, or b4GALNT2) (30, 31,
49, 50). Triple knockout pigs (created without Gal, CMAH, and
b4GALNT2) demonstrate markedly reduced Nab-binding in vitro
and may confer a survival advantage when combined with other
transgenes in pig-to-cynomolgus macaques transplant model (51).
It is worth noting that the true impact of some genetic modifications
may be difficult to evaluate in a NHP model, as in the case of
CMAH knockout. Old world primates have a functional CMAH
gene and so do not have Nabs that bind to anti-Neu5Gc;
paradoxically, inactivation of CMAH gene increased NHP
antibody binding when compared to GalTKO alone, which
suggests that inactivation of CMAH may reveal new epitopes and
present new targets for Nab-binding (52).

The second major category of genetic modification involves
insertion of human transgenes to correct for dysregulation in
complement, coagulation, and inflammatory pathways due to
species incompatibilities. As mentioned above, the first
genetically modified pigs created for xenotransplantation
included human complement regulatory proteins CD55 (33,
46) and later iterations included CD46 (53). Coagulation
regulatory proteins including human thrombomodulin
(hTBM) and endothelial protein receptor C (EPCR) were also
early targets of genetic modification (54). More recent targets
include anti-inflammatory proteins like heme-oxygenase (HO-1)
(55, 56) and anti-phagocytic proteins, including human
macrophage inhibitory ligand CD47 (57). With the advent of
Frontiers in Immunology | www.frontiersin.org 4
CRISPR-Cas9 gene editing technologies, it is now possible to
combine these genetic manipulations and create multiply
modified animals.

C. Limits of Gene Modification for
Xenotransplantation
This extraordinary progress has led some to speculate that
xenotransplantation will ultimately be accomplished through
ever increasing genetic modification. This may be part of the
answer, but there are three key issues with this approach. First,
the xenotransplant community remains divided over exactly
which genetic modifications are necessary. While some
modifications, including GalTKO, are well-studied, others are
supported only by mouse models or by a small number of cases
in NHP models. Cost is a major obstacle to definitive research
here, as genetically modified animals are expensive to produce,
and transplants in NHPs are expensive to conduct. However,
these modifications may have unintended consequences (e.g.
creation of neoepitopes, seen in transplant of CMAH KO pigs to
old world monkeys) (58), and it is important that each individual
modification is subject to rigorous scrutiny.

Second, while genes may be reliably incorporated within the
genome using new gene editing technologies, uneven gene
expression in transgenic animals remains an issue. Of particular
concern is tissue-specific gene expression. For example, transgenes
that are only expressed in the liver will not be effective in kidney
xenotransplantation. On a more granular level, studies have shown
that human CD47 expression in pig endothelial cells and podocytes
prevented phagocytosis by correcting CD47-SIRPa species
incompatibilities and enabling normal SIRPa signal transduction.
Indeed, hCD47 expression on podocytes in hCD47/GalTKO pig-to-
baboon kidney transplants was shown to inhibit the development of
proteinuria (59).. However, our data also demonstrated that high
hCD47 expression in renal tubular cells may lead to destructive
inflammatory responses via the hCD47-TSP-1 pathway (59). More
research is needed to further refine and reliably predict gene
expression in multiply modified pigs.

Third, while genetic modifications may help protect pig
xenografts from innate responses, genetic engineering alone is not
sufficient to prevent rejection long-term, given the overwhelming
number of possible xenoantigens that could trigger adaptive
responses and antibody-mediated rejection. Accordingly,
additional strategies such as targeted immunosuppression or, as
will be discussed in the following section, tolerance induction of B
and T cells, will be required for long-term survival or xenografts.
STRATEGIES TO PROMOTE TOLERANCE
IN PIG-TO-HUMAN TRANSPLANTATION

Tolerance-inducing approaches have achieved donor-specific
tolerance of renal grafts in allotransplantation and have been
under investigation for use in xenotransplantation for over
twenty-five years. One of the first hurdles in applying this
strategy in pig-to-human transplantation was theoretical: MHC
interactions and costimulatory signaling are essential for the
May 2022 | Volume 13 | Article 899657
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development of tolerance, and there was concern that these
interactions would be limited by species incompatibilities (37).
However, subsequent studies demonstrated effective interspecies
adaptive immune interactions and dispelled initial skepticism
about the ability of human and pig T cells to communicate
effectively (39, 60). Eventually, tolerance induction may allow for
reduction or cessation of immunosuppression; in the near-term,
these tolerance strategies may serve as a critical adjunct to
immunosuppression to overcome xenogeneic barriers. The
specific strategies addressed by this review include 1) thymic
transplantation and 2) mixed hematopoietic cell chimerism.

A. Vascularized Thymic Transplantation
Transplantation of donor thymus has proven to be a potent
strategy for tolerance induction. While this method is less
studied in clinical allotransplantation than mixed hematopoietic
cell chimerism, thymic transplantation has emerged as most
effective tolerance strategy for xenotransplantation currently
under investigation.

Early studies from Sykes et al. demonstrated that transplantation
of porcine thymic tissue in thymectomized mice resulted in
production of mature mouse T cells that were tolerant of porcine
skin grafts via intrathymic deletion of donor reactive T cells (61, 62).
These studies helped to resolve concerns about the efficacy of MHC
interactions across xenogeneic barriers and paved the way for
subsequent large animal studies. However, non-vascularized pig
thymic grafts did not survive long enough to engraft or to promote
tolerance in early large animal studies – grafts were rejected and
recipient pigs found to have anti-donor elicited antibodies even
across allogeneic barriers in a pig-to-pig model (63).

To prevent rejection of these ischemic thymic grafts, the senior
author of this review developed two methods to transplant
vascularized thymic grafts: (1) composite thymus+kidney
(“thymokidney”) transplant (Figures 1A, B) (64); and (2)
vascularized thymic lobe transplant (Figure 1C) (65) in the late
1990s and early 2000s. These vascularized thymic grafts proved able
to participate immediately in the induction of tolerance and
supported thymopoiesis across allogeneic swine kidney and heart
transplant models (66–70). While these gains in pig-to-primate
transplantation were modest in the era before GalTKO pigs, likely
due to robust Nab binding, the results were striking when using
organs from the first GalTKO pigs: thymus co-transplantation with
GalTKO kidneys prolonged survival of recipient baboons from 29
days (43) to 83 days with donor-specific unresponsiveness (44).
While this strategy successfully prevented sensitization of recipient
baboons to the xenograft, all baboon recipients suffered serious
complication of nephrotic proteinuria. Despite relatively preserved
renal function and renal histology showing only minimal absence of
anti-pig antibody (Ab) deposits by immunofluorescence,
proteinuria was observed as early as post-operative day (POD) 2
(71). Over the past 5 years, we have developed strategies to prevent
proteinuria, combining novel therapeutic agents (including CTLA4-
Ig) with additional genetic engineering (hCD47) (18, 71, 72). With
these new regimens, we achieved long-term survival of >6 months
in multiple recipients of vascularized thymus plus kidneys (18, 59).
While hCD47may be helpful, it is worth noting that we were able to
avoid early development of proteinuria and achieve 193 days of
Frontiers in Immunology | www.frontiersin.org 5
rejection free survival using kidney+thymus from GalTKO pig
without further genetic modification (18). Given uncertainty
about which genetic modifications are necessary and the
unintended consequences of additional modifications, “single-
gene” kidneys (GalTKO alone) – combined with our vascularized
thymic graft to induce tolerance – may represent the best path
forward in recipients with low levels of anti-pig non Gal preformed
NAb. The NYU group elected to use thymokidneys in their pig-to-
human kidney transplants in brain dead patients, September-
November, 2021 (NYTimes, Oct 21st, 2021).

Both types of vascularized thymic grafts appear to be effective
at inducing tolerance of co-transplanted donor kidneys across
xenogeneic barriers (18, 44, 59), but there are advantages and
disadvantages to each method. Thymokidneys (64) may be more
feasible to create and thus more broadly applicable for kidney
xenotransplantation; vascularized thymic lobe (VTL) (65)
harvest is technically challenging and prone to ischemia due to
convoluted blood supply. However, in contrast to the
thymokidney, VTL may theoretically be used to induce
tolerance of any other organ graft (70). Additional studies will
compare these methods of thymic graft creation, will combine
thymic transplantation with mixed chimerism tolerance
strategies, and will explore the role of thymus co-
transplantation in tolerance induction of other solid organs.

B. Mixed Hematopoietic Cell Chimerism
Mixed bone marrow chimerism – in which a recipient produces
both donor and recipient (self) hematopoietic cells through
hematopoietic stem cell transplantation (HSCTx) after non-
myeloablative conditioning (73–75) – has been shown to
induce tolerance across HLA barriers in multiple clinical
studies (76–78). Early studies in pig-to-mouse transplant
models suggested that mixed chimerism was possible with
non-myeloablative conditioning regimens (79), and that this
strategy could induce tolerance across xenogeneic barriers in a
rodent model. Critically, mixed chimerism in mice was found to
induce tolerance to the a-gal epitope, demonstrating tolerance of
B cells with disappearance of natural antibodies (80). Thus, not
only did mixed chimerism prevent hyperacute rejection in
rodent models, but it also prevented T-cell mediated rejection
and antibody-mediated rejection (81) in a pig-to-mouse model.

However, mixed chimerism has proven more difficult to achieve
in preclinical pig-to-primate transplant models. Attempts of
GalTKO pig HSCTx in baboons resulted in loss of bone marrow
cells within 24 to 48 hours (82, 83). This rapid elimination of
xenogeneic cells is likely due to innate immune mechanisms:
primate macrophages have been shown to phagocytose porcine
cells independent of antibody or complement binding (84) and may
be related to species incompatibilities between porcine macrophage
inhibitory ligand CD47 and human macrophage SIRPa which
result in failure of anti-phagocytosis signaling (85). As mentioned
earlier, one strategy to prevent this problem of early phagocytosis is
to create transgenic pigs expressing hCD47. In a pig-to-baboon skin
transplant model, hematopoietic cells from transgenic pigs
expressing hCD47 lasted longer than cells from pigs with porcine
CD47 after HSCTx; accordingly, skin grafts from hCD47 pigs
demonstrated improved survival when compared to grafts from
May 2022 | Volume 13 | Article 899657
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CD47 wild type pigs (86). In this way, genetic engineering may be
used to facilitate tolerance strategies by allowing for the
establishment of mixed chimerism.

Another strategy to avoid rapid consumption of porcine
hematopoietic stem cells after HSCTx and promote bone
marrow engraftment is to inject porcine bone marrow cells
directly into the bone. The senior author of this review
developed the intra-bone bone marrow (IBBM) transplant
procedure in a pig-to-baboon model. This technique prolonged
peripheral macrochimerism for 3 weeks and enabled
engraftment of porcine hematopoietic progenitors in four of
six baboon recipients of GalTKO pigs (87). Moreover, enhanced
mixed chimerism after IBBM Tx resulted in transient anti-pig
unresponsiveness that translated to prolonged survival of
GalTKO kidneys after subsequent kidney transplant. Notably,
by combining these methods, using hCD47-GalTKO pigs and
IBBM Tx, we have achieved >60 days macrochimerism
associated with reduction in anti-pig IgG (88). Despite initial
setbacks, mixed chimerism remains a promising approach for
induction of tolerance across xenogeneic barriers.

Although vascularized thymic transplant can induce T cell
tolerance and inhibit T cell-mediated B cell and NK cell responses
across xenogeneic barriers, B cells and NK cells are not “tolerized”
Frontiers in Immunology | www.frontiersin.org 6
by thymic transplantation in a pig-to-baboon model. Additional
gene knockouts may limit rejection of pig organs by non-Gal Nabs,
but run the risk of exposing new, currently unidentified, antigenic
targets and/or compromising the health of the pig. Accordingly, we
are currently working on combining vascularized thymus and
IBBM Tx strategies to establish robust long-term T and B cell
tolerance in xenotransplantation.
CONCLUSION

Once a researcher’s pipe dream, xenotransplantation is now
becoming a clinical reality. After many years of progress,
catalyzed by advances in gene editing technologies, three groups
have confirmed decades of NHP research and established the short-
term viability of pig-to-human transplantation. All three pig-to-
human experiments demonstrated that hyperacute rejection (NYU,
UAB, and UMMC) can be avoided through use of genetically
modified pigs and immunosuppression. UMMC’s pig-to-human
heart transplant represents a landmark accomplishment and the
start of a new era in clinical xenotransplantation. Despite the success
of this critical initial step, the UMMC patient’s clinical course
should also serve to galvanize the application of innovative
FIGURE 1 | Vascularized donor thymic graft transplantation. (A) Porcine composite “thymokidney” at 5 weeks after thymic tissue implantation under own renal
capsule, and (B) histology of the thymokidney (HE). (C) Co-transplantation of porcine vascularized thymic lobe and kidney graft in a baboon. White arrows indicate
thymic grafts.
May 2022 | Volume 13 | Article 899657

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Eisenson et al. Progress in Xenotransplantation
strategies, such as tolerance induction, to ensure long-term survival
of pig xenografts.
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