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Glioblastoma (GBM) is an aggressive and fatal malignancy that despite decades of trials
has limited therapeutic options. Antibody drug conjugates (ADCs) are composed of a
monoclonal antibody which specifically recognizes a cellular surface antigen linked to a
cytotoxic payload. ADCs have demonstrated superior efficacy and/or reduced toxicity in a
range of haematological and solid tumors resulting in nine ADCs receiving regulatory
approval. ADCs have also been explored in patients with brain tumours but with limited
success to date. While earlier generations ADCs in glioma patients have had limited
success and high toxicity, newer and improved ADCs characterised by low
immunogenicity and more effective payloads have shown promise in a range of tumour
types. These newer ADCs have also been tested in glioma patients, however, with mixed
results. Factors affecting the effectiveness of ADCs to target the CNS include the blood
brain barrier which acts as a physical and biochemical barrier, the pro-cancerogenic and
immunosuppressive tumor microenvironment and tumour characteristics like tumour
volume and antigen expression. In this paper we review the data regarding the ongoing
the development of ADCs in glioma patients as well as potential strategies to overcome
these barriers to maximise their therapeutic potential.

Keywords: antibody drug conjugates (ADC), glioma, glioblastoma, blood brain barrier, tumour microenvironment,
biomarkers, molecular imaging
INTRODUCTION

Glioblastoma (GBM) is an aggressive fatal disease characterised by complex molecular
heterogeneity and aggressive infiltrative growth. Despite s decades of trials testing novel agents,
the median survival remains unchanged at 14 - 17 months only (1–4). Multiple strategies have been
explored with limited success to improve the efficacy of chemotherapy in GBM, including novel
formulations, direct administration into the central nervous system (CNS) and targeted vascular
disruption; unfortunately, these have often resulted in higher toxicity rates without significantly
improving patient outcomes (5–7).
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Antibody drug conjugates (ADCs) are a new but proven class
of highly potent therapeutics, composed of a monoclonal
antibody which specifically recognizes a cellular surface antigen
linked to a cytotoxic payload (8). This results in a number of
advantages: reduced toxicity due to more targeted delivery of
cytotoxic therapy directly into the tumours; enhanced cell kill
from the ability of use more toxic drugs that cannot be safely
administered systemically; and the additive/synergistic benefit of
combined tumour kill from the antibody and the payload
respectively (9, 10). The ultimate efficacy of ADCs though
relies on the complex interplay between three vital
components: antibody, linker and payload. Early failures in the
development of ADCs were due in part to challenges associated
with these components, however recent advances have resulted
in notable successes, resulting in nine ADCs receiving regulatory
approval by the Food and Drug Administration in the USA and
four ADCs by the European Medicines Agency (8, 11).

ADCs have also been explored for patients with brain
tumours but with limited success to date. In particular, the
apparent failure of two recent high-profile ADCs has resulted
in a lessening of interest to this approach in glioma patients
currently (12, 13). In this article, we will review the development
of ADCs in glioma patients and summarise the data supporting
their on-going development. We will discuss potential strategies
Frontiers in Oncology | www.frontiersin.org 2
to maximise their therapeutic potential by increasing their
penetration through the blood-brain barrier (BBB), selection of
more biologically relevant targets in the brain and its
microenvironment, novel methods of drug targeting, newer
payloads and better patient selection.
EARLY ADCs IN GLIOMA THERAPY

The first generation of ADCs tested in glioma patients comprised
mainly immunotoxins and radioimmunotherapy (Table 1).
Immunotoxins are antibodies conjugated to naturally occurring
bacterial toxins, such as Pseudomonas aeruginosa exotoxin A and
diphtheria toxin. Radioimmunoconjugates utilise isotopes such
as iodine-125 or iodine-131 as payloads. These commonly
targeted the EGFR axis (either the receptor itself or its mutants
and ligands) due the relatively high prevalence of these targets in
gliomas and their likely role as an oncogenic pathway in glioma.
Targeting the EGFRvIII mutation was particularly attractive.
This is comprised of an in-frame deletion of exons 2-7 that
results in a truncated by constitutively active receptor (24).
Furthermore, the EGFRvIII mutation is relatively frequent (in
20-40% of GBM tumours) but shows a tumour restricted
expression pattern compared to wildtype EGFR (24). However,
TABLE 1 | Selected ADCs, immunotoxins and radioimmunoconjugates in high grade gliomas.

Drug Class Phase Date Toxicities Efficacy Comments

ADCs i
ABT-414
(14)

Anti-EGFR ADC with MMAF I 2015 Lymphopenia, ocular toxicity, brain oedema,
increased transaminases

Monotherapy: RR
8%, mOS N/A,
PFS-6 24%

Data in EGFR amplified. Phase
2 and 3 studies in progress

With TMZ: RR
17%, mOS N/A,
PFS-6 25%

AMG-595
(15)

Anti-EGFR ADC with DM1 I 2014 Thrombocytopenia, LFT abnormalities RR 8%; mOS N/
A; PFS-6 N/A

Immunotoxins
Cintredexin
Besudotoxin
(16)

IL13–PE38QQR III 2010 Pulmonary embolism (8% including one fatal) RR N/A; mOS
11.3 months;
PFS-6 N/A

NBI-3001
(17)

Circularized IL4–PE38KDEL I/II 2003 Neurological deficits (Weakness, aphasia,
confusion, coma), seizures, headaches, cerebral
oedema, nausea, meningitis)

RR N/A; mOS
5.8months*; PFS-
6 48%

TP-38 (IVAX)
(18)

TGFa + PE38 I 2008 Fatigue, neurological deterioration (seizures,
hemiparesis)

RR 13%; mOS 5
months*; PFS-6
N/A

Tf-CRM107
(19)

Transferrin-DT II 2003 Cerebral oedema, seizures RR 35%; mOS 9
months; PFS-6 N/
A

Phase 3 studies were aborted
or remain unreported (20)

Radioimmunoconjugates
125I-Mab
425 (21)

IV murine anti-EGFR (with RT-
TMZ)

II 2010 Occasional nausea, flushing, hypotension, skin
irritation. Only 4 pts had HAMA

RR N/A; mOS
20.4 months

A sequential cohort with RT
alone had mOS 10.2 months

131I-81C6
(22)

LR murine anti-tenascin (with
RT-chemo)

Pilot 2008 Seizures (including status epilepticus),
haematological, neurological, infective,
thrombotic

RR N/A; mOS
22.6 months

131I-BC2/
BC4 (23)

LR murine anti-tenascin (with
conventional surgery and post-
operative treatment)

I/II 1999 Headaches, HAMA reactions RR N/A; mOS 19
months

Data shown for GBM patients;
mOS was 25 months in small
volume disease
December 2021
ADC, Antibody drug conjugate; EGFR, Epidermal growth factor receptor; HAMA, human anti–mouse antibody; LFTs, liver function tests; mOS, median overall survival; mPFS, median
progression free survival; N/A; Not Available, RR, Response rate; RT, Radiotherapy; TMZ, temozolomide.
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other targets of these early ADCs included IL-13Ra2 receptor,
IL4 and transferrin. Unfortunately, these early ADCs were found
to be ineffective due to a number of problems including high
immunogenicity, unstable linkers, inefficient deliver due via
early convection delivery systems, biomarker limitations to
address tumour heterogeneity and toxicity (25–27).
NEWER ADCs IN NON-GLIOMA THERAPY

Subsequently, improved ADCs were generated which were
characterised by low immunogenicity (usually with chimeric,
humanised or fully human antibodies) and more effective
payloads (Table 2). The success of these newer generation
ADCs has been shown in haematological as well as in triple
negative breast cancer (TNBC). These include brentuximab
vedotin, an anti-CD30, antibody conjugated with monomethyl
auristatin E (MMAE), an auristatin payload which disrupts
microtubules. This has been shown to improve patient
outcomes as consolidation after autologous stem cell transplant
in patients with Hodgkin’s lymphoma (37), and the subsequently
in combination therapy with chemotherapy in newly diagnosed
patients (38). It has also been shown to be effective in patients
with CD30-positive T-cell lymphoma (39, 40) and anaplastic
large cell lymphoma (41). Trastuzumab emtansine, which carries
also carries a microtubule targeting payload, DM1, has shown
efficacy in patients with HER2-positive breast cancer and is the
first ADC to be approved in solid tumors (42, 43). Other
examples of successful ADCs utilising DNA-damaging
payloads include inotuzumab ozogamicin with a caliceamicin
payload in CD-22 positive ALL (44) and gemtuzumab
ozogamicin with a caliceamicin payload in AML (45). Another
highly promising class of payloads are is those targeting
topoisomerase, such as Sacituzumab govitecan (SG) against
Frontiers in Oncology | www.frontiersin.org 3
Trop 2 and bearing the SN38 payload. SG has shown
significant activity in TNBC with improvements in PFS and
OS compared to chemotherapy alone (46). In addition, SG has
demonstrated activity in intracranial xenograft models and
demonstrated activity in patients with recurrent GBM in a
single centre pilot study (47).
NEWER ADCs IN GLIOMA THERAPY

In addition to their use in extra-cranial malignancies as described
above, these newer ADCs have also been tested in glioma
patients with mixed results. As before, targeting EGFR
remained highly attractive due to the high frequency of
abnormalities in this pathway in high grade gliomas.
Furthermore, several highly specific and novel antibodies
against EGFR and EGFRvIII had been developed which
promised more selective targeting. The monoclonal antibody
806 (mAb806) is a murine anti-EGFR antibody that selectively
targets a cryptic epitope of the EGFR which is only exposed
under certain conditions, including where wild-type EGFR is
highly over-expressed, where there are autocrine loops and/or
harbor there are specific mutations which expose the epitope e.g.
the EGFRvIII deletion variant. As these conditions are essential
tumour restricted, mAb806 and derivative constructs are also
tumour restricted with no normal tissue binding. This in this
way, there avoid the toxicity typically associated with other
systemic EGFR drugs inhibitors (48, 49). ABT-806, the
humanized form of mAb806, has shown to be well tolerated
and devoid of conventional anti-EGFR toxicities like rash and
diarrhoea. Furthermore, biodistribution studies of 111In-ABT-
806 showed no normal tissue uptake highlighting the tumor-
specific nature of mAb806 (49–52). Depatuxizumab mafodotin
(Depatux-M) is an EGFR targeting ADC comprising of mAb806
TABLE 2 | Common toxicities associated with antibody drug conjugates.

Payload type Mechanism of action Common toxicities

DM1 Inhibits tubulin polymerization and causes
destabilization of microtubule structures

Thrombocytopenia, fatigue, increased levels of transaminases, anemia, nausea, hemorrhage, abdominal
pain, pyrexia, musculoskeletal pain, vomiting, and dyspnea (28, 29)

DM4 Elevated transaminases; ocular toxicity (including decreased visual acuity, corneal deposits, keratitis);
generalized symptoms (including headache, confusion, fatigue), mucositis (30)

MMAE Infections, nausea, fatigue, diarrhea, peripheral sensory neuropathy, neutropenia, peripheral motor
neuropathy, rash, cough, vomiting, myalgia, pyrexia, abdominal pain, arthralgia, pruritus, constipation,
dyspnea, loss of weight, and upper respiratory tract infection (31)

MMAF Neutropenia, thrombocytopenia, ocular toxicity (including corneal deposits, keratopathy) (30)
Calicheamicin Binds to the DNA minor groove cleaving the

double-stranded DNA
Lymphopenia, skin toxicity, neutropenia, thrombocytopenia; pyrexia, chills, nausea, infection,
hemorrhage, fatigue, headache, increased transaminases and hyperbilirubinemia, vomiting, abdominal
pain, stomatitis, veno-occlusive disease/sinusoidal obstruction syndrome and diarrhea (32, 33)

Duocarmycin
derivative

Hypersensitivity, hyperpigmentation (34)

PBD Hypocellular marrow, epistaxis, fatigue, thrombocytopenia, transaminitis, oedema, hypoalbuminemia,
dyspnoea (35)

SN-38 Prevents DNA unwinding by inhibition of
DNA topoisomerase I resulting in irreversible
double strand breaks

Thyphilitis, neutropenia, nausea, vomiting (36)
DM1, Mertansine/emtansine; DM4, Ravtansine/soravtansine; MMAE, Monomethyl auristatin E; MMAF, Monomethyl auristatin F; PBD, Pyrrolobenzodiazepine; SN38,
Irinotecan metabolite.
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linked to the anti-microtubule toxin monomethyl auristatin F
(MMAF). Depatux-M has shown promising in-vivo activity in
tumor models overexpressing wild type EGFR, EGFR
amplification, or EGFRvIII mutation (53). Depatuxizumab
mafodotin was also found to improve anti-tumour efficacy
when combined with radiotherapy and temozolomide in
preclinical models (53). The combination was also
subsequently confirmed to be safe when tested in a Phase 1
study with newly diagnosed GBM with patients (54), and hence
proceed to Phase 3 testing in the INTELLANCE I trial.
Unfortunately, the addition of Depatux-M to standard chemo-
irradiation with TMZ in newly diagnosed EGFR amplified
glioblastoma patients was eventually discontinued for
futility (12).

In contrast to the negative results in newly diagnosed patients,
anti-EGFR ADCs targeting glioma with EGFR over-expression
or EGFRvIII showed clear signals of efficacy in patients with
relapsed glioma after chemo-radiation. Depatux-M was
evaluated in the randomised phase II INTELLANCE 2 study in
patients with EGFR amplified recurrent GBM (55, 56). In this
study, the combination of Depatux-M with temozolomide
(TMZ) demonstrated a strong trend towards substantial benefit
in overall survival compared to the chemotherapy arm (HR 0.71,
p=0.062) (57). The benefit of Depatux-M was highest in patients
relapsing more than 16 weeks after the start of the last TMZ
cycle. No evidence of efficacy in the monotherapy arm was
observed in the subgroup with the MGMT promoter
unmethylated tumors. These results are given added weight by
the results of a Phase I/II study with AMG 595, an ADC
comprising a fully human, anti-EGFRvIII monoclonal antibody
linked via a non-cleavable linker to the maytansinoid DM1.
AMG 595 has shown promising preclinical activity in assays
including orthotopic murine models (58). In a phase I/II study of
AMG 595 in patients with recurrent glioma expressing EGFRvIII
(NCT01475006), the most common adverse events were
thrombocytopenia (50%) and fatigue (25%); grade ≥ 3
treatment-related AEs occurred in 17 patients (53%). However,
it is important to note that two patients had partial responses; 15
(47%) had stable disease, including one patient who was on
treatment for 15 months (59). Unfortunately, development of
this drug has also been discontinued.
FUTURE DIRECTIONS FOR THE
DEVELOPMENT OF ADCs IN GLIOMA

The disappointing results of INTELLANCE 1 has rightly given
pause and reconsideration to the role of ADCs in patients with
gliomas. It has prompted reconsideration of reason why ADCs
may not be suitable for use in patients with gliomas, including
the relatively high toxicity when targeting the EGFR family with
certain payloads, and the concern that these drugs are unable to
penetrate the blood brain barrier to reach glioma tumour cells.
One key concern is whether the results of INTELLANCE 1
should be allowed to overshadow the results of INTELLANCE 2
and the AMG-595 study. Much data suggest that recurrent
Frontiers in Oncology | www.frontiersin.org 4
gliomas are different disease from newly diagnosed GBM with
changes in its genetic and molecular phenotype (60–66). While
the further development of Depatux-M has been terminated by
the company, the results of the INTELLANCE 2 study are
intriguing about the possible use of this class of ADCs based
on the mAb806 antibody particularly when compared to other
drugs tested in GBM, such as immunotherapy, which have been
universally disappointing in their lack of efficacy (Table 3).
Formal testing in a phase III would be reasonable but
understandably, improved ADCs with a better toxicity profile
would be selected if possible. Also, better patient selection is
clearly required to identify the subset of patients who clearly have
exceptional sensitivity of these ADCs as has been seen with in
trials with Depatux-M to date (unpublished data). In a
preclinical study, disruption of BBB through the over-
expression of vascular endothelial growth factor or avoiding
the BBB entirely by direct intra-tumoral injection resulted in
improved efficacy of Deptux-M (77). In addition, suppression of
EGFR or expression of an EGFR variant lacking the binding
epitope and upregulation of compensatory signaling pathways
associated with altered EGFR expression and known to function
in parallel or downstream from EGFR were identified as
potential mechanisms of resistance to Depatux-M.

Improved Drug Delivery Through BBB
One of the main reasons for the ineffectiveness of therapeutic
agents intended to target the CNS following peripheral
administration is the restrictive nature of the BBB. The BBB is
formed by endothelial cells, connected by tight junctions, which
continuously interact with surrounding cells like astrocytes,
pericytes, and perivascular macrophages, forming the so-called
neurovascular unit (78). Primary brain tumors, in particular
glioblastoma, cause disruption in the integrity of the BBB as
evidenced by the accumulation of gadolinium-based magnetic
resonance imaging (MRI) contrast agents within tumor regions.
However this disruption is heterogeneous and there is also a
clinically significant portion of the tumor with an intact BBB
which affects the distribution and efficacy of drugs exposed to
this region of the tumor (79). Disrupting the BBB more
completely would clearly be useful for treating gliomas with
ADCs, amongst other drugs. There has also been recent interest
in chemical-induced BBB disruption which has led to increased
CNS exposure of ADCs. For example, NEO110, which is a high
purity version of the natural monoterpene perillyl alcohol, has
been shown to increase the brain delivery of T-DM1 in a mouse
model harbouring intracranial HER2+ breast cancer, leading to a
significantly greater survival (80). The clinical translation of
BBB-disruptors such as NEO110 requires evaluation before
such an approach may be considered appropriate for
enhancing ADC penetration into the human brain.

In addition to being a physical barrier, the BBB also acts as a
biochemical barrier through the function of efflux transporters,
such as P-glycoprotein (P-gp) (81) and breast cancer resistance
protein (BCRP) (82). While these efflux transporters protect the
brain from potentially harmful xenobiotics, they recognise many
therapeutics, including a large number of anti-cancer drugs,
therefore, limiting their access to the CNS (83). In addition,
December 2021 | Volume 11 | Article 718590
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elimination of the cytotoxic payloads from the cellular cytoplasm
by the ATP-binding cassette (ABC) transporters contribute to
lower efficacy and resistance to ADCs (26). Increased MDR1
expression has shown to contribute to resistance to auristatin
Frontiers in Oncology | www.frontiersin.org 5
and maytansinoids based ADC analogues, leading to poorer
patient outcomes (84, 85). Strategies to overcome drug efflux
from cells include using agents that are poor efflux substrates
such as hydrophilic compounds or switching from a non-
TABLE 3 | Selected trials of therapeutic agents tested in glioma.

Class of drugs Setting Trial Description Target Phase NCT Response rate OS
(months)

Toxicity

Immunotherapy
Nivolumab (67) Neoadjuvant Neoadjuvant Nivolumab

in Glioblastoma
PD-1 II NCT02550249 No clinical benefit was

substantiated following
salvage surgery

NR
(n = 30)

(68)
Pembrolizumab
(69)

Neoadjuvant Neoadjuvant anti-PD-1
immunotherapy in
recurrent glioblastoma

PD-1 Pilot – 13.7 10 patients (67%) in the
neoadjuvant group experienced
grade 3-4 adverse events likely
attributable pembrolizumab

(n= 35)

Autologous
lymphoid effector
cells specific
against tumor
cells (ALECSAT)
(70)

Recurrent Assess the tolerability and
efficacy of ALECSAT in
GBM patients (ALECSAT-
GBM)

I NCT01588769 DCR 50%* NR 5/23 (22%) experienced grade 4/5
toxicity including: pneumonia,
respiratory insufficiency, cerebral
vascular lesion and general
physical health deterioration

(n = 25)

CART-cell
therapy (71)

Recurrent Anti- interleukin-13
receptor alpha 2 chimeric
antigen receptor (CAR) T-
cells

IL13Ra2 I NCT00730613 NR
(NR)

CART-cell
therapy (72)

Recurrent CMV-specific cytotoxic T
lymphocytes expressing
CAR targeting HER2
(HERT-GBM)

HER2 I NCT01109095 DCR 50% 11.1 TRAEs were grade 1-2 and
included 3 patients with headache
and seizures. No ≥ grade 3 TRAEs
reported. No DLT observed

(n = 17)±

IMA950 multi-
peptide vaccine +
poly-ICLC (73)

New
diagnosis

Trial of IMA950 Multi-
peptide Vaccine Plus
Poly-ICLC

Human
leukocyte
antigen
(HLA)-A2
restricted
peptides

I/II NCT01920191 DCR 42% 19 Grade 1-2 TRAEs: inflammatory
reactions at injection sites (53%),
headache (37%), fatigue (63%),
and flu-like syndrome (21%)

(n = 19 16
GBM and 3
grade III
astrocytoma)

1 x Grade 4 - interstitial
pneumonia due to pneumocystic
infection

Monoclonal antibodies
Onartuzumab
(74)

Recurrent Onartuzumab in
Combination With
Bevacizumab Compared
to Bevacizumab Alone or
Onartuzumab
Monotherapy

c-MET II NCT01632228 8.8 (Onartuzumab +
Bevacizumab) vs 12.6
(Bevacizumab)

Grade ≥ 3 TRAEs: 38.5%
(experimental arm) vs 35.9%
(bevacizumab)

(n = 129) Experimental arm had higher rates
of drug withdrawal + drug
interruptions

Tanibirumab (75) Recurrent Trial to Evaluate the
Safety of TTAC-0001
(Tanibirumab)

VEGFR-2 II NCT03033524 NR NR No dose limiting toxicities
(n = 10) Cutaneous hemangiomas (83%) -

≤ grade 2 No drug-related G3 or 4
AEs

Nanoparticles
DNX-2401
(tasadenoturev)
(76)

Recurrent DNX-2401 for Recurrent
Malignant Gliomas

Oncolytic
adenovirus

I NCT00805376 Group A (n = 25): 20% of
patients survived > 3 years

NR

(n = 37) Group A (n = 25) - single
intratumoral injection of
DNX-2401 into biopsy of
confirmed recurrent
tumor

Group B (n = 12) – NR

Group B (n = 12) -
intratumoral injection post
resection
December 2
*10 of the 25 recruited patients were evaluable.
±17 patients included 10 adults and 7 children.
CAR-T cells, Chimeric Antigen Receptor (CAR) T-Cell Therapy; DLT, Dose limiting toxicity; GSC, glioma stem cells; NR, not reported; ORR, Overall response rate; TRAE, treatment related
adverse event; VEGFR, vascular endothelial growth factor receptor.
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cleavable linker to a protease cleavable and using newer design
drugs such as bispecific and biparatopic antibodies can increase
cellular internalization (26). Another mechanism that affects the
therapeutic effectiveness of ADCs involves defects in the
internalization pathway and reduced cell surface trafficking
(86). Following internalisation, degradation of ADCs in
lysosomes may be impaired by reduced lysosomal proteolytic
or acidification function and/or loss of lysosomal transporter
expression, resulting in failure of cleavage of cytotoxic payload
from ADCs (87). Loss of lysosomal transporter expression, e.g.,
SLC46A3 has also been reported as a mechanism of innate and
acquired resistance to PBD and DM1 bearing ADCs (88). Other
potential mechanisms of escape include selection pressure and
downregulation of antigens, loss of antigen expression or
mutations in antigen as well as presence of ligands for antigens
and resistance to ADC and acquired or innate insensitivity to
the payload.

With increasing insight into the biology of the BBB and the
discovery of novel transporters for trafficking of endogenous
compounds, there has been significant interest in attaching
natural ligands of these transporter systems to chemotherapeutics
to increase their CNS access. One such ligand is angiopep-2, a 19
amino acid peptide targeting the low-density lipoprotein receptor-
related protein 1 (LRP1). This has been conjugated to paclitaxel,
amongst other anticancer agents. This construct of angiopep-2 and
paclitaxel (GRN1005) was shown to be safe and somewhat effective
in patients with advanced solid tumours (89), and a subsequent
Phase I study showed that GRN1005 had similar toxicity to
paclitaxel and some activity in recurrent glioma (90). These
techniques were then applied to antibodies, albeit with a modified
version of angiopep-2 that also is considered to exploit LRP1 to
traverse the BBB i.e. melanotransferrin. Administration of
melanotransferrin-trastuzumab conjugate (BT2111) reduced the
number of HER2+ breast cancer metastases in the brain (by 68%)
with tumours being 46% smaller in BT2111 treated mice relative to
control mice (91). To the authors knowledge, there have been no
studies where either Angiopep-2 or melanotransferrin have been
conjugated to ADCs for the purposes of increasing CNS access,
however, based on the results with trastuzumab, it is expected that
utilising these shuttle protein approaches should result in increased
ADC brain uptake and efficacy.

Lastly, drug penetration into tumours is not just impacted by
the BBB. Physico-chemical properties such as tumour volume
could be modulated to increase ADC penetration. Larger tumours
have increased interstitial pressures, more impaired circulation/
lymphatics and increased necrotic areas that limit the ability of
ADCs to penetrate the tumours (92–94). Data from the M12-356
Phase 1 study of Depatux-M provides evidence of this problem in
glioma patients (95). Preclinical imaging and biodistribution
studies showed specific and significantly higher tumor uptake of
zirconium-89 labelled Depatux-M (89Zr-Depatux-M) in mice with
smaller tumor volume versus those with larger volumes.
Concordantly, mice with smaller tumor volumes at treatment
commencement had significantly better growth inhibition and
significantly longer overall survival compared to mice with large
tumors at treatment commencement. These findings were
Frontiers in Oncology | www.frontiersin.org 6
supported by an analysis of tumor volumes on outcomes in the
M12-356 study; patients with large tumors had significantly worse
response rates and overall survival. These findings strongly
support strategies that would reduce tumor size and/or
interstitial pressure to increase efficacy of ADCs in brain tumors
(96–98). The tumour microenvironment (TME) in GBM is
complex; it is characteristically immunosuppressive and made
up of numerous cell types surrounded by a distinctive extra-
cellular matrix (99). Dynamic changes in the cellular and
metabolic composition within the TME can result in treatment
resistant and tumor recurrence (100). Given the role of TME in
tumor growth and blood vessel formation, strategies being
investigated include targeting antigens of the TME instead of
tumor specific antigens as well as overcoming the inherent
immunosuppressive effects and making tumors more immune
competent (99, 101, 102). Antigens of the TME are likely more
accessible and targeting them allows ADCs to accumulate within
tumors and release their payload based on TME-specific factors
(103, 104). For example, CD25, CD205, B7-H3 are targets found
in the TME for which specific ADCs are in clinical development in
a number of non-CNS tumour types (105).

Approaches to Reduce ADC Size/Polarity
The antibody component of an ADC is vital for binding to the
desired antigen with high affinity and specificity, maintaining a
long half-life and releasing the toxic payload into tumor cells;
however its large size presents a physical barrier to efficient
extravasation across blood vessel walls and diffusion through
tumors (106). This has led to the development of smaller formats
as carriers of toxic payloads and include: antibody fragments,
peptides, natural ligands, and small molecules (107). Several drug
conjugates using smaller targeting domains are being evaluated
in clinical trials (NCT02936323, NCT03221400, NCT03486730).

Aptamers are short single-stranded nucleic acids (RNA or
ssDNA) that represent a novel imaging and drug-delivery strategy
based on their sensitivity and specificity, ease of modification and
low immunogenicity (108). Aptamers can be physically conjugated
either by intercalatingor covalent linking tonovel therapeutics such
as noncoding RNA or cytotoxic payloads like doxorubicin (109).
Recent studies demonstrating the ability of aptamers to cross the
BBBanddeliverpayloads to tumors (110)has resulted inconsidered
interest in the potential role of aptamers in the management of
gliomas. To date, several studies have evaluated the role of aptamer-
based therapies as well as aptamer-based conjugates (non-coding
RNA, nanoparticles, chemotherapeutics) in a number preclinical
glioma models (111). The majority of studies targeted EGFR/
EGFRvIII while others looked at other GBM-associated proteins
including Tenascin-C, EphB2/3 receptors, nucleolin, vascular
endothelial growth factor receptor (VEGF), and integrin a5b1
(108, 111). While the results in early preclinical studies are
encouraging, further optimization of aptamers with regards to
their sensitivity to body-fluid nucleases, CpG toxicity, and
stability remain to be optimized.

Nanoparticles are promising carriers for drug delivery to the
brain due to their unique characteristics which include their
small size and specific and homogenous tumor targeting. Various
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classes of nanoparticles, including metallic, polymeric and lipid
nanoparticles can be readily modified to effectively carry drugs
across the BBB. By attaching toxic payloads to nanoparticles,
tumour-specific targets expressed in GBM cells and responsible
for tumorigenesis can be targeted; examples of these include
antigens (i.e., A2B5), differentiation clusters (i.e., CD15, CD33,
CD44, or CD133), receptors of cytokines (i.e., interleukin13
receptor), and several proteins (i.e., EGFR, Integrin-a6, a5b3,
anb3 or L1CAM). An alternative to the classical antibody-drug
conjugate is the antibody-mediated delivery of a drug containing
nanoparticles. In a recent example, panitumumab/Vectibix was
attached to a 400nm nanoparticle (minicell) derived from
Salmonella typhimurium in the attempt to deliver an effective
dose of doxorubicin to 14 patients with recurrent GBM (112).
This study showed that EGFR targeting antibody-coated
nanoparticles containing chemotherapeutic drugs could be
delivered in recurrent GBM patients.

ADCs Against Novel Targets
Selecting an appropriate target antigen is a critical step for the
success of an ADC. Ideally, the appropriate target antigen should
tumor-specific and homogenous in expression. The ideal target is
one which is strongly and homogenous expressed on tumor cells,
absent on normal tissue and efficient internalisation when bound
(113–115). The potency of ADCs is dependent on the ability of
the antibody-antigen complex to internalize, release the payload
within the target cells and exert the cytotoxic effect. This
dependency on antigen expression levels and finite
internalization limits the therapeutic potential of ADCs as well
as contributes to off-target toxicities (27).Some strategies to
overcome the requirement of internalisation include the
targeting of non-internalising receptors and extracellular
matrix targets. Furthermore, the identification of tumour
microenvironment targets also raises the possibility of
therapeutic approaches with ADCs which do not target tumor
cells alone (8, 26, 115). Novel approaches to developing non-
internalization ADCs include diabody-based ADCs against non-
internalizing targets and anti-tumor angiogenesis ADC which
have shown promise in preclinical studies (116, 117).

The cell surfaceNotch ligand delta-like 3 (DLL3) inhibits Notch
pathway activation and has shown to be expressed on the cell
surface of several tumor types including gliomas where DLL3
expression inversely correlated with outcome (118, 119). In brain
tumors, DLL3 has been shown to be most intensely and
homogeneously overexpressed in IDH-mutant gliomas compared
to other glioma subtypes (120). Interestingly, in gliomas DLL3
overexpression is not a consequence of DLL3 mutations or gene
amplification (120). DLL3 is not expressed in adult normal tissues
(119), making it an attractive therapeutic target. Rovalpituzumab
teserine (Rova-T; SC16LD6.5) is an ADC consisting of a
monoclonal antibody targeting DLL3, a cathepsin-cleavable
linker, and a PBD payload (119). The first-in-human clinical trial
of Rova-T in small cell lung cancer (SCLC) demonstrated
encouraging activity albeit significant toxicity related to the
payload (121). The phase 3 study (TAHOE) in recurrent SCLC
howeverwas halted early due futility (122).An active phase 3 trial of
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Rova-T in the maintenance setting (MERU) is ongoing
(NCT03033511). In a phase 1/2 study (NCT02709889) patients
with relapsed DLL3-positive (>1% by IHC) advanced solid tumors
received Rova-T at 0.2, 0.3, or 0.4 mg/kg every 6-weeks for dose
escalation in disease specific cohorts (123). The study enrolled 200
patients including 23 patients withGBM. The recommended phase
2 dose was 0.3 mg/kg q6wk for 2 cycles in all cohorts. The most
common adverse events were fatigue, nausea, thrombocytopenia,
pleural effusion and peripheral oedema. The objective response rate
(ORR) was 11% including one complete response in the
GBM cohort.

Increasingly, it is also becoming apparent that targeting the
tumour microenvironment may be feasible in glioma and may have
advantages over targeting tumours directly. Leucine-rich repeat
containing 15 (LRRC15) is a type I membrane protein with low
expression in normal tissue but is highly expressed on cancer
associated fibroblasts within the tumor stroma as well as directly
on cancer cells including GBM (124). ABBV-085 is an ADC
composed of an anti-LRRC15 humanized monoclonal antibody
conjugated to MMAE via a protease cleavable valine–citrulline
linker. ABBV-085 has demonstrated significant antitumor activity
in multiple LRRC15 cancer-positive models, including GBM.
ABBV-085 also showed enhanced activity in combination with
other therapies including cytotoxic chemotherapy, radiation,
immunotherapy and targeted therapies (124).

Another promising target in the tumour microenvironment is
the Eph family. Eph receptor tyrosine kinases and their cell-
associated ephrin ligands have been implicated in the growth and
progression of a large range of cancers and are increasingly
recognized as important therapeutic anti-cancer targets (125).
EphA2 and EphA3 are commonly expressed in GBM, including
in regions of tumor neovasculature, tumor-associated immune cells,
and tumor-infiltrating cells (126), and associated with poorer
outcomes in GBM patients (127). MEDI-547 is an ADC
comprising an EphA2 targeted monoclonal antibody (1C1)
conjugated via a non-cleavable linker to the auristatin derivative
maleimidocaproyl-monomethyl auristatin phenylalanine
(mcMMAF). MEDI-547 displayed encouraging antitumor activity
in preclinical models (128) however clinical development was halted
due to due to treatment-related adverse events during the early
phase studies (129). Despite these results, given the overexpression
of EphA2 in many tumor types targeting EphA2 for toxin delivery
remains a promising therapeutic strategy. MM-310, an anti-EphA2
immuno-liposome containing docetaxel prodrug has shown
superior tumor penetration and anti-tumor activity in a range of
xenograft models compared to free docetaxel and significantly with
lower toxicity (130). An ADC directed against EphA3, another
member of this family, is also being pursued. An ADC based on the
IIIA4 mAb, and utilizing the microtubule inhibitor maytansine
(IIIA4-USAN), has highly effective in killing preclinical GBM
models compared to the naked antibody (131). Similarly, anti-
EphA3 bound nanoparticles loaded with the DNA alkylation agent
temozolomide showed specific tumor targeting and potent anti-
tumor effects in a rat glioma model (132). A phase 1 study of the
Ifabotuzumab, the humaneered version of IIIA4, has shown the
drug is safe, is able to successfully target the tumour
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microenvironment in all patients tested but without normal tissue
binding (133); an ADC based on Ifabotuzumab is therefore an
attractive prospect.

Novel ADCs With Improved Payloads
Coupled with the above strategies are strategies to utilise newer
payloads with increased therapeutic ratios. A number of known
issues can adverse impact ADCs. Linkers are an essential interface
between antibody and drug payload and are critical in stability, site
of conjugation and final drug/antibody ratio (DAR): parameters
that impact on toxicity, efficacy and pharmacokinetic properties of
ADCs (8, 30). Current linkers may release payloads in the
circulation which can lead to off-target toxicity. The development
of novel linkers and advances in linker technology is beyond the
scope of this review but has been discussed elsewhere in detail (134,
135). In addition, the IgG1 isotype of some of these ADCs can
engage the Fc-gamma receptors (FcgR), which can trigger a target-
independent, FcgR–dependent internalization in FcgR-positive
cells resulting in toxic effects on these untargeted healthy cells
(136). In addition, each class of payload often has characteristics
toxicities (Table 2). A number of newer payloads are being tested.
Pyrrolobenzodiazepines (PBDs) are DNA−crosslinking agents that
exert their biological activity by binding in the minor groove of
DNA with enhanced potent anti-cancer activity compared to
auristatins or maytansinoids (137, 138). PBD dimers exhibit
significant cell permeability, potentially enabling bystander killing
of neighboring tumor cells (139). A number of PBD-conjugated
ADCs are being developed and in clinical trials for both solid and
hematological tumors (140). For example,ABBV-321 (serclutamab
talirine) is a highly selective next-generation EGFR-targeting ADC
which incorporates a PBD dimer toxin conjugated to the EGFR-
targeting ABT-806 affinity-matured AM1 antibody (10). It is
expected that the highly selective nature of ABBV-321 would
differentiate it from previously developed antibody PBD
conjugates that lack a therapeutic window. In a number of
xenograft cell line and patient-derived xenograft tumour models
including in GBM, ABBV-321 exhibited potent anti-tumor activity
(10). ABBV-321 is currently under clinical investigation in patients
with advanced solid tumors (141).

Deruxtecan (DXd) is a potent topoisomerase I inhibitor with a
short half-life and ability to elicit a bystander killing effect on
neighboring tumour cells indicating low concern in terms of
systemic toxicity and importantly may assist in overcoming
intratumoral heterogeneity of cancer cells (142, 143). In addition
to its by stander effect, DXd is cell membrane permeable and
therefore may enter nearby cells, even those without strong HER2
expression, making it effective in low HER2-expressing cancer
cells and overcome tumour heterogeneity. Bioconjugation of DXd
to a humanized monoclonal antibody specifically targeting HER2
via a cleavable tetrapeptide-based linker, made it possible to obtain
the conjugate Trastuzumab Deruxtecan (DS-8201a, T-DXd) with
a homogeneous DAR of 7.7. Trastuzumab deruxtecan has shown
impressive response rates in early phase studies in tumours with
high and low HER2 expression as well as HER2 mutant cancers
(144, 145). The most common side effects were gastrointestinal
and haematological, however potentially fatal adverse event of
interstitial lung disease (ILD) was reported in 13.6% of patients in
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the phase II trial, including four patients who died due to lung
injury (146). The mechanism of lung injury is not well understood
and predictive biomarkers for response as well as identifying
patients at risk of developing toxicity lung injury are required.
Another ADC carrying the DXd payload is patritumab deruxtecan
which uses the same linker-payload system as trastuzumab
deruxtecan and is conjugated to the anti-HER3 monoclonal
antibody patritumab. In a phase I study, patritumab deruxtecan
demonstrated impressive responses in patients who were heavily
pretreated with a median number of four regimens, including
EGFR targeting tyrosine kinase inhibitors (147). Notably, its
efficacy is observed regardless of the resistance mechanisms for
EGFR-TKIs, including C797S secondary EGFR mutation, MET
amplification, HER2 mutation, BRAF fusion, and PIK3CA
mutation (147).

Lastly, there is on-going interest in utilising new radioisotopes
in antibody payload delivery. Both the EphA2 mAb IF7 coupled
to Lutetium-177 and then anti-EphA3 antibody IIIA4 linked to
an a-particle-emitting Bismuth-213 payload showed therapeutic
effect in EphA2 and EphA3 expressing leukemia models (148,
149). In GBM models, treatment with IIIA4 labelled with the b-
particle-emitting Lutetium-177 showed dose-dependent tumor
cell killing and tumor growth inhibition in vivo, compared to
unlabelled antibody (150).

Combinatorial Treatment Approaches to
Address Heterogeneity and Resistance
Cancer cells are constantly under strong selection and
evolutionary pressures, resulting in the emergence of subclones
and heterogeneity in gene expression and antigen expression
(151). This in turn can affect ADC efficacy which is correlated
with the level of target antigen expression (114). In a phase II
study, patients with early-stage HER2-positive breast cancer
received six cycles of trastuzumab emtansine (T-DM1), in
combination with pertuzumab in the neoadjuvant setting (152).
In this study complete pathological response (pCR) was higher in
those with HER2 scores of 3+ versus 2+ and no pCR was seen
among the patients classified as having HER2 heterogeneity,
indicating that heterogeneity of target antigen expression is an
important factor in patient selection. GBM is characterised by
significant heterogeneity even at the single cell level (153). Studies
have reported substantial inter- and intra-tumoral variation in the
levels of EGFR expression and mutation. Furthermore, EGFR
mutations are frequently lost or gained between the initial tumor
and recurrence while molecular alterations, such as EGFR
amplification, remain persistent unchanged (60). Recently
studies have also shown that EGFRvIII can be eliminated from
extrachromosomal DNA of tumor cells as a resistance mechanism
when tumor cells are treated with EGFR TKIs. However, upon
drug removal, EGFRvIII reappears (154). Data from clinical
studies suggest that substantial inter - and intra-tumoral
variation in the levels of EGFR and EGFRvIII expression and
mutation contribute to therapeutic resistance (155, 156).

Combinatorial approaches is one approach to address tumour
heterogeneity and resistance in gliomas, and as already
demonstrated improved responses and survival rates in other
tumor types (157). Dual targeting of both wildtype EGFR and
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EGFRvIII has been shown to have more effective anti-tumor
activity in intracranial murine glioma models than single
targeting of either variant alone (158). The anti-EGFR TKI
AG1478 has shown to increase mAb 806-reactive dimers on
the surface of cells overexpressing EGFR, and the combination
has of mAb806 and AG1478 resulted in enhanced anti-tumour
activity in xenograft models (159). Furthermore, Orellana et al.
demonstrated that stabilizing the inactive kinase conformation
with lapatinib correlated convincingly with increased binding of
ABT-806 (160), further supporting the approach of targeting
both EGFR and its variants.

Combinatorial strategieswithADCsmay also effectively address
the issue of tumour heterogeneity. Combining ABBV-321 and
Depatux-M resulted in greater tumor growth inhibition in an
EGFR-overexpressing GBM PDX model compared to either
monotherapy treatment (161). It is also possible to incorporate
two payloads into an ADC using multi-loading linkers, with
improvements in conjugation efficiency and ADC homogeneity.
Levengood et al. developed a dual‐auristatin ADCs containing both
monomethyl auristatin E (MMAE) and monomethyl auristatin F
(MMAF) and showed superior therapeutic benefit in preclinical
anaplastic large cell lymphoma models refractory to ADCs
comprised of the individual auristatin components (162). Anami
et al. developed an ADC composed of anti-HER2 antibody
conjugated to the MMAF payload via branched linkers and
compared with the ADC composed of linear linkers. Their results
demonstrated compared to linear linkers, branched linkers were
highly stable in the human plasma, having high cell specificity and
antigen-binding efficiency, and more significant in vitro cell killing
potency (163).

Immunogenic cell death of tumor cells induced by cytotoxic
compounds used as payloads in ADCs can be potent stimulators of
effector T-cell recruitment to tumors and can directly result in
dendritic cell activation and maturation (164). Indeed, infiltration
of T cells has been observed in tumor biopsy specimens from
patients after treatmentwith ado-trastuzumab emtansine (T-DM1)
(165). Based on the induction of antibody dependent cellular
cytotoxicity (ADCC) by anti-HER2 therapies, preclinical studies
addressed the potential synergistic effect of ado-trastuzumab
emtansine (T-DM1) and ICIs. Preclinical studies have shown the
combination ofHER2-targetingADCswith ICI resulted in curative
responses despite primary resistance to immunotherapy model
(166–168). Exploration of tumor specimens from patients
enrolled on phase 1 study (M12-356, NCT01800695) (169) has
revealed a significant association between T-cell activity and
response to ABT-414 treatment (170). This raises the possibility
that combination of ADCs with currently approved
immunotherapy are very likely to be effective.

Improved Patient Selection
In order to maximize the therapeutic potential of ADCs and limit
exposureofADCs topatientsunlikely tobenefit,more sophisticated
biomarkers to select patients are needed. The current strategy of
identifying patients is based on tumor target expression, which can
be challenging due to multiple factors including: tumor
heterogeneity, assay sensitivity, and accuracy, potential changes in
target expression after multiple therapies, and difficulties in
Frontiers in Oncology | www.frontiersin.org 9
determining threshold levels for target expression that correlate
with efficacy (171). In most trials, patients are preselected based
target expression on archival tumor tissue. The most commonly
employed methodology to determine target expression is by
immunohistochemistry (IHC) which does possess limitations
including lacks standardisation, reproducibility and, most
importantly, correlation with clinical outcome. For example,
while antigen expression levels have shown to correlate with
response, ADCs have also shown clinical activity in patients with
low levels of target antigen expression cancers due to imperfect
assays (144, 145). Furthermore, emergingdata suggest that selection
based onpayload sensitivitymay add additional value above simply
target expression. In thephase1 study (M12-356,NCT01800695)of
Depatux-M in patients with newly diagnosed GBM and recurrent
GBM with EGFR amplification, responses in patients with
recurrent GBM correlated with EGFR amplification however not
all patients with EGFR amplification responded (169). Detailed
examination of tumors [RNASeq, WES, immunohistochemistry
(IHC)] from patients enrolled in the M12-356 trial revealed that
mutations for tubulin genes were differentially expressed in
responders vs non-responders, with TTLL2, TTLL4, TUBB2A,
TUBB2B, TUBG1 and TUBGCP2 mutations (1-3 per tumor)
overexpressed in non-responders (172). Preliminary synthetic
lethality siRNA experiments have shown that mutations of these
genes render sensitive GBM lines resistant to ABT-414 treatment.
Furthermore, preliminary analysis of pre-treatment tumor samples
with RNASeq has also revealed that responding patients had a
higher number of tumor infiltrating lymphocytes (TIL) compared
to non-responders, and CD3E expression. This was confirmed by
immunohistochemistry analysis of CD3+ cells, with higher CD3+
cells in responding tumors. Preliminary T cell subset IHC analysis
has also shown that CD8 cells are more frequently observed in
responders, and that CD4 T cells are more abundant in non-
responders. These data are highly suggestive of the immune
microenvironment of GBM tumors playing a role in the
responsiveness of GBM to ABT-414 treatment.

Lastly, molecular imaging by single photon computed
tomography (SPECT) or positron emission tomography (PET),
or immuno-PET, has been successfully employed to identify
target expression, drug distribution and in-vivo target delivery
and interlesional target heterogeneity (26). The humanized
EphA2 mAb 1C1, libelled with 64Cu, was used for positron
emission tomography (PET) imaging of eight tumor models with
different EphA2 expression levels, showing good correlation
between tumor uptake and EphA2 expression (125). Imaging
of the conformational form of EGFR expressed only on tumors
has also been demonstrated in GBM patients with 111In-ch806
and ABT-806 (173, 174). The ability to image the target of ADCs
has the potential to improve selection of patients and increase
therapeutic outcomes in patients with gliomas.
CONCLUSION

ADCs have shown to be effective and safe therapies, expanding
the armamentarium in several haematological and solid tumors
and in many cases transforming treatment paradigms. To date,
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their potential in glioma patients has not been established. Early
ADCs were clearly ineffective due to limitations of early ADCs in
general which affected their efficacy in all tumours. More recent
ADCs like ABT-414 and AMG-595 clearly show the potential of
these drugs in glioma, especially in recurrent gliomas. Clearly,
more sophisticated strategies in their use will be needed if we are
to make ADCs therapeutically useful for most glioma patients and
to improve their therapeutic ratio. A number of such strategies are
already available. Improvements in the ADC technology, building
on the results of results to date, is clearly needed. These should
focus on improvements in selecting targets and payloads. The use
of adjunctive strategies is also appealing, seeking to improve drug
access to tumours across the BBB and to better select patients.
Lastly, combinatorial strategies are likely if we are to substantially
improve outcomes in these patients and ADCs could have a major
contribution to make in such strategies.
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