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InterCellar enables interactive analysis and
exploration of cell−cell communication in
single-cell transcriptomic data
Marta Interlandi 1,2✉, Kornelius Kerl 2 & Martin Dugas 1,3

Deciphering cell−cell communication is a key step in understanding the physiology and

pathology of multicellular systems. Recent advances in single-cell transcriptomics have

contributed to unraveling the cellular composition of tissues and enabled the development of

computational algorithms to predict cellular communication mediated by ligand−receptor

interactions. Despite the existence of various tools capable of inferring cell−cell interactions

from single-cell RNA sequencing data, the analysis and interpretation of the biological signals

often require deep computational expertize. Here we present InterCellar, an interactive

platform empowering lab-scientists to analyze and explore predicted cell−cell communica-

tion without requiring programming skills. InterCellar guides the biological interpretation

through customized analysis steps, multiple visualization options, and the possibility to link

biological pathways to ligand−receptor interactions. Alongside convenient data exploration

features, InterCellar implements data-driven analyses including the possibility to compare

cell−cell communication from multiple conditions. By analyzing COVID-19 and melanoma

cell−cell interactions, we show that InterCellar resolves data-driven patterns of commu-

nication and highlights molecular signals through the integration of biological functions and

pathways. We believe our user-friendly, interactive platform will help streamline the analysis

of cell−cell communication and facilitate hypothesis generation in diverse biological systems.
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Cell−cell communication plays a major role in multicellular
organisms by driving cellular differentiation, contributing
to tissue and organ homeostasis as well as coordinating

both favorable and noxious immune responses in disease1–4. The
advent of single-cell transcriptomics has offered the unprece-
dented opportunity to decipher the cellular heterogeneity of tis-
sues and organs and, at the same time, investigate how different
cell populations communicate at the molecular level. For exam-
ple, a recent study examined the cellular composition of the
human heart and revealed, through the analysis of cell−cell
communication, that specific non-cardiomyocyte cells represent
major communication hubs and might participate in maintaining
heart contraction5. Moreover, due to the ongoing pandemic
caused by the new coronavirus (SARS-CoV-2), multiple studies
used single-cell transcriptomics to investigate which cell types
might be more vulnerable to infection and how cellular com-
munication might impact a positive or negative course of the
disease6–8. In particular, these studies highlighted a central role of
the immune system in the communication with epithelial cells of
the lungs and illustrated how communication patterns might be
distinguishing patients with mild symptoms from those who
developed severe disease.

In the last few years, a number of methods have been devel-
oped to predict the occurrence of cell−cell communication by
ligand−receptor interactions in single-cell RNA sequencing
(scRNA-seq) data. In the seminal paper by Ramilowski et al.9 the
authors provided for the first time a manually curated collection
of 2,422 ligand−receptor interactions that were used to predict
cell−cell communication. Thereafter, extensive efforts have been
made by the scientific community to improve such databases and
to provide the necessary statistical framework to infer cellular
communication between different cell types10. For example, more
comprehensive ligand−receptor collections have been assembled
through the inclusion of other molecular entities such as multi-
subunit complexes and cofactors11,12. Several computational
strategies rely on the co-expression of a given interaction pair
(int-pair), evaluated on a cell cluster level. Specifically, for auto-
crine interactions, the expression levels of both genes (or gene
complexes) comprising the int-pair are evaluated on the same cell
cluster. On the contrary, for paracrine interactions, two different
cell clusters are respectively tested for gene expression of the first
and the second gene (or gene complex). Therefore, this type of
inference of cell−cell communication relies on data pre-
processing followed by clustering, with the aim of identifying
relevant cell types that might take part in the communication13.
Although many computational tools exist for the inference of
cell−cell communication10,13,14, the majority only provides lim-
ited downstream analysis functionalities, hindering the biological
interpretation of the predicted interactions. Moreover, compu-
tational expertize is often required to visualize and produce
interpretable results, thus representing a limiting factor for sci-
entists with a deep biological background but basic programming
skills.

Here we present InterCellar, an interactive platform imple-
mented in R/Shiny that enables the downstream analysis and
exploration of cell−cell communication based on scRNA-seq data.
InterCellar’s primary goal is to assist analysts in the biological
interpretation of cellular interactions, by combining data-driven
results with the possibility to customize the analysis. Requiring no
programming skills, InterCellar is conceived as a final step in the
analysis pipeline, fostering the collaboration between computa-
tional and non-computational scientists. Driven by a close colla-
boration with wet-lab scientists and physicians, we designed
InterCellar as a user-friendly, dynamic application to streamline
the analysis while removing the programming barrier existent for
the majority of cell−cell communication inference tools.

The workflow of InterCellar builds upon pre-computed,
inferred ligand−receptor interactions, which can be uploaded in
the first step as a cell−cell interactions dataset (CCI data) (Fig. 1).
The analyst has the option to provide either CCI data generated
by InterCellar-supported tools (CellChat12, CellPhoneDB11,
ICELLNET15, or SingleCellSignalR16) or CCI data result of cus-
tom algorithms (e.g., Kumar et al.17) to predict cell−cell inter-
actions (Supplementary Note 1). The second step offers multiple
data exploration features and allows the user to focus the analysis
on three biological domains, named universes: cell clusters, genes,
and biological functions. In each universe (cluster-verse, gene-
verse, and function-verse), different filtering and visualization
options are provided, giving the opportunity to interactively
subset the data and get qualitative and quantitative insights
(Supplementary Note 2). For example, in the so-called function-
verse, InterCellar provides multiple resources to perform func-
tional annotation of enriched interactions. Lastly, InterCellar
provides two types of data-driven analysis. The first enables a
focused inspection of cell−cell communication through the
analysis of the so-called int-pair modules, which are defined as
groups of interactions with similar functional patterns and can be
visualized and analyzed together with their significant functions.
The second data-driven analysis implements functionalities to
compare interactions across multiple datasets, highlighting pat-
terns of communication that are uniquely found in each of the
conditions considered. Importantly, InterCellar ensures repro-
ducibility of the analysis and facilitates collection and finalization
of results by providing multiple download options for tables and
figures. In the following, we present InterCellar’s main features
and demonstrate its general applicability on two datasets, con-
cerning melanoma and coronavirus disease 2019 (COVID-19).

Results
InterCellar allows data exploration through a user-friendly
interface, customization options, and interactive visualiza-
tions. Due to the high complexity of cell−cell interaction data-
sets, exploration of the data is crucial to get initial insights and
comprehension of the communication patterns. For this reason,
InterCellar’s analysis workflow aims at exploring the data from
different biological perspectives, while providing useful filtering
options that allow the user to selectively refine the dataset.

In order to demonstrate InterCellar’s exploration functional-
ities implemented in the three biological domains (universes), we
considered a publicly available scRNA-seq dataset composed of
metastatic melanoma samples from Tirosh et al.18. This dataset
includes both malignant cells and cells from the tumor
microenvironment (TME) of 19 patients. We retained the cell
type labels assigned by the authors, namely melanoma-malignant
cells, T cells, B cells, macrophages (Macro), endothelial cells
(Endo), cancer-associated fibroblasts (CAF), and natural killer
(NK) cells. To obtain inferred ligand−receptor interactions, we
run CellChat12, among InterCellar’s supported input methods.

After uploading the predicted CCI data to InterCellar
(Supplementary Fig. 1), the first biological domain of interest is
represented by the cell clusters participating in the communica-
tion. These can be interactively explored in InterCellar’s cluster-
verse (Fig. 2a). The interface displays available filtering options,
such as cluster selection or removal of interactions based on a
minimum score or a maximum p-value. Filters adopted by the
user automatically subset the original CCI data, updating
InterCellar’s outputs and getting propagated to further analyses.
The cluster-verse offers three types of output: a network of cell
clusters displaying the (total/weighted) number of interactions
(overall or from a selected viewpoint cluster) (Fig. 2a), a barplot,
and a table. To facilitate the inspection of large networks,
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InterCellar provides an interactive visualization that can be
dynamically remodeled by the user with a simple drag-and-drop.
Moreover, paracrine or autocrine interactions can be hidden from
the visualization, and clicking on a cell cluster will highlight all
the connected edges. For a better appreciation of InterCellar’s
interactive visualizations, we refer the reader to a video tutorial
available at https://youtu.be/X5gUqzps4E4.

Proceeding in the data exploration, InterCellar’s gene-verse
focuses on the molecular components of the interactions, namely
the proteins (and thus genes, in the case of scRNA-seq) that
comprise ligand−receptor pairs. Once again, filtering options are
available in this module and are specific for each input tool
supported by InterCellar (Fig. 2b). In the present case, CellChat-
specific filters regard the exclusion of pathways or annotation
sources (see Supplementary Note 2). InterCellar’s gene-verse
offers the possibility to investigate precisely which cluster-pairs
communicate through which ligand−receptor pairs. This is

achieved by manually selecting int-pairs of interest from a table
(Fig. 2b, inset) which will trigger the generation of a dot plot
(Fig. 2b) and a network. Here, for example, we selected all int-
pairs that were annotated by CellChat as belonging to the TGFb
signaling pathway. Customization options are available to the
user (e.g., choice of color scheme, selection of cell clusters).
Moreover, we enriched the information summarized in the gene-
verse table, which lists only distinct int-pairs found in the CCI
data, by providing links to Ensembl19 and UniProt20 databases to
facilitate investigation of unfamiliar genes.

Lastly, we describe the functionalities implemented in Inter-
Cellar’s function-verse, which offers the opportunity to annotate
interaction pairs with biological functions and pathways. In
particular, InterCellar queries multiple integrated resources (Gene
Ontology21,22, KEGG23, Reactome24, Biocarta25, PID:NCI-Nature26,
Panther27, and PharmGKB28) that can be freely selected by the user
in the interface (Fig. 2c). The annotated functional terms are then

Fig. 1 Representation of InterCellar’s workflow. The analysis workflow is composed of three main steps: (1) upload of user-provided data, containing
predicted, pre-computed cell−cell interactions (CCI data); (2) exploration of three biological domains (so-called, universes), whereby the analysis focuses
on cell clusters, genes, and biological functions; and (3) data-driven analysis through the definition and inspection of interaction-pair (int-pair) modules and
the comparison of cell−cell communication from multiple conditions. For each step, filtering options (e.g., on cell clusters, genes, and functional databases)
and multiple visualizations (e.g., networks, barplots, dotplots, circle plots, and sunburst plots) are provided to conduct a customized analysis. Moreover, all
tables and figures can be saved in multiple formats, helping the interpretation of complex cell−cell interaction datasets and the finalization of publication-
ready results.
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displayed in a table, summarized in a barplot, and ranked by the
total number of int-pairs enriched. From this ranked table (Fig. 2c,
inset), the user can examine functional terms of interest through a
sunburst visualization, which combines all enriched int-pair/cluster-
pair couplets (i.e., the occurrence of an int-pair in a certain cluster-
pair). The sunburst visualization condenses multiple pieces of
information in a single dynamic output and, to the best of our

knowledge, is a novel feature only provided by InterCellar among
other CCI analysis tools. If we consider one int-pair (e.g., BMP7 &
(ACVR1+ACVR2A)) enriched in our functional term of interest
(“tgf-beta signaling pathway”, annotated from KEGG and Panther),
cell clusters expressing BMP7 are represented in the inner ring (here,
NK), while clusters expressing (ACVR1+ACVR2A) are shown in
the outer ring (here, CAF). The width of each section indicates the

b)

a)

c)
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relative fraction of interactions (here, weighted by score) occurring
in each cell type. Sections are arranged in descending order, for
seamless identification of cluster importance within the functional
term considered. Lastly, moving the mouse over each section
provides detailed information on the interaction scores as well as a
list of int-pairs enriched in the selected cluster-pair (Fig. 2c).

In conclusion, we have shown some salient features of
InterCellar that aim at facilitating and streamlining the explora-
tion of cell−cell interactions datasets. While some visualization
outputs are conceptually similar to the ones generated by other
analysis packages (see “Discussion”), InterCellar’s interactive and
intuitive interface, combined with dynamic features of visualiza-
tion, offers a clear advantage to researchers without strong
programming skills.

InterCellar defines interaction-pair modules based on func-
tional similarity. The workflow of InterCellar combines data
exploration with the possibility to obtain data-driven insights on
cellular communication. Due to the intrinsically high redundancy
that characterizes CCI data, where the same biological function can
be orchestrated by a multitude of cognate ligand−receptor pairs,
strategies to aggregate the data into intelligible information become
crucial to an effective interpretation. InterCellar provides, to the best
of our knowledge, a novel type of analysis based on int-pair mod-
ules, defined as groups of functionally similar interactions. Based on
the functional annotation performed in the function-verse, Inter-
Cellar implements algorithms for dimensionality reduction and
clustering that guide the user into a deeper analysis of the com-
munication patterns, made biologically meaningful by the annotated
functional terms. In order to demonstrate this step, we consider once
again the melanoma dataset used thus far.

Since cancer cells have been described as actively recruiting and
reprogramming normal cells of the tumor ecosystem29, we used
InterCellar to perform an in-depth analysis of the interactions
that characterize malignant cells in their communication with the
TME. Thus, we chose the malignant cell cluster as viewpoint in
the analysis and focused on directed-outgoing interactions as
those int-pairs where the ligand is expressed (and sent) by
malignant cells to receptors expressed on all other cell types. After
reducing the CCI data to the subset of interest, InterCellar uses
the functional annotation to define int-pair modules: each
module is composed of a subset of int-pairs that share common
functional patterns. These modules can be visualized in a two-
dimensional plot as a UMAP30, which represents int-pairs
clustered by functional similarity (Fig. 3a and Supplementary
Fig. 2). Hence, a total number of nine int-pair modules was
defined for the selected interactions and, for each module, we
could associate functional terms found to be statistically
significant (using a one-sided permutation test, see “Methods”).
Moreover, InterCellar displays a circle plot to precisely identify

which cluster-pairs and genes comprise each module (Fig. 3b, c).
Interestingly, by examining the circle plots, the relevance of many
int-pairs could be validated by further literature research. For
example, we investigated the underlying interactions for modules
#6 and #8. Int-pair module #6, characterized by the functional
terms “extracellular matrix (ECM) organization” and “integrin
signaling pathways”, is composed of collagen- and laminin-
encoding genes expressed by malignant cells, which interact with
integrin-complexes expressed by all other cell clusters, as well as
malignant cells themselves. Notably, the importance of collagen-
integrin interactions in promoting cell invasiveness has already
been described in the literature by Zhou et al.31. Moreover,
mechanisms of metastatic invasiveness in melanoma have been
associated with the overexpression of annexin A1 in malignant
cells32. Interactions involving this gene can be seen in the circle
plot of int-pair module #8: ANXA1, sent by malignant cells,
interacts with formyl peptide receptor (FPR) exclusively
expressed by macrophages, suggesting a deleterious cross-talk
between these two cell types.

Overall, we have shown that InterCellar implements state-of-
the-art algorithms to group int-pairs into functional modules,
reducing data complexity while preserving detailed biological
information.

InterCellar highlights data-driven patterns of cellular com-
munication in the comparison of multiple conditions. In
addition to the parallel analysis of CCI data from multiple dif-
ferent conditions, InterCellar can automatically retrieve
condition-specific communication patterns. The multiple condi-
tions section of InterCellar, part of the data-driven analysis, serves
this purpose. To illustrate functionalities and results, we consider
a publicly available COVID-19 dataset from Chua et al.6 con-
taining nasopharyngeal and bronchial samples from 19 patients
and from five healthy controls. In particular, we adopted the
clinical classification of patients provided by the study, consisting
of 8 moderate cases and 11 critical cases. Moreover, we retained
the original cell type labeling performed by the authors and, as
previously done by Chua et al.6, ran CellPhoneDB (v2)11 to
obtain predicted cell−cell interactions as input to InterCellar.
Thus, three separate input datasets were generated, corresponding
to control, moderate and critical cases. Cell types can be grouped
into epithelial cells and immune cells (see legend of Fig. 4).

As the first step, we considered the total number of interactions
per cell type while comparing critical to moderate cases (Fig. 4a).
We observed rather small differences in numbers of interactions
for cell clusters belonging to epithelial cells (with the exception of
ionocytes), while immune cell types showed a higher variability. In
particular, we could confirm the findings of Lin et al.7, who
described a higher number of interactions for macrophages
(MoMa and nrMa) as well as a lower number of interactions for

Fig. 2 Demonstration of InterCellar’s features concerning data exploration. a Screenshot of InterCellar’s cluster-verse displaying a network of cell
clusters. Filtering options are visible in the upper panel (cluster selection, minimum interaction score, maximum interaction p-value). In the lower panel,
users can switch tabs among Network, Barplot, and Table. Network-specific customization options are available in the left panel as well as a download
button to save the visualization. The network edges show the total number of interactions occurring between two cell clusters; all clusters are considered.
The inset on the left-hand side shows a network generated by selecting malignant cells as viewpoint, with weighted numbers of interactions shown on the
edges. b InterCellar’s gene-verse is captured in a screenshot. CellChat-specific filtering options are shown in the upper panel, while the lower one displays a
dot plot of selected int-pairs chosen by the user in the table (shown in inset). All int-pairs annotated by CellChat to the “TGFb signaling pathway” were
selected. Customization and download options are available in the left panel. c Screenshot of the InterCellar function-verse. The upper panel provides
multiple annotation resources that can be included/excluded by the user. Once the functional annotation is performed, the selection of one annotated
functional term from the Ranking table (shown in inset) triggers the generation of a sunburst plot (here, “tgf-beta signaling pathway” annotated from KEGG
and Panther). Hovering on an outer section of the sunburst plot will show a panel listing all int-pairs enriched in the selected cluster-pair. A list of all int-
pairs enriched is displayed on the left. In the same panel, the user can choose to generate the plot based on the total or weighted number of interactions.
All visualizations are generated from CellChat-predicted CCI data of the melanoma dataset.
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T cells (CTL and Treg), when comparing critical to moderate cases.
Moreover, in the same comparison, comprehensive consideration
of all cell types highlights a striking gain of interactions for mast
cells (MC) as well as proliferating natural killer T cells (NKT-p).
This finding holds true when examining the number of interactions
between a certain cell type of interest and all other cell types
(Fig. 4b and Supplementary Fig. 3a, b). Specifically, both immune
cells (e.g., MoMa, nrMa, CTL, and Treg) and epithelial cells (e.g.,
ciliated, ciliated-diff, secretory and secretory-diff) show a consistent
pattern of communication in critical cases, characterized by a
higher number of interactions occurring between all cell types and
MC or NKT-p cells. Interestingly, MCs have recently been
hypothesized to have a major role in driving hyperinflammation
in severe cases of COVID-19, due to their dysfunctional phenotype
related to mast cell activation syndrome33,34.

In conclusion, we have shown that InterCellar provides an
unbiased and systematic approach to quantitatively compare
cell−cell communication from multiple conditions.

InterCellar unravels the composition of cellular communica-
tion by examining ligand−receptor pairs. As previously descri-
bed, another biological domain relevant for cell−cell communication
is represented by the genes comprising the interactions. In particular,
our objects of interest are int-pair/cluster-pair couplets, i.e., the
occurrence of an int-pair in a certain cluster-pair. These couplets are
visually represented by InterCellar in dot plots, where the analyst
interactively chooses int-pairs and cluster-pairs to examine. Thus, we
proceeded in the analysis of the COVID-19 datasets, by plotting the
interaction score (calculated by CellPhoneDB, see “Methods”) of
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int-pairs occurring in the communication between secretory cells,
secretory-diff, and all other cell types. Here, we analyzed the three
COVID-19 conditions in parallel, by using the dot plot functionality
provided in the gene-verse. In particular, by looking at int-pairs
composed of selected chemokine ligands mentioned in Chua et al.6

(CXCL1, CXCL3, CXCL6, CXCL16, and CXCL17), we could observe
a clear enrichment of ligand−receptor pairs in the communication

between secretory as well as secretory-diff cells and neutrophils
(Fig. 5a). Specifically, these int-pairs were detected at varying levels of
expression in the two disease conditions, while they were completely
absent in control samples. This finding confirms the hypothesis of
the authors concerning neutrophil recruitment induced by secretory
cells6. However, no relevant difference could be recognized between
moderate and critical cases.
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To further investigate the latter phenomenon, we made use of
InterCellar’s multiple conditions functionalities by considering
only int-pair/cluster-pair couplets that are unique to a certain
phenotype (i.e., control, moderate or critical). We chose two
groups of chemokine ligands, namely the CC- and CXC-
subfamilies, and selected all possible int-pairs found in each
phenotype. CXCL-pairs showed a predominant enrichment of

interactions unique to critical cases, in both epithelial (47%) and
immune cells (57%) (Fig. 5b and Supplementary Fig. 4a).
Interestingly, due to this unbiased view of all int-pairs and cell
clusters, we could notice, in moderate cases, neutrophil recruit-
ment carried out by epithelial cells such as basal, ciliated, and
FOXN4+ cells (through the pairs CXCL1 & CXCR1 and CXCL1
& CXCR2). On the contrary, critical cases showed enrichment of

56%28%
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CXCL3 & CXCR1 and CXCL3 & CXCR2 in the communication
from IRC or squamous cells to neutrophils (Fig. 5b). Regarding
immune cells, critical cases were characterized by an outgoing
cellular communication from moDC, MoMa, and NKT-p cells
towards multiple other immune cell types. Moderate cases
showed a unique pattern of communication promoted by NK
cells and directed towards immune, as well as epithelial (secretory
and ionocyte) cells (Supplementary Fig. 4a). For CCL-pairs, we
focused on selected immune cell types, separated into three
groups: macrophages (MoMa, nrMa, and rMa), NK cells (NK,
NKT, and NKT-p), and T cells (Treg and CTL) (respectively
Fig. 5c and Supplementary Fig. 4b, c). While for macrophages the
proportion of unique interactions favors the critical phenotype
(56%), an inverse tendency could be noticed for NK (41% critical)
and T cells (20% critical). In particular, among macrophages,
MoMa and nrMa displayed many chemokine interactions that
were unique to critical cases. These interactions involved recipient
cell types such as MC, moDC, neutrophils, and NKT-p.
Specifically, MoMa communicates with these other cell types
via CCL4L2 while nrMa via CCL7. At the same time, interactions
of rMa via CCL3 in controls are absent in COVID-19 cases
(Fig. 5c). On the contrary, NK and NKT as well as Treg and CTL
showed an enrichment of interactions unique to moderate cases,
directed towards secretory cells (among others) (Supplementary
Fig. 4b, c). Altogether, these results are in line with two findings
by the authors: on the one hand, critical cases are characterized by
a highly inflammatory profile for MoMa and nrMa; on the other
hand, a well-balanced immune response distinguishes moderate
cases, in which the communication between immune cells and
epithelial cells underlie an effective response to the viral
infection6.

In summary, InterCellar provides valuable features to perform
an in-depth investigation of the communication signals carried
out by selected interaction pairs and their enriched clusters.
When comparing multiple conditions, InterCellar automatically
highlights the occurrence of int-pair/cluster-pair couplets that are
condition-specific, thus facilitating the detection of communica-
tion patterns that distinguish each phenotype.

InterCellar uncovers condition-specific interactions and their
related biological pathways. As a final step in our analysis, we
present the functionalities implemented in InterCellar’s multiple
conditions section that are based on the aforementioned func-
tional annotation. Here, specifically, InterCellar determines which
int-pairs are occurring uniquely in each condition (independently
from the cluster-pairs) and, via a permutation test, identifies
significant functional terms annotated to the unique sets of int-
pairs. Thus, the analyst can promptly investigate condition-
specific interactions and their related biological pathways that
might be dysregulated between the conditions of interest. Once
again, we show InterCellar’s results based on the comparison
between COVID-19 critical and moderate cases. Firstly, the
functional annotation was performed for each dataset, using all
functional databases provided by InterCellar. Then, for each

condition, significant functional terms of interest could be
visualized in a sunburst plot. In contrast to the sunburst plots
available in the function-verse, the present visualization only
considers int-pairs that uniquely characterize the chosen condi-
tion. Interestingly, the functional term “inflammation mediated
by chemokine and cytokine signaling pathway” was found to be
significant in critical COVID-19 cases, supporting the previous
hypothesis derived from the analysis of chemokine and, once
again, delivering signals of a cytokine storm35 (Fig. 6a). On the
contrary, among significant functional terms describing moderate
COVID-19 cases, we found “T cell costimulation” (Fig. 6b). As
previously mentioned, sunburst plots offer the advantage of
immediately delivering insights regarding cluster importance
within the functional term considered. For moderate cases, CTL
are by far the main partners in interactions involved in “T cell
costimulation”, which, in this specific case, is regulated by only
one condition-specific int-pair, namely CD160 & TNFRSF14. As
for critical cases, we noticed that nrMa contributes to almost half
of the total interaction score associated with the term. Further-
more, they communicate to other cell clusters through condition-
specific int-pairs of the chemokine family, which were already
highlighted by the dot plot of the previous analysis (Fig. 5c).
Overall, these results suggest once again a dysfunctional immune
response in COVID-19 critical cases, where a balanced
lymphocyte-mediated regulation seems to be overthrown by
excessive activation of macrophages.

Finally, we have shown that InterCellar provides a straightfor-
ward and effective strategy to reveal likely dysregulated biological
pathways across conditions.

Discussion
In the context of single-cell transcriptomics, the investigation of
cellular cross-talk has been regarded as a valuable method for
understanding biological mechanisms in health and disease10.
Despite the existence of many algorithms for predicting the
occurrence of cell−cell communication based on ligand−receptor
interactions, further analysis and interpretation of the associated
biological signals are non-trivial due to the complexity of results
and the lack of a standardized approach to perform such
analyses13.

We developed InterCellar as an interactive analysis platform
designed to guide scientists in the interpretation of complex cell
−cell communication results obtained from scRNA-seq data.
InterCellar’s accessibility and ease of use, along with customiza-
tion options and information-rich visualizations, can help
streamline the analysis of cell−cell communication by promoting
collaboration between wet-lab and computational scientists. By
demonstrating InterCellar’s functionalities on two different
scRNA-seq datasets, we were able to obtain comprehensive insights
on the modalities of cell−cell communication and the underlying
ligand−receptor interactions, which could be further corroborated
by literature review. Moreover, we have shown that InterCellar is a
powerful tool for identifying and highlighting previously unknown
molecular interactions inferred from single-cell transcriptomic

Fig. 5 InterCellar allows in-depth analysis of interaction pairs and their enriched cell clusters. a Selected chemokine pairs enriched in secretory and
secretory-diff cells are shown in a dot plot, split by control, moderate and critical cases. Cluster-pairs are represented on the x-axis (e.g., cluster1::cluster2),
while selected int-pairs are shown on the y-axis (e.g., geneA & geneB). Only statistically significant interactions are considered (one-sided permutation test
by CellPhoneDB, p < 0.05). The Score represents the mean interaction score calculated by CellPhoneDB as the average of the mean expression of the
interacting genes, evaluated in the respective clusters. Dot plots are generated in InterCellar’s gene-verse. b Int-pairs belonging to the CXC-chemokine
subfamily are evaluated in epithelial cell clusters. The dot plot represents only unique occurrences of int-pair/cluster-pair couplets, for each phenotype
(control, moderate, critical). The overall contribution of each phenotype is summarized in a pie chart. Both dot plot and pie chart are generated in
InterCellar’s multiple conditions section. c Int-pairs belonging to the CC-chemokine subfamily are evaluated in macrophage cell clusters. As in b, only
unique couplets are represented and overall contributions are summarized in a pie chart.
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data. For example, an in-depth analysis of cellular interactions in
COVID-19 patients confirmed the primary role of immune
response in discriminating between different courses of the
disease6. In addition, the analysis suggested a consistent pattern of
communication for patients with critical COVID-19, involving cell
types such as mast cells. These results may provide exciting
hypotheses to deepen the understanding of severe SARS-CoV-
2 cases.

Implemented in R/Shiny, InterCellar is distributed as an open-
source Bioconductor36 package, ensuring software robustness,
maintenance, and compatibility with multiple operating systems.
With an existing installation of R and Bioconductor on the user’s
personal computer, installing the InterCellar package and launching
the Shiny app can be accomplished by running two lines of code,
which, together with further information, can be found in the online
user guide (https://bioconductor.org/packages/release/bioc/vignettes/
InterCellar/inst/doc/user_guide.html). Alternatively, InterCellar is
available in a docker container and as a bioconda recipe (http://
bioconda.github.io/recipes/bioconductor-intercellar/README.html).
Notably, the local installation of InterCellar avoids issues related to
data privacy or sharing of unpublished patient data, which is a typical
problem for web-based platforms running on external servers.
Moreover, each step of InterCellar’s workflow is generally completed
in a very short time (from seconds to few minutes), ensuring a truly
interactive and performant analysis.

InterCellar directly builds upon the results of other existing
tools developed to infer cell−cell communication, which can be
freely chosen by the user. Alongside the automatic import from
supported tools, InterCellar accepts custom data with specific

format and necessary information (see “Methods”). Since pre-
diction methods often rely on different reference databases and
build their results on diverse statistical and mathematical
assumptions, evaluating advantages and disadvantages of each
method is critical for choosing the method that best fits the data
of the user10,14. Lastly, we want to stress the importance of further
experimental validation of the predicted interactions, which could
be achieved, for example, by single-molecule fluorescence in situ
hybridization or measurement of co-occurrence through flow
cytometry10.

To benchmark InterCellar’s features, we identified 18 published
tools from two recent review papers10,13, as well as from manual
search (as of April 2021, Supplementary Table 1). We collected
methods allowing the analysis of cell−cell communication and
excluded 13 methods that required programming skills (e.g.,
extensive coding in R/Python to perform the analysis) from a
systematic comparison, thus focusing on the remaining web-
based or standalone systems (Supplementary Fig. 5). We found
that one tool, CCCExplorer37, had comparable functionalities to
InterCellar, providing a local, interactive analysis that focuses on
enriched biological pathways. However, this software was devel-
oped for bulk RNA sequencing, therefore lacking a straightfor-
ward application in scRNA-seq. Four platforms, namely
pyMINEr38, talklr39, CellChat Explorer12, and Cellinker40 are
limited regarding interactive analysis, customization, and down-
load capabilities; therefore, these tools could be viewed primarily
as explorative tools that provide static results. Moreover, CellChat
Explorer, talklr, and Cellinker run remotely on a server, thus
requiring data sharing and possibly leading to privacy issues.
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Fig. 6 Investigation of significant functional pathways and their enriched condition-specific interactions. Sunburst plots for two condition-specific
functional terms found to be significant (one-sided permutation test, p < 0.05) in the comparison between a COVID-19 critical (“Inflammation mediated by
chemokine and cytokine signaling pathway”) and bmoderate cases (“T cell costimulation”). Plots are generated in InterCellar’s multiple conditions module,
by selecting the chosen terms from a table. Only int-pairs unique to each condition and annotated to the selected functional term are considered in the
generation of the plot. For a generic int-pair ‘geneA & geneB’, enriched in ‘cluster1::cluster2’, the first cell cluster (cluster1, expressing geneA) is represented
in the inner circle, while the second (cluster2, expressing geneB) is shown in the outer circle. The width of each section indicates the relative fraction of
interactions (weighted by score) enriched in that cell type. Sections are arranged in descending order, counterclockwise, starting from the horizontal black
line. The total interaction scores per cell type are reported in brackets. Gray boxes show the list of condition-specific int-pairs enriched for the
corresponding cluster-pairs and were manually added to the figure from the downloaded files provided by InterCellar.
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The authors of CellChat recently provided a Shiny app with the
same set of functionalities as CellChat Explorer and the advantage
of local installation through a docker container. Lastly, in the
interest of those readers with basic programming skills, we per-
formed a detailed comparison between InterCellar and the Cell-
Chat R package and outlined differences and similarities in
Supplementary Note 3 (see also Supplementary Figs. 6, 7).

In the future, we plan to further extend the input options to
other published tools. This might, on the one hand, facilitate
internal comparison and validation of biological conclusions
drawn from interactions predicted by different methods and, on
the other hand, give more flexibility to the end-user.

In conclusion, InterCellar empowers lab scientists to inter-
actively analyze cell−cell interactions without programming skills
needed. Moreover, it implements data-driven approaches to
aggregate interactions into functionally distinct modules and to
automatically discern interactions and pathways that are specific
to a certain condition. By providing a comprehensive workflow,
along with several graphical and dynamic outputs, InterCellar
facilitates the simplification and standardization of the down-
stream analysis of cell−cell communication. We believe Inter-
Cellar will contribute to accelerating the generation of hypotheses
and deepening the understanding of the cellular cross-talk in
various pathological and physiological systems.

Methods
Implementation. InterCellar is implemented as an R/Shiny application and
structured as an R package, which is available on Bioconductor at https://
bioconductor.org/packages/InterCellar/. We used the R package golem to ease the
development of a robust Shiny application, as well as multiple R packages to build
the user interface (shiny, shinydashboard, shinyFiles, shinycssloaders, shinyFeed-
back, shinyalert, htmltools, and htmlwidgets). Data handling is achieved through
custom R functions that build upon public R/Bioconductor packages, such as
readxl, utils, DT, plyr, dplyr, tidyr, and tibble. The functional annotation of
InterCellar’s function-verse is performed through two R packages that query
functional databases, namely biomaRt41 and graphite42. Lastly, graphical outputs
are generated by custom R functions based upon R/Bioconductor packages such as
ggplot2, plotly, circlize43, fmsb, umap, visNetwork, igraph, dendextend44, fac-
toextra, colourpicker, scales, and grDevices.

Input tools and preprocessing. InterCellar’s input data consists of a pre-
computed dataset of predicted cell−cell interactions (CCI data). The application
accepts either the output of supported tools (CellChat12, CellPhoneDB11,
ICELLNET15, or SingleCellSignalR16) or of custom analyses performed by the user
(for example, as in Kumar et al.17). In the first case, InterCellar automatically parses
the output generated by the supported tool, requiring no further data manipulation
by the user. For a detailed description of the expected input data, depending on the
supported tool, we refer to Supplementary Note 1 (see also Supplementary
Tables 2−5). In the second case, the custom input data must contain relevant
information structured as a table with the following columns: (i) interaction pairs,
containing the names of two molecular components that participate in the inter-
action (e.g., compA_compB); (ii) communicating cell clusters, containing names or
numbers of the cell populations (divided into two columns, e.g., clustA and clustB);
(iii) molecular types, either ligand or receptor (in two columns, corresponding to
compA and compB); and (iv) a numeric value representing a score for each
interaction (e.g., average expression of compA_compB over clustA and clustB) (see
Supplementary Fig. 1, inset).

For both input options, InterCellar will preprocess the data to generate a
standardized dataset. These preprocessing steps involve: (1) mapping int-pairs to
the associated gene symbols; (2) annotation of the molecular type of each int-pair
by combining the provided information with a manually curated set of int-pairs
(available at https://github.com/martaint/InterCellar-reproducibility); and (3)
reordering int-pairs listed as receptor-ligand to ligand−receptor, to ensure
consistency in the definition of the communication flow. To this date, InterCellar
supports human genes; the analysis of cell−cell communication obtained from
other species can be performed by converting gene names to human orthologs.

Filtering and customization. We implemented multiple filtering options to enable
a flexible interactive analysis of cell−cell communication. In particular, we dis-
tinguish between two types of filters: those applied to the input data and filters
applied to visualization options. In the first case, the user can (i) remove entire
clusters from the analysis, for example in the event of unknown or poorly defined
cell populations (in cluster-verse); (ii) refine int-pairs selecting either a minimum
interaction score or a maximum p-value (in cluster-verse); (iii) select int-pairs by

criteria that are specific to the supported tool used to generate the input data (in
gene-verse). These three filtering options are applied to the input dataset; therefore
the following analyses will be performed on the data subset. For a detailed
description of filtering options specific to the gene-verse, we refer to Supplementary
Note 2. The second type of filters concerns graphical outputs and includes features
to customize visualizations. These options are only applied to the selected plot and
will not affect the underlying dataset. For example, a dot plot visualization available
in the gene-verse displays int-pair/cluster-pair couplets based on the user’s selec-
tion of int-pairs of interest. The user can further select a subset of clusters to
consider, as well as change the color scheme of the dot plot.

Functional annotation of interaction pairs. InterCellar provides interactive
annotation of int-pairs with the aim to link biological functions and pathways to
cell−cell communication. Specifically, we use two Bioconductor packages,
biomaRt41 and graphite42, to automatically query existing databases of functional
terms: Gene Ontology21,22, KEGG23, Reactome24, Biocarta25, PID:NCI-Nature26,
Panther27, and PharmGKB28. InterCellar’s functional annotation (available in the
function-verse) is required before proceeding to the data-driven analysis step.
Importantly, the annotation of a certain functional term to an int-pair is fulfilled
only when all components (e.g., ligand and receptor genes) of the int-pair are
enriched by that functional term. This applies also in the case of multi sub-unit
complexes (e.g., for CellPhoneDB and CellChat), where all components of a
complex must be enriched by a functional term. Although the user can freely
choose which functional sources to consider when performing the annotation, we
suggest including as many databases as possible to maximize the number of int-
pairs which will be annotated by at least one term. Only these annotated pairs are
further considered in the definition of int-pair modules.

Definition of interaction-pair modules. Defining int-pair modules requires three
key, user-driven decisions: (1) choice of the viewpoint cell cluster, representing the
cell type of interest; (2) selection of a communication flow, among directed-
outgoing (in which the viewpoint cluster sends ligands to other clusters), directed-
incoming (in which the viewpoint cluster expresses receptors) and undirected (as
in the case of receptor-receptor pairs); and (3) definition of the number of int-pair
modules to consider. In particular, InterCellar subsets the result of the functional
annotation (i.e., a binary matrix of int-pairs by functional terms) according to steps
(1) and (2) (Supplementary Fig. 2). This filtered matrix is given as input to a
dimensionality reduction algorithm called UMAP (Uniform Manifold Approx-
imation and Projection30), which calculates a 2D-embedding of the interaction
pairs considered (using cosine similarity as metric to compute distances between
data points). Thus, the low-dimensional embedding reflects the similarity of int-
pairs based on their functional profiles. Finally, using the UMAP coordinates, a
hierarchical clustering defines modules of int-pairs that share similar functional
profiles (with euclidean distance and ward.D2 clustering algorithm). The UMAP
and an additional dendrogram result of hierarchical clustering can be visualized
and downloaded. Furthermore, two plots provide guidance on choosing the opti-
mal number of int-pair modules: (i) total within-cluster sum of squares (WSS) (i.e.,
elbow method) and (ii) average silhouette width. Both metrics are computed and
visualized using functions provided in the R package factoextra. The first metric
indicates the compactness of clusters, by looking at intra-cluster variation. Speci-
fically, one seeks to minimize the total WSS, represented as a function of the
number of clusters. The elbow method, in particular, defines the optimal number of
clusters by looking at a bend (i.e., the elbow) in the plot. We automated this process
by using the R package akmedoids, which provides a function to find the maximum
curvature. The average silhouette width evaluates how well each data point lies
within its cluster and, on the contrary, should be maximized. By default, InterCellar
uses the optimal number of modules computed by the elbow method to generate
UMAPs and dendrograms; this value can however be freely changed by the user.
When the total number of unique int-pairs considered (by choosing viewpoint and
flow) is less or equal to 10, only one module is defined to prevent noisy results due
to insufficient data points.

Statistics and reproducibility. To facilitate the biological interpretation of the
defined int-pair modules, InterCellar calculates an empirical p-value for each
annotated functional term indicating statistical significance of a term to a certain
int-pair module. To this end, we implemented a one-sided permutation test which
considers as test statistic the proportion of int-pairs annotated to each term, per
module (called module ratio). By randomly shuffling the module assignment of
each int-pair (1000 times, without replacement) and calculating the test statistic, we
generate the distribution under the null hypothesis. Finally, we compute for each
functional term the proportion of the module ratios which are higher or equal to
the actual module ratio, thus obtaining an empirical p-value for the specificity of a
functional term to a certain int-pair module. Functional terms are then ranked by
p-values, and the threshold for significance can be chosen by the user (0.05 by
default). As for the comparison of multiple conditions, InterCellar computes sig-
nificant functional terms associated with each condition using the same statistical
method delineated above, replacing the module-assignment of each int-pair with a
condition-assignment.
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The analysis presented in this study can be reproduced following walk-through
tutorials available at https://github.com/martaint/InterCellar-reproducibility.
Moreover, this repository contains the code used to generate InterCellar input data
for the two datasets analyzed (COVID-19 and melanoma).

Melanoma dataset. For the melanoma dataset, a preprocessed gene expression
matrix was downloaded from NCBI Gene Expression Omnibus (GEO)
(GSE72056), containing transcript-per-million gene expression values for a total of
4,645 cells, comprising both melanoma malignant cells and cells from the tumor
microenvironment. We removed ~11% of these cells, due to a missing or unknown
cell type label, retaining 4,097 final cells. We run CellChat12 (version 1.1.2) to
obtain predicted cell−cell interactions.

COVID-19 dataset. This dataset comprises single-cell RNA sequencing data of 24
total patients, divided into five healthy controls, eight COVID-19 moderate cases,
and 11 COVID-19 critical cases. A total number of 32 samples were derived from
nasopharyngeal-protected specimen brush and bronchial lavage. Classification in
moderate and critical cases was performed by the original authors following WHO
guidelines. The authors stated that signed informed consent was obtained from all
patients before inclusion in the study. Furthermore, their study was approved by
the respective institutional ethics committee of either the Charité-
Universitätsmedizin Berlin (EA2/066/20) or the University Hospital Leipzig (123/
20-ek) and conducted in accordance with the Declaration of Helsinki6. Pre-
processed, normalized data were retrieved from Chua et al.6, as well as cell type
assignment. We removed two cell clusters whose label assignment was poorly
defined, namely “unknown epithelial” and “outlier epithelial”, corresponding to
~1.5% of the total number of cells. Moreover, moderate and critical datasets were
randomly subsampled to 10,000 cells each (without losing any cell label), while for
the control dataset we retained all cells, corresponding to a total of 2,966 cells.
Finally, for each of the three datasets, we run CellPhoneDB11 v2 statistical analysis
using default parameters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analyzed in this study are publicly available. In particular, for the COVID-19
datasets45, we retrieved preprocessed data for the three conditions (control, moderate
and critical) from FigShare at https://doi.org/10.6084/m9.figshare.12436517.v2 (data
object named covid_nbt_main.rds). For the melanoma dataset46, preprocessed data were
downloaded from GEO with Accession Number GSE72056. InterCellar input datasets
used in this study are available at https://github.com/martaint/InterCellar-
reproducibility. Source data underlying Fig. 4a are presented in Supplementary Data 1.
All other relevant data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corresponding authors upon
reasonable request.

Code availability
The InterCellar package (version 2.0.0) is available on Bioconductor v3.14 (requiring
R4.1 or higher). Alternatively, the package can be installed following the instructions on
the GitHub repository (https://github.com/martaint/InterCellar), which contains source
code and user guidelines. The source code is also citable, as deposited in Zenodo47.
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