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Many quantitative traits are subject to polygenic selection, where several genomic regions undergo small, simultaneous changes

in allele frequency that collectively alter a phenotype. The widespread availability of genome data, along with novel statistical

techniques, has made it easier to detect these changes. We apply one such method, the “Singleton Density Score” (SDS), to the

Holstein breed of Bos taurus to detect recent selection (arising up to around 740 years ago). We identify several genes as candidates

for targets of recent selection, including some relating to cell regulation, catabolic processes, neural-cell adhesion and immunity.We

do not find strong evidence that three traits that are important to humans—milk protein content, milk fat content, and stature—

have been subject to directional selection. Simulations demonstrate that because B. taurus recently experienced a population

bottleneck, singletons are depleted so the power of SDS methods is reduced. These results inform on which genes underlie recent

genetic change in B. taurus, while providing information on how polygenic selection can be best investigated in future studies.
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Impact Statement

Many traits of ecological or economic importance (includ-

ing height, disease propensity, climatic adaptation) are “poly-

genic.” That is, they are affected by a large number of genetic

variants, with each one only making a small contribution to a

trait, but collectively influence variation. As selection acts on

all of these variants simultaneously, it only changes the fre-

quency of each one by a small amount, making it hard to detect

such selection from genome data. This situation has changed

in recent years, with the proliferation of whole-genome data

from many individuals, along with the development of meth-

ods to detect the subtle effects of polygenic selection. Here,

we use data from 102 genomes from domesticated cattle (Bos

taurus) that has experienced intense artificial selection since

domestication, and test whether we can detect signatures of

recent selection (arising up to 740 years ago). Domesticated

species are appealing for this kind of study, as they are sub-

ject to extensive genome sequencing studies, and genetic vari-

ants can be related to traits under selection. We carried out

our analysis in two parts. We first performed a genome-wide

scan to find individual genetic regions that show signatures

of recent selection. We identify those relating to cell regula-

tion, catabolic processes, neural-cell adhesion, and immunity.

In the second part, we then analyzed genetic regions associ-

ated with three key traits: milk protein content, milk fat con-

tent, and stature. We tested whether these regions collectively
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showed a signature of selection, but did not find a significant

result in any of these cases. Simulations suggest that the do-

mestication history of cattle affected the power of these meth-

ods. We end with a discussion on how to best detect polygenic

selection in future studies.

Determining which genomic regions have been subject to

selection is a major research goal in evolutionary genetics. Tradi-

tional methods have focused on detecting strong selection affect-

ing individual genes (Nielsen, 2005; Vitti et al., 2013; Stephan,

2019). An alternative process is “polygenic selection,” where

many loci contribute to genetic variation in a trait, so selection

acting on it is expected to generate small and simultaneous al-

lele frequency changes at multiple loci (Pritchard & Di Rienzo,

2010; Pritchard et al., 2010). Many polygenic models have been

formulated to account for both the response to phenotypic selec-

tion and the maintenance of genetic variance in quantitative traits

(reviewed by Sella and Barton [2019] and Barghi et al. [2020]).

Among them is Fisher’s infinitesimal model, which is important

for its historical role in uniting population and quantitative ge-

netics, and its recent renaissance in the context of genome-wide

association studies (Fisher, 1918; Barton & Keightley, 2002; Bar-

ton et al., 2017; Charlesworth & Edwards, 2018; Visscher & God-

dard, 2019). Although it has been possible to identify which ge-

netic regions contribute to trait variation, it has historically been

hard to infer which alleles have been involved in the polygenic

selection response. Extensive theoretical studies of how alleles

at multiple loci act when a population adapts to a new optimum

generally find that “large-effect” alleles, which strongly affect a

trait, are the first to spread and fix, whereas “small-effect” alle-

les take much longer to reach high frequencies (de Vladar and

Barton, 2014; Wollstein & Stephan, 2014; Jain & Stephan, 2015,

2017a, 2017b; Stetter et al., 2018; Thornton, 2019; Hayward &

Sella, 2019). Furthermore, if epistasis exists between variants,

many selected alleles do not reach fixation as they eventually be-

come deleterious (de Vladar & Barton, 2014; Jain & Stephan,

2017b). The spread of large-effect alleles may also be impeded

if a faster adaptive response can be otherwise realized through

changes at many small-effect alleles (Lande, 1983; Chevin &

Hospital, 2008; Pavlidis et al., 2012; Chevin, 2019). Alterna-

tively, if the optimum shift is sufficiently big, then large-effect

mutations that first go to fixation can subsequently be replaced

by small-effect variants over longer timescales (on the order of

the population size; Hayward and Sella [2019]). Overall, only a

small proportion of loci affected by polygenic selection are ex-

pected to fix sufficiently quickly to leave selection signatures in

genomic data (Pavlidis et al., 2012; Thornton, 2019).

Due to this difficulty, earlier methods for detecting polygenic

selection focused on cases where selection favors distinct pheno-

types in different populations, so trait differentiation among pop-

ulations will be greater than expected under neutral drift. Tests for

this form of selection relied on comparing QST and FST statistics,

which, respectively, measured mean genetic differentiation at the

trait itself and a set of neutral loci (Whitlock, 2008; Le Corre &

Kremer, 2012; Savolainen et al., 2013). Yet these methods do not

determine which genomic regions are subject to selection. This

situation has now changed with the increased number of genome-

wide association study (GWAS) data that link genotypes and phe-

notypes, as exemplified by the development of large cohort stud-

ies (e.g., the UK Biobank; Bycroft et al. 2018). The release of

these data spurred a series of studies and new methods designed

specifically to detect polygenic selection. These methods usually

involve determining which SNPs affecting a phenotype show cor-

related changes in frequency (Berg & Coop, 2014; Racimo et al.,

2018; Sanjak et al., 2018; Josephs et al., 2019; Berg et al., 2019a,

2019b; Uricchio et al., 2019; Edge & Coop, 2019; Kreiner et al.,

2020; Wieters et al., 2021; Gramlich et al., 2021); which sets of

alleles are associated with certain environmental or climatic vari-

ations (Coop et al., 2010; Turchin et al., 2012; Robinson et al.,

2015; Yeaman et al., 2016; Exposito-Alonso et al., 2018; Zan

& Carlborg, 2018; Exposito-Alonso et al., 2019; MacLachlan

et al., 2021; Ehrlich et al., 2021; Fuhrmann et al., 2021; Rowan

et al., 2021); or determining which SNPs or genetic regions ex-

plain a large fraction of phenotypic variance and trait heritability

(Zhou et al., 2013; Yang et al., 2015; Gazal et al., 2017; Zeng

et al., 2018; Schoech et al., 2019; Exposito-Alonso et al., 2020;

Duntsch et al., 2020; Zeng et al., 2021). Some of these approaches

use overlapping methods.

Detecting recent polygenic selection is much harder, as

long periods of time (number of generations on the order of

the population size; Hayward & Sella, 2019; Thornton, 2019)

may be needed to cause detectable frequency changes in alle-

les with small effect sizes. Over shorter timescales, these fre-

quency changes are expected to be more modest and harder to

detect (Stephan, 2016; Jain & Stephan, 2017a). A recent break-

through in detecting these subtle changes was the development

of the “Singleton Density Score” (SDS), a statistic tailored to de-

tect recent and coordinated allele frequency changes over many

SNPs (Field et al., 2016). Recent selection at a locus favoring one

variant will lead to a reduction in the number of singletons (i.e.,

variants that are only observed once) around it. The SDS detects

regions that exhibit a reduction in the density of singletons, to de-

termine candidate regions that have been subject to recent selec-

tion. Using this approach, Field et al. (2016) found correlations

between SDS scores at SNPs and their associated GWAS effect

sizes for several polygenic traits in the modern UK human pop-

ulation, including increased height, infant head circumference,

and fasting insulin. Their findings suggested that these traits have

been subject to recent selection during the most recent 75 or so
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generations (about 2000 years). However, these (and other) re-

sults that detect selection for increased height may instead reflect

previously unaccounted-for population structure (Novembre &

Barton, 2018; Barton et al., 2019; Sohail et al., 2019; Berg et al.

2019a; Uricchio et al., 2019; Edge & Coop, 2019).

The SDS method is ideally suited to organisms where large

amount of whole-genome data are available, along with quanti-

tative trait loci (QTL) or GWAS information that link genotypes

to phenotypes. Domesticated species are attractive systems for

studying recent selection, as selected phenotypes are often al-

ready known and they are subject to large-scale sequencing stud-

ies. Investigating the genetic architecture underlying rapid selec-

tion in these species is also important to determine how they

respond to agricultural practices, and uncover selection targets

that can be used to improve breeding programs (Georges et al.,

2019). Domestic cattle Bos taurus has been subject to intensive

genomics analyses to improve artificial selection for traits that

are important for human use, including milk protein yield, milk

fat content, and stature (Hayes et al., 2009; Meuwissen et al.,

2013; Wray et al., 2019). These traits are influenced in part by

an individual’s genome, with significant heritability estimates be-

ing recorded, some as high as 80% (Soyeurt et al., 2007; Haile-

Mariam et al., 2013; Buitenhuis et al., 2016). Previous selection

scans on B. taurus reported individual regions that were likely

to be subject to recent selection, some of which were close to

genetic regions for stature, milk protein content, and milk fat

content (Lemay et al., 2009; MacEachern et al., 2009; Qanbari

et al., 2010; Boitard & Rocha, 2013; Qanbari et al., 2014; Zhao

et al., 2015; Boitard et al., 2016a; Bouwman et al., 2018). How-

ever, these traits are polygenic, with several genetic regions and

QTLs associated with each (Lemay et al., 2009; Boitard et al.,

2016a; Bouwman et al., 2018; van den Berg et al., 2020). Al-

though recent methods have been developed to detect polygenic

environmental adaptation (Rowan et al., 2021), there has yet to

be a formal test of whether these intrinsic traits show evidence of

polygenic selection.

Here, we applied the SDS method to whole-autosome se-

quencing data from 102 B. taurus Holstein individuals. We first

determined genetic regions that have been subject to recent direc-

tional selection, and subsequently tested whether evidence exists

for recent selection acting on a set of QTLs underlying either milk

protein content, milk fat content, or stature in this breed.

Results
METHODS OUTLINE

We filtered the data to retain only biallelic SNPs that had a sensi-

ble level of coverage and did not lie in putatively over-assembled

regions (i.e., duplicated sections that caused many reads to as-

semble at a specific genetic location). Over-assembled regions

appear as highly heterozygous with elevated coverage, and can

exhibit false signatures of recent selection. We also obtained a

set of singletons and filtered them to retain high-quality variants

where both alleles were equally well covered to remove poten-

tially erroneous calls. We polarized test SNPs using outgroup se-

quences and applied the SDS test of Field et al. (2016) to detect

recent selection, with increased SDS values reflecting selection

favoring derived SNPs over ancestral variants. We standardized

SDS scores with those of a similar frequency, so they are nor-

mally distributed (similar normalization was also carried out by

Field et al. 2016). These values are denoted sSDS for “standard-

ized SDS.” Further details are available in the Methods in the

Supporting Information.

ESTIMATING TIMESCALE OF SELECTION

We first determined the timescale over which we expect to detect

selection in B. taurus using the SDS method. SDS measures the

changes in singleton numbers around putatively selected SNPs,

relative to background numbers in the absence of selection. As

singletons arise on the tips of the underlying gene trees, the aver-

age tip length in the genealogy of sequenced samples determines

the timescale over which the SDS detects a signal (Field et al.,

2016). As more haploid genomes are included in the study, the

time to first coalescence between two samples decreases, reduc-

ing the tip lengths and therefore shortening the timescale over

which SDS detects selection (Field et al., 2016). We hence simu-

late tip-ages over a range of sample sizes to investigate how this

timescale changes accordingly.

To calculate the mean tip age, we simulated gene genealo-

gies under two scenarios. We first simulated the Holstein popu-

lation demography inferred by Boitard et al. (2016b), which sug-

gested that this population experienced a sudden decline in effec-

tive population size (Ne) since domestication, but with a present-

day Ne (∼793) that is much larger than that inferred from pedi-

gree data (∼49; Sørensen et al. 2005) or from temporal variation

in SNP frequencies (∼48; Jiménez–Mena et al., 2016). Hence,

we also simulated genealogies under a second model that used the

Boitard et al. (2016b) demographic model, but with the present-

day Ne set to 49. These scenarios will be referred to as the “High

N0” and “Low N0” models, respectively.

Figure 1 shows simulation results. Depending on the as-

sumed present-day Ne, the tip length in our sample of 204 alleles

(i.e., assuming two per diploid individual) goes back either 65 or

148 generations. Assuming 5 years per generation (Boitard et al.,

2016b), this timescale corresponds to between 325 and 740 years

ago. Since B. taurus domestication started around 10,000 years

ago (Zeder, 2008), the sample size used in this study will only

capture selection acting in the very recent past that is more rel-

evant for breed formation, rather than selection during B. taurus

domestication. Sample sizes and tip-ages are linearly related on a
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A B

Figure 1. Simulated mean tip age for B. taurus, as a function of the number of haploid samples. Simulations assumed either (A) demog-

raphy as inferred by Boitard et al. (2016b) (the “High N0” model) or (B) the same but with a smaller present-day Ne of 49 (the “Low N0”

model). Points are the mean values; bars show 95% confidence intervals. The solid line is the best linear fit to the log of both values;

dotted lines show the predicted tip age for 204 alleles.

Table 1. Genes that overlap or lie close to Bonferroni-significant sSDS regions. The “High, Low N0” column specifies which genes are

close to significant SNPs for each N0 model.

Chromosome Gene Name Start Position End Position Gene Biotype High, Low N 0

1 PPM1L 106405113 106727070 Protein Coding High, Low
5 TMCC3 24306913 24595494 Protein Coding High, Low
5 CEP83 24070404 24345243 Protein Coding High, Low
17 U6 43381106 43381209 snRNA Low
17 CTSO 43364999 43381605 Protein Coding Low
17 TDO2 43386894 43403747 Protein Coding High, Low
23 OR12D2H 29291787 29292713 Protein Coding High, Low
23 OR12D2E 29305933 29309785 Protein Coding High, Low
24 GAREM1 24694637 24927333 Protein Coding High, Low
29 NTM 34576918 34994005 Protein Coding High, Low

log-log scale, meaning that an increase in sample size will greatly

decrease the timescale over which SDS detects selection. For ex-

ample, with 500 haplotypes then SDS will detect selection acting

no more than 50 generations ago, depending on the underlying

demographic model.

We will focus on detecting selection signatures assuming the

high N0 model. Results using the low N0 model to calibrate scores

were broadly similar. They are outlined in the Supporting Infor-

mation; we will highlight when differences arise.

GENOME-WIDE sSDS

Figure 2 plots sSDS values (at SNPs with minor allele frequency

greater than 5%) across all autosomes, excluding chromosome

25 (due to an insufficient number of singletons needed to ob-

tain SDS scores after filtering). Many SNPs have elevated sSDS

scores (158 SNPs at FDR < 0.05; 306 for the low N0 model).

Several regions contain SNPs with significantly high sSDS values

(Bonferroni-corrected nominal P < 0.05; actual P < ∼2.7 × 10
−8). To further investigate potential selection targets, we looked

for genes that either overlapped significant SNPs or lay 10-kb up-

or downstream of them. Linkage disequilibrium (LD), as mea-

sured by r 2, decays to around 0.2 over 50 kb in Danish Hol-

stein breeds (Buitenhuis et al., 2016), so genes within 10 kb

should be in LD with regions harboring high sSDS scores. Ta-

ble 1 lists these genes, with more targets present under the low

N0 model. Most of these genes are of unknown function (as listed

on UniProt); the list also includes an snRNA. PPM1L is involved

with cellular regulation and the activation of stress-activated
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Figure 2. P-values of sSDS scores across B. taurus autosomes, as plotted on a negative Log10 scale, as a function of the chromosome.

Alternating black and gray points show (nonsignificant) values from different chromosomes. Blue points are SNPs with FDR < 0.05,

with the cutoff denoted by a horizontal dotted line. Red points are SNPs with Bonferroni-corrected P-value < 0.05 (actual P-value <

∼2.7 × 10−8), with the cutoff denoted by a horizontal dashed line. Figure S1 shows results for the Low N0 model.

protein kinases. TDO2 is involved in tryptophan-related catabolic

processes, whereas NTM is implicated in neural cell adhe-

sion. SNPs with significantly elevated scores are also found

on chromosome 23 near the MHC region, which may reflect

overdominant selection. All Bonferroni-significant SNPs were

removed from subsequent tests of recent polygenic selection

to prevent directional selection from skewing the underlying

sSDS distributions. Figure S1 shows results for the low N0

model.

TESTING FOR POLYGENIC SELECTION ACTING ON

MILK FAT, PROTEIN AND STATURE

If polygenic selection were acting on specific traits, we expect a

positive correlation between the effect sizes of variants underpin-

ning a trait, and selection acting on them as measured by sSDS.

We collated sSDS scores of SNPs that lie close to QTLs reported

for either milk fat percentage, milk protein percentage (van den

Berg et al., 2020), or those that lie close to stature QTLs (Bouw-

man et al., 2018). The latter were inferred from a meta-analysis

of GWAS studies conducted in seven Holstein populations, but

not every QTL had an effect size reported in each population. We

hence investigated two overlapping consensus QTL sets, where

an effect size was either reported in at least six of seven popula-

tions (yielding 42 QTLs with sSDS scores associated with them)

or where effect sizes were reported in at least five of seven pop-

ulations (58 QTLs had sSDS scores). We repolarized SDS scores

so that a positive score reflected a trait-increasing effect; we de-

note these values “tSDS” following Field et al. (2016). We then

determine if there was a positive correlation between the absolute

log10-value of the QTL P-value (a proxy for the effect size) and

tSDS.

Figure 3 shows the relationship between QTL P-values and

tSDS for SNPs that lie close to QTLs. Although positive trends

are observed as determined using a linear model, they all ex-

hibit nonsignificant correlations (milk fat percentage Spearman

ρ = 0.0990, P = 0.603; milk protein percentage Spearman ρ

= 0.0354, P = 0.758; stature from six breeds Spearman ρ =
−0.0739, P = 0.642; stature from five breeds Spearman ρ =
−0.00966, P = 0.943). Relationships remain nonsignificant af-

ter removing an outlier point for the milk traits whose QTL

has an extremely low P-value (Figure S2), and also under the

low N0 model (Figure S3; see figure legends for correlation

P-values).

sSDS (and tSDS) can become correlated along the genome

if focal SNPs are in LD with one another, which was not ac-

counted for in the preceding analyses. To determine whether LD

could have affected these correlations, we randomly subsampled

sSDS scores from SNPs that shared the same chromosome and

bin of derived-allele frequency as the SNPs used in the above

analyses, and repolarized them to transform them into tSDS
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Figure 3. Relationship between tSDS scores near milk or stature QTLs, as noted in the subheadings, and the absolute log P-value of

QTLs. Lines show a linear model regression fit. Figure S3 shows results assuming a low N0 model.

values. We then determined the Spearman’s ρ associated with

these permuted values to determine whether that for the true data

was significantly elevated (see Methods for details). In all cases,

the observed value was not significantly higher than for permuted

values (see Figure S4 for histograms and exact P-values, which

all exceed 0.05). We therefore conclude that these QTL datasets

do not harbor SNPs with significantly different tSDS scores com-

pared to the rest of the genome.

Discussion
SUMMARY OF RESULTS

We analyzed an extensive B. taurus genomic dataset to iden-

tify signatures of recent selection in the Holstein breed, and to

determine whether the data contained a signal of polygenic se-

lection acting on milk proteins and QTLs underlying phenotypic

variation in stature. Given the sample size and the demographic

history of Holsteins, the SDS method can detect very recent
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selection events arising no more than approximately 740 years

ago (Figure 1). A whole-genome scan for sSDS scores identi-

fied several targets of recent directional selection that overlap or

lie close to protein-coding genes (Figure 2; Table 1). The genes

whose functions are known are involved in protein regulation,

catabolic processes, and neural-cell adhesion. Significant values

were also observed near the MHC region. We subsequently inves-

tigated whether either milk protein genes or SNPs near stature

QTLs collectively showed evidence of polygenic selection. We

did so by testing whether there is a relationship between the QTL

effect size, as measured by its P-value, and tSDS values to SNPs

near them. However, no relationship was observed, even after

performing a permutation test (Figs. 3 and S2-S4). Hence, al-

though sSDS could reveal specific instances of recent selection,

tests based on collective scores of variants associated with known

selected traits yielded no signal of polygenic selection.

POTENTIAL REASONS FOR A LACK OF POLYGENIC

SELECTION SIGNAL

Impact of Holstein demographic history
Although the SDS method detected individual candidate genes

for very recent selection, we were unable to find strong evidence

for polygenic selection acting on three traits that were subject

to artificial selection since domestication. This result is a priori

surprising, given that these traits have been subject to recent in-

tense artificial selection. Recent studies generally find nonzero

heritability estimates for them, indicating that there should be the

potential for genetic variants underpinning them to change in re-

sponse to artificial selection (Soyeurt et al., 2007; Haile-Mariam

et al., 2013; Buitenhuis et al., 2016). In addition, the ratio of

the mutation and recombination rates in cattle is just over three

(Boitard et al., 2016b; Harland et al., 2018), indicating that sev-

eral informative SNPs exist per haplotype that should improve the

power of the SDS method (in contrast, this ratio is approximately

equal to one in humans; Field et al., 2016).

One potential reason for this lack of signal is due to the

population history of Bos taurus. The effective population size

of many B. taurus breeds appears to have undergone a decline

since domestication (Sørensen et al., 2005; Boitard et al., 2016b),

which likely reflects successive bottlenecks due to domestication,

breed formation, and intense recent selection. Population size re-

ductions are known to reduce the number of low-frequency vari-

ants and increase the prevalence of intermediate-frequency vari-

ants (Harpending et al., 1998), which can affect the power of the

SDS method. To understand if the history of B. taurus affects

the detection of recent selection in Holstein cattle using SDS, we

ran coalescent simulations to determine its ability to detect ongo-

ing selection, given realistic Holstein population history and ge-

netic parameters (see Methods for details). We simulated a partial

sweep occurring in the middle of a 10-Mb region, either assuming

a mutation rate in line with what has been inferred for Holstein

or one 10-fold higher to replicate diversity expected in a genetic

region with an elevated mutation rate.

For the standard mutation rate, no SDS scores were produced

for any simulations. After inspecting the simulation results, we

see that there is a large skew in the distribution of singleton num-

bers per individual with a large number of individuals (over 20

on average) that do not carry singletons at the end of simulations,

preventing the calculation of a local SDS score (Figure 4). This

fraction remained the same irrespective of whether the simulated

region was neutral or subject to selection; the main effect of a

sweep was to reduce the mean number of singletons per individ-

ual, which is the signal measured by SDS (Field et al., 2016).

This reduction in overall singleton numbers is consistent with

the known effects of population size contraction on reducing tip

lengths (Harpending et al., 1998).

With a 10-fold higher mutation rate, there were fewer cases

where no individual harbored singletons (Figure 4). Accordingly,

SDS scores could be calculated for 65 and 66 out of 100 simu-

lations for the neutral and selective cases, respectively. In these

cases, sSDS values were significantly higher in the selected case

than for the neutral case (Figure 5; two-sided Wilcox Test P =
1.1 × 10−5). However, note that sSDS values is less than one for

the selected case, which does not exceed the FDR threshold in our

study (for the high N0 case, the smallest sSDS value with FDR <

0.05 is 4.46).

Although singleton numbers differ between the two cases, a

reduction in power could also be caused by a more general reduc-

tion in diversity due to the small recent effective population sizes

of cattle. To investigate this effect, we estimated the fixed Ne that

would yield the same number of segregating sites in simulations

using the standard mutation rate, based on Watterson’s estimator

(Watterson, 1975; Hudson, 1990; see Methods for details). In

both cases where selection is present or absent, Ne estimates

lie at around 25,000, which is that inferred at approximately

halfway between the onset of domestication and the present

day (Boitard et al., 2016b; Figure S5). Given that estimates are

similar irrespective of whether a sweep was present or not, the

reduced population size caused by domestication could have

also affected power due to limiting genetic variation and thus

the potential to detect subtle sweep signatures associated with

polygenic selection.

Overall, these simulations are consistent with population

size reductions in B. taurus both reducing the overall genetic di-

versity and the number of singletons, which limits its ability to

detect partial sweeps. SDS is more likely to detect signals in re-

gions of elevated mutation rate, suggesting there will likely be an

ascertainment bias in where signals are detected in the genome.

The reduction in singletons also reduces the power to investi-

gate SDS values in telomeric regions. SDS values are calculated
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Figure 4. Mean distribution of singleton numbers per individual for each simulation, either assuming a standard mutation rate (left) or

a 10-fold higher mutation rate (right). Bars represent 95% confidence intervals.

using the distance up- and downstream from a SNP to the nearest

singleton, and are undefined if a certain number of samples do

not harbor singletons in either direction (Field et al., 2016). SDS

values are hence less likely to be defined in telomeric regions, as

it is generally less feasible to observe singletons up until the end

of the chromosome. This problem is exacerbated if there are few

singletons overall.

Other potential reasons for a lack of signal
Another potential reason for a lack of signal is that the selec-

tion response on these traits may have been driven by large-

effect variants that have already fixed in the population, with

a smaller contribution from small-effect mutations. Theoretical

models have shown that more major-effect QTLs are likely to

fix if the population lies further from a fitness optimum (Lande,

1983; Jain and Stephan, 2017b; Thornton, 2019). Domesticated

species, which experience strong and sustained directional arti-

ficial selection, especially in recent generations, could thereby

fix more adaptive mutation via sweep-like processes compared to

populations evolving in more stable environments (Lande, 1983;

Jain & Stephan, 2017a). Furthermore, once a population has

adapted to a new environment (the domestication phenotype in

this case), then any remaining major-effect mutations are likely to

be superseded by variants with weaker effects, which are harder

to detect (Hayward & Sella, 2019). The response to polygenic se-

lection will be further weakened in smaller populations (John and

Stephan, 2020), which could be a factor given the reduced effec-

tive population sizes of B. taurus (Sørensen et al., 2005; Boitard

et al., 2016b). There is some evidence of this explanation; selec-

tive sweeps signatures are associated with stature QTLs (Bouw-

man et al., 2018), and the study of van den Berg et al. (2020) was

more likely to identify milk QTLs that had a moderate to high

minor allele frequency, suggesting reduced power to detect low-

frequency variants that are potential contributors to polygenic se-

lection. Conversely, the stature meta-analysis by Bouwman et al.

(2018) found significant SNPs that explained up to 13.8% of the

variance in stature, which is similar to that explained by signif-

icant SNPs for human height (16%), which is a classic trait for

polygenic selection studies. Hence, there may be sufficient poly-

genic SNPs present to test for polygenic selection, but the power

will still be reduced due to the demographic history of Holstein

cattle.

Potential solutions to increase power include increasing

sample sizes; using alternative methods; or analyzing different

kinds of genome data to detect polygenic selection. Applying

SDS to a larger sample size would increase the power to detect

selection acting in the recent past (Figure 1; see also Field et al.

2016), but overall power will still be limited by the tip-length

of neutral genealogies. Recent developments in methodology in-

volve directly inferring trees from genome data, and using these
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Figure 5. Distribution of simulated sSDS scores assuming a high mutation rate, for the neutral and selected cases. Numbers above each

box plot denote how many simulations produced SDS scores and were included in the plot.

to identify subtle sweep signatures associated with trait variants

(Edge & Coop 2019; Speidel et al., 2019; Stern et al., 2021).

These methods have greater power to detect weakly selected mu-

tations that may be segregating for longer than the tip-length of

the population.

Another approach would be to look beyond sequence data

and focus on gene networks (reviewed by Fagny and Austerlitz

2021). The recently proposed “omnigenic” model (Boyle et al.,

2017; Liu et al., 2019) posits that variation in quantitative traits

is principally affected by a plethora of “peripheral” genes that

indirectly affect them, rather than a limited set of “core” genes

that directly modify a trait. These numerous peripheral genes

may exert their influence via regulatory effects (e.g., gene ex-

pression changes), but are also expected to be highly pleiotropic.

Fully testing the omnigenic model will require larger datasets and

novel experimental designs (Wray et al., 2018). A recent exam-

ple is from an experiment with Drosophila melanogaster, where

gene knockouts that do not pass a GWAS significance threshold

for pupal length still significantly affect it (Zhang et al., 2021).

There is also nascent evidence that gene regulation may underlie

directional polygenic selection. Boitard et al. (2016a) found that

some adaptive signatures of B. taurus are located in intergenic

regions; regulatory changes were also proposed to guide poly-

genic selection in Arabidopsis (He et al., 2016). Analyses of gene

sets associated with infection responses or immunity also found

evidence for polygenic selection in humans and primates (Daub

et al., 2013, 2017; Svardal et al., 2017). Immunity gene sets might

be exceptional cases, as they are more likely to contain genes
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subject to very strong selection (Castellano et al., 2019). Further

investigations using regulatory information and a broader range

of gene sets could be a promising approach to determine the im-

pact of polygenic selection.

Materials and Methods
Full methods are available in the Supporting Information.
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