
polymers

Article

Polystyrene Biodegradation by Tenebrio molitor Larvae:
Identification of Generated Substances Using a GC-MS
Untargeted Screening Method

Emmanouil Tsochatzis 1,*, Joao Alberto Lopes 2, Helen Gika 3,4,5 and Georgios Theodoridis 2

����������
�������

Citation: Tsochatzis, E.; Lopes, J.A.;

Gika, H.; Theodoridis, G. Polystyrene

Biodegradation by Tenebrio molitor Lar-

vae: Identification of Generated Sub-

stances Using a GC-MS Untargeted

Screening Method. Polymers 2021, 13,

17. https://dx.doi.org/10.3390/polym

13010017

Received: 8 December 2020

Accepted: 21 December 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Food Science, Centre of Innovative Food Research (iFood), Aarhus University,
Agro Food Park 48, 8200 Aarhus N, Denmark

2 European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
Joao-Filipe.ALBERTO-LOPES@ec.europa.eu (J.A.L.); gtheodor@chem.auth.gr (G.T.)

3 Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; gkikae@auth.gr
4 Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
5 FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and

Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318,
57001 Thessaloniki, Greece

* Correspondence: Emmanouil.tsochatzis@foodau.dk; Tel.: +45-4189-3130

Abstract: A GC-MS method has been applied to screen and evaluate the generation of chemical
compounds during the biodegradation of polystyrene (PS) with Tenebrio molitor larvae. Several
resulting compounds have been identified, including trimers 2,4,6-triphenyl-1-hexene and 1,3,5-
triphenylcyclohexane, the volatiles acetophenone and cumyl alcohol, and 2,4-di-tert butylphenol,
a non-intentionally added substance (NIAS) present in the plastic material. The PS monomers
styrene and α-methyl styrene were also identified in the extracts. Bioactive molecules present in
the biomass of the studied insects were identified, such as the free fatty acids myristic, palmitic,
and oleic acid. Undecanoic acid was also found, but in lower mass fractions. Finally, biochemically
formatted amides resulting from their respective fatty acids were identified, namely tetradecanamide,
hexadecanamide and oleamide. The formation of all these substances seems to suggest enzymatic and
biochemical activity occurring during the biodegradation of PS, and their amounts varied throughout
the experience. The overall degradation rate of PS resulted in a 13% rate, which highlights the
potential of biorecycling using these insects.

Keywords: plastics biodegradation and biorecycling; GC-MS analysis; chemical compounds formed
during bio-degradation; insects assisted biodegradation of polystyrene

1. Introduction

Plastic packaging is associated with raised concerns about the potential harm to the
environment and human health [1]. Polystyrene (PS) is a thermoplastic polymer considered
the third most important for consumers and industry. It is used extensively to produce food
contact materials (FCMs) due to its low cost, durability and mechanical strength [2]. Large
production amounts, associated to low recycling rates, have resulted in the accumulation
of PS and other plastics in the environment, further risking the survival of wildlife and
human health [3].

There is an increasing amount of interest and research conducted on the biodegrada-
tion of plastic based on activity of bacteria and fungi, as these were found to be capable of
degrading plastic materials. Some studies already reported the potential degradation of
PS by using different insects: mealworms (Tenebrio molitor) [4–6], superworms (Zophobas
morio) [7] and waxworms (Galleria mellonella) [3]. Furthermore, bio-recycling by insects
was reported also for other polymers like polyethylene (PE) [8,9]. However, the existing
knowledge is not yet sufficient to allow the full evaluation of the process in relation to the
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degradation of PS. This is particularly important for the potential generated substances due
to the insects’ activity, especially regarding the formation/release of residual monomers,
oligomers or other non-intentionally added substances (NIAS).

Recently the European Food Safety Authority (EFSA) re-evaluated the safety of styrene
(FCM No. 193 in Reg. (EU) No. 10/2011) in plastic FCMs. This reevaluation followed a
report from International Agency for Research on Cancer (IARC) that highlighted styrene
as probably carcinogenic to humans. The EFSA concluded that styrene’s potential geno-
toxicity could not be excluded [10,11]. Thus, it becomes critical to take in consideration
the formation of styrene, α-methyl styrene and oligomers resulting from PS recycling or
bio-recycling, as to avoid environmental pollution or exposure to such potentially genotoxic
compounds [1].

Styrene and α-methyl styrene are EU regulated substances allowed to be used in
the production of polymers [12]. However, PS oligomers are considered as NIAS, and
can be formed during the production processes or due to decomposition reaction [12].
NIAS can end up in the polymeric material and migrate into the food. Hence, residual PS
monomers and oligomers can be considered of high importance, and their study is crucial
for establishing health safety and environmental impact [13,14].

Analysis of styrene, α-methyl styrene and related oligomers have been performed in
the context of multianalyte GC-MS methods [15]. Dedicated targeted GC-MS methods for
those substances have also been reported [1]. Regarding untargeted screening of insects’
frass, some qualitative GC-MS methods also exist, but no quantification of the target
analytes was performed [3,5,6].

The scope of this research was to perform a preliminary evaluation of the biodegra-
dation rate of PS by using it as feed of Tenebrio molitor larvae. It aimed at identifying
and quantifying the most relevant substances (degradation products, PS oligomers or
other bioactive compounds) resulting from the insect’s metabolic process. This evaluation
allowed us to understand if compounds of significant added value are being produced
that later on can be exploited. To the best of the authors’ knowledge, it is the first time
this research was conducted, and it represents a first step in assessing the PS bio-recycling
capacity of the used insects.

2. Materials and Methods
2.1. Chemicals

Dichloromethane (DCM; CAS: 75-09-2) of Chromasolv grade purity was obtained
from Sigma Aldrich (Steinheim, Germany). PTFE 17 mm. 0.2 µm membrane filters were
supplied from Sigma Aldrich (Steinheim, Germany). Styrene (≥96%), α-methyl styrene
(99%), acetophenone (≥98%), α,α-dimethyl benzene methanol (cumyl alcohol) (≥97%),
ethyl linoleate (≥99%), ethyl hexadecanoate (≥99%), 2,4-di-tert butyl phenol (DTBP) (99%),
methyl-9,12-octadecadienoate (≥98%), tetradecanamide (≥96%), and oleamide (≥99%)
were also purchased from Sigma Aldrich (Steinheim, Germany). Hexadecanamide (95%)
was purchased from TCI Chemicals (Tokyo, Japan). The PS oligomers 2,4,6-triphenyl-1-
hexene and 1,3,5-triphenylcyclohexane (mixture of isomers) were purchased from FUJI-
FILM Wako Chemicals Europe GmbH (Milano, Italy).

2.2. Polystyrene Samples

The expanded PS (EPS) foamed plaques (density 0.010 g/cm3) were bought at a local
do it yourself (DIY) store. A verification of the PS plaques was performed by attenu-
ated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy and differential
scanning calorimetry (DSC). Recorded spectra and thermograms were compared with the
in-house database and confirmed the PS nature of the samples (matching FTIR spectra and
a glass transition of 100 ◦C). However, the Mn of the studied type of PS was not possible to
confirm, although it is expected to be around Mn = 100,000, the most common type existing
in the market.
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2.3. Biodegradation of Polystyrene

The followed procedure was based in the one reported by Lou et al. [3]. The Tene-
brio molitor larvae (average weight 72–80 mg/larvae) were purchased from Huiyude Co.
(Tianjin, China) and were starved for 36 h before the experiment to prevent any effect of
previously eaten feed [3]. The larvae were then fed with a single PS diet, and each exper-
iment was done in triplicate. There were 100 larvae in each of the three 15 × 15 × 5 cm3

sized containers (per treatment), along with 1.5 g of PS plastic cut into 1 cm cubes. The
containers were placed in an incubator maintained at 27.0 ± 0.5 ◦C and with humidity of
75 ± 5%. The experiments were performed in triplicates. Fifty larvae were extracted and
analyzed before the biodegradation experiment to set up control (blank) samples, and then
larvae, from a single box representing each sampling day, were fed and collected (day 1,
3 and 7, after the beginning of the bio-recycling) and further analyzed. The duration of the
experiment was seven days.

2.4. Lyophilzation

The collected Tenebrio molitor larvae were blended for 2 min in a domestic blender
after being weighted. Subsequently they were lyophilized by a Gamma 1–20 freeze-dryer
(Osterode am Harz, Germany) at −20 ◦C and 1.030 mbar. Shelf temperature of the freeze-
dryer was adjusted to 25 ◦C. The resulting powder samples were then stored at −20 ◦C
until analysis, following the conditions from Tsochatzis et al. [16].

2.5. Solid-Liquid Extraction

For the extraction, a method previously reported by our group [15] was slightly
modified. Briefly, a lyophilized sample of 0.5 g of the collected insects’ larvae was placed
in a glass tube and extracted twice, with 1.0 mL of dichloromethane (DCM). The tube was
vortexed for 1 min and sonicated for 2 h, at 25 ◦C, followed by centrifugation at 20 ◦C and
2500 rpm (1280× g) for 5 min. Finally, samples were filtered with PTFE 0.22 mm filters
and filled to a final volume of 2.0 mL with DCM. A 1 µL aliquot was then injected in the
GC system.

2.6. GC-MS Analysis

Chromatographic analyses were performed with a GC system Agilent Technolo-
gies 7890B GC (Waldbronn, Germany) equipped with a triple quadrupole mass detector
(Agilent Technologies 7010-MS), operated at constant helium flow rate (1.5 mL min−1).
The chromatographic column (HP-Innowax, 30 m × 250 µm, 0.25 µm) was supplied by
Agilent Technologies Inc. (Santa Clara, CA, USA). The analysis was performed using a
split/split-less injector at 300 ◦C in splitless mode, with a purge flow of 50 mL min−1 and a
purge time of 1.5 min, using a single taper liner. The injection volume was 1 µL. The oven
program was the follow: initial temperature of 40 ◦C for 3 min, ramp (25 ◦C min−1) up to
265 ◦C (isothermal of 12.5 min), ramp (10 ◦C min−1) up to 270 ◦C (isothermal of 2 min).
The total run time was 27 min, including a solvent delay time of 4.5 min, applying Electron
Impact Ionization was operated at 70 eV. Mass analysis and detection was performed using
full scan 40 to 700 amu. The resulting chromatograms were processed and deconvoluted
using MassHunter software (Agilent Technologies Inc., Santa Clara, CA, USA) while for
the identification NIST11 library was used. Further spectral and analytical data for the PS
oligomers were based on previous reported research work [1].

2.7. Differential Scanning Calorimetry (DSC)

DSC analyses were performed with a TA Instruments Model Q100 (Newcastle, DE,
USA) equipped with an autosampler. The temperature control program consisted of
heating from 0 ◦C to 200 ◦C at 10 ◦C/min (1st cycle), cooling to 0 ◦C at 10 ◦C/min (2nd
cycle) and heating back to 200 ◦C at 10 ◦C/min. The heating scans were performed with
the sample under a constant flow of nitrogen at 50 mL min−1.
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2.8. Fourier-Transform Infrared Spectroscopy (FTIR)

All spectra were acquired with a diamond crystal attenuated total reflectance (ATR)
FTIR spectrometer (Perkin Elmer Spectrum 2000, Waltham, MA, USA). Spectra were
acquired in the scan range 4000.00–530.00 cm−1, with a resolution of 4.00 cm−1 and a total
of 8 scans for each sample that were averaged to eliminate background noise. Samples
were analyzed without any preparation and the obtained spectra were compared with a
spectral database.

2.9. Quantification of Identified Compounds

For the quantification of the identified compounds an in-house GC-TIC-MS validated
method was used. This method was developed using analytical standards and the stan-
dard addition method for the calibration, following the analytical conditions reported in
Section 2.6. The linearity was evaluated by the linear regression coefficient (R2). Limit of
detections (LOD) and limits of quantification (LOQ) were evaluated from the signal-to-
noise (S/N) ratio. Mean values and standard deviation of the S/N were retrieved from
5 chromatograms at the lowest calibration levels. The LOD was calculated as 3 times the
S/N, while the LOQ was calculated as 3 times the LOD [17,18]. Precision and trueness
were assessed only for short-term repeatability, with three replicates of fortified samples
during the same day.

2.10. Data Processing and Statistical Analysis

Data were processed using the Agilent Technologies Masshunter 10.0 software (Agilent
Technologies Inc., Santa Clara, CA, USA). Regression analysis and statistics were performed
using Microsoft Excel, and further statistical analysis, such as one-way analysis of variance
(ANOVA), followed by Tukey comparison test in all cases, has been performed with Minitab
18.0 statistical software (Minitab Inc., State College, PA, USA).

3. Results
3.1. Untargeted Screening and Identification of Chemical Compounds

The selection of the extraction solvent was based on previous studies, where it was
shown that DCM is a good extracting solvent for a majority of the FCM substances, NIAS
and PS monomers and oligomers [1,15]. The results indicate that there are several sub-
stances existing within the insects’ biomass, apart from the residual monomers, oligomers
or plastic additives. The identified compounds are reported in Table 1, with Figure 1
presenting the extracted ion chromatograms (EIC) of one of the extracted larvae biomass
samples (day 3), from the Total Ion Chromatogram (TIC; Figure S1).

Performance characteristics of the used in-house analytical method are presented as
(Supplementary Material Table S1). Briefly, linearity was above 0.99 for all analytes and
LODs ranged from 0.009 mg kg−1 (cumyl alcohol) up to 0.020 mg kg−1 for 9-octadecenamide.
Relative standard deviations (RSD, %) were below 16% and recoveries ranged from 84.0%
(tetradecanamide, high mass fraction) to 104.9% (ethyl hexadecanoate; low mass fraction).

Untargeted screening of the extracted larvae biomass provided a number of interest-
ing peaks which were processed further by studying the NIST spectral library. Identified
substances were further assessed and confirmed based on their respective and represen-
tative m/z and a similarity index higher than 80%. Furthermore, for PS monomers and
oligomers existing spectral data were used [1,15]. Finally, the preliminary identification
of substances was confirmed by injecting respective analytical standards for every single
suspect (Table 1).
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biodegradation of PS, of (A) plastic related compounds (monomers, oligomers and NIAS); (B) bioactive compounds (fatty
acids, fatty acid esters and respective amides).



Polymers 2021, 13, 17 6 of 12

Table 1. Identified compounds in the extract of the biomass resulting from biodegradation of
polystyrene (PS) from Tenebrio molitor.

Analyte tR m/z Molecular
Formula

Molecular Mass
(Da)

Styrene 6.783 104.0 C8H8 104.15
α-Methyl styrene 7.291 117.9 C9H10 118.18

Acetophenone 9.127 104.9 C8H8O 120.15
α,α-Dimethyl benzene methanol

(cumyl alcohol) 9.544 120.9 C9H12O 136.19

Ethyl myristate 10.770 88.0 C16H32O2 256.42
Ethyl palmitate 11.562 88.0 C18H36O2 284.48
Ethyl linoleate 12.475 67.0 C20H36O2 308.50

2,4-Di-tert butyl phenol (DTBP) 11.750 191.1 C14H22O 206.32
2,4,6-Triphenyl-1-hexene 12.399 117.1 C24H24 312.45

Methyl-9,12-octadecadienoate 12.775 67.0 C19H34O2 294.47
1,3,5-Triphenylcyclohexane 12.595 117.1 C24H24 312.45

Tetradecanamide 15.013 59.0 C14H29NO 227.39
Hexadecanamide 17.038 59.0 C16H33NO 255.44

9-Octadecenamide (oleamide) 20.691 59.0 C18H35NO 281.48
Undecanoic acid (undecylic acid) 12.815 73.0 C11H22O2 186.29
Tetradecanoic acid (myristic acid) 13.360 73.0 C14H28O2 228.37
Hexadecanoic acid (palmitic acid) 15.022 73.0 C16H32O2 256.42

Oleic acid 17.326 41.0 C18H34O2 282.46

Apart from the identified PS monomers (styrene, α-methyl styrene), additional PS
oligomers were identified: 2,4,6-triphenyl-1-hexene and 1,3,5-triphenylcyclohexane, both
trimers. Their structures are presented in Figure 2.
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Figure 2. Chemical structures of seven of the identified PS monomers and oligomers and a
non-intentionally added substance (NIAS) (2,4-DTBP) resulting from biodegradation of PS by
Tenebrio molitor.

Some fatty acids existing in the extracts were also identified: (1) the saturated fatty
acids (SFA) undecanoic acid (undecylic acid), tetradecanoic acid (myristic acid) and hex-
adecanoic acid (palmitic acid), and (2) the unsaturated (UFA) oleic acid. All these acids
were present in relatively high amounts, with the exception being undecylic acid, found at
traces levels.

We have additionally identified methyl-9,12-octadecadienoate (methyl linoleate), ethyl-
9,12-octadecadienoate (ethyl linoleate) and ethyl hexadecanoate (ethyl palmitate), which are
esters of the above-mentioned fatty acids. Finally, amides directly related to the identified
fatty acids were also found: tetradecanamide, hexadecanamide, and 9-octadecenamide
(oleamide).
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A representative scheme of the identified PS monomers and substances resulting from
their degradation/reaction is presented in Figure 3.
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3.2. Degradation Rate

The mass differences originated by the degradation of the PS within the time period of
the experiment were registered (Figure 4). Hence, mass balance showed that from the initial
amounts of PS a significant statistical degradation rate (p < 0.05) existed among the different
sampling days, pointing at a non-linear degradation. The total degradation rate at the end
of the experiment (7 days) was ca. 13%, which can be considered as sufficient and in line
with previously reported studies [7,19]. A longer experiment time could eventually lead to
higher degradation rates. It must be noted that during the experiment no assessment of
insects’ survival rate was performed
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The formation rate of the identified substances during the biodegradation experiment
is presented graphically in Figure 5. A simple one-way ANOVA analysis with Tukey test
comparison highlighted significant differences in all the identified substances, except in
the case of α-methyl styrene and 2,4-DTBP from day 3 to day 7.
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4. Discussion
4.1. Analytical Method and Identified Compounds

The applied analytical method was considered fit-for-purpose for this study, taking
into consideration its existing thresholds and limitations [18,20]. The selection of the ex-
traction solvent was based on previous studies, where it was shown that DCM is good
extracting solvent for a majority of the FCM substances, PS monomers and oligomers, and
NIAS [1,15]. Moreover, although a polar column (Innowax) has been used, the peak quality
for the fatty acids was low, with their identification being based on NIST library and injec-
tion of standards. The results of day 1 indicated the presence of the PS monomers styrene
and α-methyl styrene, substances that were not found in the extracts of the biomasses of the
larvae that were not fed with PS (day 0). Their formation was expected, as it indicates that a
degradation of the polymer occurs inside insects’ gut, due to enzyme-based microbiological
activity [7]. Furthermore, we identified acetophenone and cumyl alcohol. The origin of the
former can be either the result of the oxidation of styrene [21] or a degradation product from
PS production. However, no residues of acetophenone existed before the biodegradation,
which seems to support the assumption that it is a bio-oxidation product from PS/styrene
due to enzymatic activity [21,22]. Acetophenone has been reported to act as substrate
for the formation of cumyl alcohol, either via oxidation [23] or by enzymatic addition
(hydratases) to double C-C bonds [24], which can occur in the case of α-methyl styrene
(substitution). However, the amounts of α-methyl styrene were significantly lower when
compared to styrene, which may indicate that the latter is responsible for its formation.
Nevertheless, acetophenone formation could come from both monomers, as presented in
Figure 4.

As already reported by Tsochatzis et al. [1], a significant amount of low molecular
weight residual monomers and oligomers can be present in a plastic material. The PS
monomeric and oligomeric content in packaging can be considered of importance and with
potential health related impact [1]. That is the case of styrene, which use in FCMs has been



Polymers 2021, 13, 17 9 of 12

recently revaluated by EFSA [10]. Similar concerns may also exist for the cases of styrene
dimers and trimers, as reported recently [1].

In this study the formation of two PS trimers 2,4,6-triphenyl-1-hexene and 1,3,5-
triphenylcyclohexane have been reported [1]. Their concentration in the biomasses extracts
gradually increased from day 0 to day 7, which can be attributed to the bio-degradation of
the PS plastic by the Tenebrio molitor larvae (Figures 2 and 3).

Several free fatty acids (FFA) were also identified, both saturated (myristic, palmitic,
undecanoic acid) and unsaturated (oleic acid). Although the chromatographic response
suggests the existence of these acids in high amounts in the samples, their exact quantifica-
tion was not possible. Quantification of these substances would require extensive sample
derivatization, which would fall out of the scope of this work. The formation of FFAs in
identical experiments has been reported by Kong et al. In that work, during the biodegra-
dation of plastics with the use of Galleria mellonella long-chain FFA were produced from
long-chain hydrocarbon waxes. This formation happened without microbial assistance,
which could point to results of enzymatic activity only [25].

Our results are also consistent with what was reported by Lou et al., although they
indicated that in the case of biodegradation of plastics by insects, the formation of C=O and
C−O containing functional groups and long chain fatty acids, is indicative of metabolic
intermediates of plastics depolymerization and biodegradation [3].

The presence of tetradecanamide, hexadecanamide, and 9-octadecenamide (oleamide)
in the larvae biomass extracts is rather intriguing, especially when considering that they
occur concomitantly with their acid equivalents. Amide bond formation serves as a funda-
mental reaction in chemistry and in nature. The most abundant biological macromolecules
linked with amide bonds are peptides and proteins, resulting by a ribosome system in living
organisms. Biocatalytic amide bond formation could be biochemically achievable through
several potential enzymatic/chem-enzymatic methods, such as aminolysis reaction by hy-
drolases, peptide formation between amino acid esters and amino acids by acyltransferases,
ligands formation with two or more amino acids (unprotected) by ATP-dependent ligases,
nucleophilic substitution by transpeptidases, and hydration of nitriles to amides by nitrile
hydratases [26]. Furthermore, non-ribosomal peptide synthetase (NRPS) may provide
another pathway. For the latter, this could be realized by ATP-dependent enzymes that
generate acylphosphate intermediates or through ATP independent transacylation [27].
Nevertheless, the enzymatic formation of an amide bond is therefore a particularly interest-
ing platform for engineering the synthesis of structurally diverse natural and unnatural
ABC molecules for applications in drug discovery and molecular design.

2,4-Di-tert-butylphenol (2,4-DTBP) is a NIAS if found in FCMs, as it is not EU regulated.
It originates from the degradation of a common antioxidant used as additive in FCMs,
Irgafos 168 (tris (2,4-di-tert-butylphenyl) phosphate). Less reported data is available for 2,4-
DTBP, but its toxicity on rats has been studied, revealing no-observed adverse- effect levels
(NOAEL). The identification of 2,4-DTBP and Irgafos 168 is frequent when analyzing FCM-
related matrices [1]. However, the latter was not detected by our analytical system, probably
due to the use of a polar analytical column (Innowax) and its high molar mass (647 Da).
Thus, we observe that the 2,4-DTBP amounts increase significantly at the beginning of the
biodegradation and they reach a “plateau” after 7 days. No results are available for the fate
of this compound, especially within a biochemical (biodegradation) process.

Our results are also in accordance with reported data by Son et al. regarding the
predominant FFA within insects (myristic, palmitic and for oleic) [28]. Lou et al. ana-
lyzed the frass of PS-fed larvae and also identified long chain FFAs, such as oleic acid
(C18H34O2), octadecanoic acid (C18H36O2) and n-hexadecanoic acid (C16H32O2), as well
as the PS trimer (1,3,5,-triphenyl-cyclohexane), findings fully aligned with the results of
this work [3]. Identifying them in this work would have required the use of a dedicated
methyl-esterification method (fatty acid methyl esters; FAME) [29]. However, although
interesting, it was not the main scope and focus of the current work and therefore it has not
been examined further. However, the presence of long chain FFAs and the decrease of the
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amounts of more complex long chain carboxylic acid esters structures indicated digestion
and biodegradation of PS, as reported by Lou et al. [3]. The existence of significant amounts
of PS monomers and oligomers, while it shall not be underestimated the enzymatic activity,
as observed in the case of amide bio-transformation, also hints at that possibility

4.2. Release and Fate of the Identified Chemical Compounds

The analysis of extracts of insects on day 0 did not reveal significant amounts of
styrene and α-methyl styrene nor any oligomers. From day 1, the volatiles PS oligomers
2,4,6,-triphenyl -1-hexene and 1,3,5-triphenyl cyclohexane were already being formed,
while also styrene and α-methyl styrene were generated. It is worthy to notice that for
many other polymers, such as in the case of polyethylene terephthalate (PET), the trimer
has been described as the most abundant structure [30,31]. 2,4-DTBP was also identified.
A simple one-way ANOVA analysis, among the observed concentration revealed significant
differences in all the identified substances, except in the case of α-methyl styrene and 2,4-
DTBP, from Day 3 to Day 7. However, for 2,4-DTBP, an initial statistical increase from Day
0 to Day 3 was observed, leading to a plateau at Day 7 (gradual release from the polymer
degradation). All the aforementioned effects could be explained by a limited enzymatic
activity for these molecules.

The degradation rate (Figure 4) showed a non-linear behavior correlated with a
statistically significant degradation rate among the different sampling days, pointing at the
presence of enzymatic activities that typically require some time to take place. The latter
effect can be connected also to the degradation of styrene, styrene oligomers, acetophenone
and cumyl alcohol. In their case, an initial increase from day 0 to day 3 led to a decrease
at day 7, something that can be explained from enzymatic activity and conversion of the
ingested chemicals into CO2, as it has been already reported [5,19,28].

However, it is interesting to highlight that the styrene amounts increased from day 1
to day 3, followed subsequently by a decrease to non-detectable, indicating an absence of
formation of that monomer between those days. In relation to the latter, we observe that
α-methyl styrene is generated from day 1 and retains a ‘’plateau” until day 7 (Figure 5).
The same plateau seems to be reached also by 2,4-DTBP, though in lower amounts. Inter-
estingly enough, an identical behavior for acetophenone and cumyl alcohol (α,α-dimethyl
benzene methanol) was observed. These compounds had an initial increase from day 1
to day 3, followed by a significant decrease from day 3 to day 7, though not as severe as
in the case of acetophenone. The latter can be tentatively explained by the high volatil-
ity of acetophenone. As a concluding remark, regarding the groups of monomers and
oligomers/NIAS, we observe that styrene is degraded rather fast, together with some
volatile PS oligomers, while the other compounds are reaching a threshold and remaining
in relatively constant mass fraction levels. The decrease observed from day 3 to day 7 can
be explained by the transformation of the ingested substances to CO2. It has been already
reported that there is a conversion ranging from 35% up to 50% of the ingested polymers
into a putative gas fraction (CO2) [5,19,28].

Finally, and concerning the remaining bioactive molecules identified, an interesting
effect was noted: the formation of amides from their respective FAs. All three identified
amides (tetradecanamide, hedecanamide, oleamide) showed the same trend during the
experiment: non-existing before day 3, and with a steady increase in their mass fractions
up to day 7. A potential explanation can be the existing enzymatic activity, not that intense
at the beginning due to temperature effects (27 ◦C) and humidity conditions (75% RH), that
might have not been the optimal ones for this particular enzymatic activity. In addition,
the formation of potential secondary or intermediate metabolites might have influenced
the intensity of these phenomena.

5. Conclusions

This work highlighted the formation and the generation of chemical compounds
during biodegradation of PS with insects’ larvae. The process was efficient, presenting
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a sufficient degradation rate/plastic mass loss. This degradation rate was assessed in
relation to the formation or generation of compounds due to the occurring biochemical
process, by applying a GC-MS based untargeted screening. Thus, several compounds have
been identified including PS monomers (styrene, α-methyl styrene), PS oligomers (mostly
trimers) and NIAS, either related to the nature of plastic material (acetophenone, cumyl
alcohol) or due to additional plastic additives present in the initial materials (2,4-DTBP).
Furthermore, several bioactive components have been identified such as FFAs (myristic,
palmitic, oleic) and respective esters. Even more important was the identification of the
FFA’s correspondent amides, formed after a certain period of time most probably due to
the enzymatic transformationof the former.

The results of this work illustrate the existing potential in the degradation of some
polymers by using them as feedstock for insects. Moreover, the observed production of
some bioactive components could also be a source of obtaining interesting and valuable
byproducts during the biodegradation of plastics, in what could be considered as a bio-
recycling process.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-436
0/13/1/17/s1, Figure S1: Total Ion chromatogram (TIC) from untargeted GC-EIC-MS analysis of
insects’ biomass during biodegradation of polystyrene (day 3), Table S1: Analytical features together
with precision and accuracy results of the validated analytical method.
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