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Stroke has a high rate of morbidity and disability, which seriously endangers human health. In stroke, oxidative stress leads to
further damage to the brain tissue. Therefore, treatment for oxidative stress is urgently needed. However, antioxidative drugs
have demonstrated obvious protective effects in preclinical studies, but the clinical studies have not seen breakthroughs.
Nanomaterials, with their characteristically small size, can be used to deliver drugs and have demonstrated excellent
performance in treating various diseases. Additionally, some nanomaterials have shown potential in scavenging reactive oxygen
species (ROS) in stroke according to the nature of nanomaterials. The drugs’ delivery ability of nanomaterials has great
significance for the clinical translation and application of antioxidants. It increases drug blood concentration and half-life and
targets the ischemic brain to protect cells from oxidative stress-induced death. This review summarizes the characteristics and
progress of nanomaterials in the application of antioxidant therapy in stroke, including ischemic stroke, hemorrhagic stroke,
and neural regeneration. We also discuss the prospect of nanomaterials for the treatment of oxidative stress in stroke and the
challenges in their application, such as the toxicity and the off-target effects of nanomaterials.

1. Introduction

Stroke is a disease associated with substantial morbidity and
disability. It is a leading cause of death and is associated with
a 24.9% lifetime risk of stroke (18.3% for ischemic stroke
and 8.2% for hemorrhagic stroke) for global populations
over 25 years old [1, 2]. Ischemic stroke is primarily caused
by thrombosis or embolism, which leads to a lack of blood
and oxygen in the brain. However, the arteriosclerosis and
aneurysms are common etiologies of hemorrhagic stroke
[3–5]. After stroke, overproduction of reactive oxygen spe-
cies (ROS) is a critical mechanism responsible for brain
injury [6–8]. Excessive ROS can react with lipid membranes,
proteins, and nucleic acids, which causes cellular apoptosis
and cell death in the brain [7]. However, antioxidant therapy

in stroke has made little advancement in previous years. The
difference between preclinical studies and clinical studies
about the antioxidant therapy for stroke may be related to
several factors, including the antioxidants’ half-life and dif-
ferences of the blood-brain barrier (BBB) between human
and rodents. This proposes a great challenge for clinical
translation of antioxidant therapy in stroke [9, 10].

Nanotechnology is an emerging field that can greatly
complement medical therapy. It comprises the design, syn-
thesis, and application of nanomaterials for the treatment
of diseases and takes advantages of materials at the atomic
and molecular scale [11, 12]. Nanomaterials can exist in
many shapes, such as spheres, dots, platelets, tubes, den-
drites, and rods. Meanwhile, they can be neutral, positively
or negatively charged [12]. Nanomaterials can provide new
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diagnostic and treatment methods for medicine [13] and
may be considered an advanced approach in the antioxidant
therapy of stroke due to their unique features, such as small
size and stability, as well as their long serum half-life [14,
15]. These nanomaterials assist antioxidants in crossing the
BBB and providing a protective shell for antioxidants. Addi-
tionally, some nanomaterials, such as platinum nanoparticles
(PtNPs) and cerium oxide nanoparticles (nanoceria), have an
antioxidant effect [16, 17], which can be beneficial for the
treatment and recovery of stroke. The application of nano-
material has shown great promise in stroke antioxidant treat-
ment and recovery.

2. Nanomaterials

Nanomaterials are usually 1-500nm in diameter and are
easily taken up by cells. The smaller the nanomaterial, the
larger the surface area to volume ratio, means an increased
efficiency of interaction with tissue cells [18]. Additionally,
nanomaterials can protect antioxidants from decomposition,
which would extend the serum half-life [19, 20]. The biolog-
ical half-life of nanomaterials is related to their design (e.g.,
size and shape) and surface modification [21]. Surface
modification, such as PEGylation, is related to the biocom-
patibility of nanomaterials, as it can deliver the antioxidants
to the brain tissue and reduce liver metabolism, mononu-
clear phagocytic system (MPS) uptake, and kidney clearance
of nanomaterials, but may improve the bioavailability of
antioxidants [22]. PEGylation, the combination of polyeth-
ylene glycol (PEG) and nanomaterials, can increase the
hydrophilicity and stability of nanomaterials [23]. The sur-
face properties of nanomaterials, such as hydrophobicity or
hydrophilicity, allow them to carry the corresponding com-
pounds [24]. Because of their small size, nanomaterials have
obvious advantages in passing through natural barriers, such
as the BBB. They can reach the damaged site quickly and
may accumulate in brain tissue [25].

The BBB is composed of vascular endothelial cells, astro-
cytes, pericytes, and the basement membrane and is respon-
sible for regulating the exchange of substances between blood
and the cerebrospinal fluid (CSF). The thickness of the endo-
thelial cells at BBB in rodents is only 150–240nm. Mean-
while, the thickness of human endothelial cells is between
370 and 420nm [26], which provides a substantial barrier
to the diffusion and transport of therapeutic molecules.
Nearly 98% of small molecules and all large molecule drugs
cannot cross the BBB [27]. Conversely, nanomaterials can
pass through biological membranes in two ways: active trans-
port and passive transport, which is dependent on the size,
shape, surface characteristics (e.g., hydrophilicity or lipophi-
licity), and the surface modification of nanomaterials. Passive
transport is commonly used in cancer. Nanomaterials can
cross endothelial cells through the enhanced permeability
and retention effect when there is increased microvasculature
permeability in cancer [28]. Therefore, polymeric nanoparti-
cles with larger diameters pass through the BBB primarily
via transcytosis. To increase the transcytosis of nanomater-
ials, ligands on the surface of nanomaterials can be modi-
fied for specific receptors on the BBB, and nanomaterials

can be mediated by ligand-receptor binding to pass through
the BBB. These receptors include the transferrin receptor,
insulin receptor, low-density lipoprotein receptor (LDLR),
angiopep-2 receptor, and the receptor for advanced glyca-
tion end-products (RAGE) [29–33]. The modified ligands
on nanomaterials can allow them to cross the BBB efficiently.

The following paragraph will talk about the variety of
nanomaterials that have been used for antioxidant therapy
in stroke, including metallic nanoparticles and metal oxide
nanoparticles, carbon-based nanoparticles, liposome nano-
particles, and polymeric nanoparticles.

2.1. Metallic Nanoparticles and Metal Oxide Nanoparticles.
Metallic nanoparticles are nontoxic with good biocompati-
bility, and they can be modified to carry a variety of sub-
stances due to the negative charge on their surface. Because
of the free electrons on the surface, some metallic and metal
oxide nanomaterials, such as PtNPs and nanoceria, show
strong ROS-scavenging activity with stable chemical proper-
ties [16, 34, 35]. The studies showed that PtNPs can mimic
the activity of antioxidant enzymes, scavenge free radical,
and transform superoxide anion (•O2

-) into H2O and O2
[16, 36]. Nanoceria exist in both Ce3+ and Ce4+ oxidation
states. Due to the oxygen vacancies on their surface, nano-
ceria can redox cycle between Ce3+ and Ce4+ states. More-
over, Ce3+ reacts with hydroxyl radicals (•OH) to generate
Ce4+ and then generates Ce3+ and O2 under the action of
H+, leaving oxygen vacancies in the nanomaterials. This
allows nanoceria to exert their catalytic activity, imitating
the properties of superoxide dismutase (SOD) and catalase
(CAT) and converting •OH into O2 [17, 35]. The PEGylated
nanoceria have colloidal stability and reduced agglomera-
tions. Moreover, the catalytic properties of nanoceria are
enhanced by the higher ratio of Ce3+, facilitating the creation
of ultrasmall nanoceria [37]. Additionally, 3 nm nanoceria
were synthesized through the aqueous phase and increased
the ratio of Ce3+ in nanoceria to approximately 57% [38].

2.2. Carbon-Based Nanoparticles. Carbon-based nanoparti-
cles commonly include fullerenes and carbon nanotubes
(CNTs). Fullerenes, namely C60 nanoparticles, are spherical
in shape, have abundant conjugated double bonds, and have
the ability to absorb electrons. Therefore, they can perform
the same function as SOD and scavenging free radicals
[39]. Modification of fullerenes, such as polyhydroxylated
fullerenes and carboxyfullerenes, can improve the stability
of nanoparticles and allow them to localize in the mitochon-
dria, leading to the protection of mitochondria and reduction
of free radical generation [40, 41]. The antioxidant activity of
fullerenes is related to its size, structure, and surface chemical
properties. Different surface functional groups can exert dif-
ferent oxygen metabolism regulation, thereby increasing or
reducing the production of ROS and exerting either a proox-
idation or antioxidant effect [42]. A CNT is a chemically
stable, cylindrical molecule composed of graphite. It has anti-
oxidant activity and high conductivity, but it is not biode-
gradable in the body and easily forms agglomerates (large
aggregates). Therefore, it requires surface modification.
Amino-functionalized CNTs are degradable in mouse brain
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after postinjection; meanwhile, functionalization of CNTs
using PEG, chitosan, bovine serum albumin (BSA), or sur-
factants increases their biostability and dispersibility and
reduces aggregate formation and cytotoxicity [43, 44].

2.3. Liposome Nanoparticles. Liposome nanoparticles are
composed of amphiphilic molecules similar to biological
membranes. Therefore, liposomes have good biocompatibil-
ity and biodegradability. They can carry hydrophobic or
hydrophilic drugs, improve drug efficacy, and reduce adverse
reactions [45]. Liposomes have been used in clinical applica-
tions, such as delivering chemotherapeutic drugs in cancer
treatments [46]. However, the disadvantages of liposomes
include reduced drug packaging efficiency and quick drug
release. Processes of liposomal modification, such as PEGyla-
tion, can extend the half-life of liposome nanoparticles, pre-
vent leakage or fusion of nanodrug particles, and improve
the stability and bioavailability of sensitive compounds [23,
47]. Additionally, liposomes can be used for targeted delivery
of antioxidants. They can also be modified with ligands for
receptor targeting, such as transferrin, and this leads to
enhanced translocation across the BBB [48]. Additionally,
echogenic liposomes (ELIP) can be guided by ultrasound to
the target site [49].

2.4. Polymeric Nanoparticles. Polymeric nanoparticles are the
most commonly used nanomaterials in drug delivery and are
praised for their excellent biocompatibility and biodegrad-
ability. Polymeric nanoparticles are made of natural poly-
mers (e.g., chitosan) or synthetic polymers (e.g., poly(lactic-
co-glycolic acid) (PLGA), polylactide (PLA), poly(amidoa-
mine) (PAMAM), or poly(methyl methacrylate) (PMMA)),
and these materials have great surface modification potential
and good pharmacokinetic characteristics [50, 51]. Micelles
and dendrimers are commonly used in polymeric nanoparti-
cles. The micelles have a hydrophilic outer shell and a hydro-
phobic inner core, which requires them to be manufactured
by amphiphilic polymers [52]. Therefore, micelles can carry
hydrophilic or hydrophobic drugs without changing the
structure of the drugs [53]. PLGA is the most common type
of polymeric nanoparticles, which is often spherical in shape.
In addition, it is easy for processing andmodification and can
regulate stable drug release [54, 55].

3. Targeting Stroke Oxidative Stress
Using Nanomaterials

3.1. Targeting Oxidative Stress in Ischemic Stroke. All the
nanomaterials for the treatment of ischemic stroke were
listed in Table 1. According to the route of antioxidant treat-
ment, they can be divided into ROS scavenger nanomaterials,
nanomaterials as carriers to transport free radical scavengers,
to transport antioxidant enzymes, to transport antioxidant
drugs, and to transport antioxidant genes.

3.1.1. ROS Scavenger Nanomaterials. The application of
nanomaterials regarding ROS scavengers in stroke has been
extensively studied. Metallic nanoparticles performed an
excellent antioxidant effect in stroke therapy (Figure 1).

Treatment with PtNPs in transient middle cerebral artery
occlusion (tMCAO) mice significantly reduced the infarct
volume, matrix metalloproteinase-9 (MMP-9) activation,
and •O2

-generation [56, 57]. This may relate to PtNPs, which
can serve the same function as the mitochondrial complex I
[36]. Unlike PtNPs, gold nanoparticles (AuNPs) can exhibit
either oxidative or antioxidant activity in stroke treatment,
depending on the size of nanoparticles. Studies found that
20 nm AuNPs can reduce cerebral infarction in rats, while
5 nm AuNPs lead to enlarged infarction [58]. Further cell
experiments revealed the same results and may be explained
by the accumulation of 5 nm AuNPs into the nucleus, caus-
ing DNA damage [34].

Nanoceria reduce approximately 50% of ischemic cell
death in the mouse hippocampal slice model of cerebral
ischemia, in which the level of 3-nitrotyrosine decreased by
approximately 70% [59]. Nanoceria downregulate inducible
nitric oxide synthase (iNOS) to reduce the production of
nitric oxide (NO) in mouse macrophages and eliminate per-
oxynitrite (ONOO-) generated by the reaction of •O2

- and
NO [60, 61]. Meanwhile, nanoceria can polarize microglia
into the M2 type and reduce oxidant-mediated cell apoptosis
[62, 63]. Additionally, studies on stroke in rats have found
that 0.5 and 0.7mgkg-1 of nanoceria can eliminate ROS by
50%. However, 1.0 and 1.5mgkg-1 of nanoceria failed to pro-
tect against stroke [37]. It may be related to excessive ROS
elimination, which affects the signal transduction in cell
[64]. Other modifications of nanoceria, such as bioactive zeo-
litic imidazolate framework-8 (ZIF-8), have also exerted pro-
tective effects in mouse cells [65].

Carbon-based nanoparticles also exert neuroprotective
effect against oxidative stress (OS) and reduce the volume
of cerebral infarction by 50% [66, 67]. Fullerene nanoparti-
cles activate the c-Jun NH2 terminal protein kinase (JNK)
in the brain microvascular endothelial cells and inhibit the
cleavage of polyADP-ribose polymerase (PARP) to inhibit
cell apoptosis [41]. Hexasulfobutylated C60 reduces lactate
dehydrogenase (LDH) release in MCAO rats and increases
NO content [66]. The injection of single-walled CNTs func-
tionalized with PEG (SWCNT-PEG) in the hippocampus of
normal rats showed an increase in the expression of antioxi-
dant enzymes after an extended period of time [44]. PEGy-
lated hydrophilic carbon clusters (PEG-HCCs) (HCC was
generated by oxidation of SWCNT) exert functions as SOD
[67–69] and can also scavenge •OH in the brain endothelial
cell and primary cortical neuron cell [67]. PEG-HCC exhibits
an estimated reduction potential similar to that of ubiqui-
none. Moreover, PEG-HCC has an improved protective
effect against the H2O2 toxicity when compared with methy-
lene blue, and it colocalizes in the mitochondria. Lastly, when
using sodium cyanide to inhibit the mitochondrial complex
IV in the cell, PEG-HCC demonstrated a protective effect
on cells [69].

3.1.2. Nanomaterials as Carriers to Transport Free Radical
Scavengers. Free radical scavengers, such as 2,2,6,6-tetra-
methylpiperidine-1-oxyl (TEMPO), edaravone, vitamins E
and C, and N-acetylcysteine (NAC), have shown promise
in ischemic stroke [45, 70–72]. However, they have failed
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Table 1: Nanomaterials for the treatment of ischemia stroke-targeted oxidative stress.

Therapeutic molecules
Biomaterials and
modifications

Main therapeutic effects References

ROS scavenger
nanoparticles

PtNPs NPs
Reduce the infarct volume and the activation

of MMP-9 and generation of •O2- [56, 57]

AuNPs NPs
Reduce cerebral infarction, neuronal

apoptosis, and oxidative stress
[34, 58]

Nanoceria
NPs; PEG NPs; NPs
encapsulated by ZIF-8

Downregulate iNOS; eliminate ONOO-;
polarize microglia into M2 type

[59–61, 65]

C60
NPs; hexasulfobutylated

NPs
Activate the JNK pathway; inhibit cell

apoptosis; reduce LDH release; increase NO
[41, 66]

CNTs PEG-SWCNT Increase antioxidant enzymes [44]

PEG-HCC PEG NPs
Exert functions as SOD; scavenge •OH;

colocalize in the mitochondria
[67–69, 104]

Nanomaterials as carriers
for ROS scavengers

TEMPO RNPs; micelles Reduced BBB damage; reduce the infarct size [19, 70, 73]

t-PA @ iRNP Polyion composite NPs
Scavenges ROS and reduce the hemorrhage

caused by t-PA
[74]

Edaravone Micelles; EA/P-CeO2
Improves outcome of ischemic stroke; shows
synergistic scavenging activity of free radical

[20, 31]

Vitamin E;
vitamin C

Liposomes; PLGA NPs Reduce the oxidative stress level [45, 54]

N-Acetylcysteine
Poly(amidoamine)

dendrimer;
PLGA NPs

Increases the antioxidant activity [72, 75]

Nanomaterials as carriers
for antioxidant enzymes

SOD

PLGA NPs; silica NPs
coated TAT; nanoenzymes;
PEI-PEG NPs; polyion
complex NPs; silica NPs

Reduce the infarct area by 50% or more
[29, 55,
76–80]

Nanomaterials as carriers
for antioxidants

Resveratrol
PVP-b-PCL NPs; MSNPs
coated a ligand for LDLR;

polymer NPs
Reduce the release of LDH and MDA content [30, 83, 84]

Quercetin PLGA NPs Reduce mitochondrial damage and ROS levels [87]

TNE
Carbitol chitosan NPs;
PLGA-chitosan NPs

Improved the behavior; reduced lipid
peroxidation

[85, 86]

AKBA Chitosan NPs Increase the expression of Nrf2 and HO-1 [90]

PNS MPEG-PLGA NPs
Reduces the cerebral infarct volume by
about 50%; reduces the concentration

of H2O2 and MDA
[88]

Lycopene Liposomes Reduces the levels of NOS and inhibit NOX2 [89]

Gallic acid Chitosan NPs Reduce oxidative stress [91]

Retinoic acid Polymeric NPs
Increase the proliferation and survival

rate of endothelial cells
[92]

EPO Liposomes; PLGA NPs Decrease the neurological deficits [93–95]

Nanomaterial carriers
for antioxidant genes

HO-1 gene
HSAP-NP; micelles;

DA-PEI NPs;
rPOA; PG2HR

Reduce oxidative stress [32, 98–101]

Abbreviations: ROS: reactive oxygen species; NPs: nanoparticles; PtNPs: platinumnanoparticles; AuNPs: gold nanoparticles; nanoceria: cerium oxide nanoparticles;
CNTs: carbon nanotubes; SWCNT: single-walled carbon nanotubes; HCC: hydrophilic carbon clusters; TEMPO: 2,2,6,6-tetramethylpiperidine-1-oxyl; t-PA @
iRNP: t-PA and 4-amino-TEMPO-containing self-assembled polyion composite nanoparticles; SOD: superoxide dismutase; TNE: thymoquinone
nanoemulsion; AKBA: acetyl-11-keto-β-boswellic acid; PNS: Panax notoginseng; EPO: erythropoietin; HO-1: heme oxygenase-1; PEG: polyethylene glycol;
ZIF-8: zeolitic imidazolate framework-8; PLGA: poly(lactic-co-glycolic acid); MPEG-PLGA: methyl ether PEG-PLGA; RNPs: nitroxide radical-containing
nanoparticles; EA/P-CeO2: nanoceria loaded with edaravone and modified with PEG and angiopep-2; TAT: transactivator protein; nanoenzymes: SOD1 and
methoxy-PEG-poly(L-lysine hydrochloride) chemically cross-linked; PEI: polyethyleneimine; PVP-b-PCL: poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone)
polymer; DA-PEI: deoxycholic acid-conjugated PEI; •O2-: superoxide anion; •OH: hydroxyl radicals; MMP-9: matrix metalloproteinase-9; iNOS: inducible
nitric oxide synthase; ONOO-: peroxynitrite; LDH: lactate dehydrogenase; NO: nitric oxide; BBB: blood-brain barrier; MDA: malondialdehyde; Nrf2:
nuclear factor-erythroid 2-related factor 2; NOX2: NADPH oxidase 2; JNK: c-Jun NH2 terminal protein kinase; rPOA: reducible poly(oligo-D-arginines);
PG2HR: polyamidoamine generation 2 dendrimer conjugated histidine and arginine.
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clinical trials in USA. This may result from short half-life
[19, 20]. PEG-b-poly 4-amino-TEMPO aminomethylstyrene
nanoparticles (nitroxide radical-containing nanoparticles
[RNPs]) and micelle-encapsulated 4-amino-TEMPO nano-
particles in mice showed protective effects, and the half-life
of RNPs is 60 times longer (15 minutes) than that of
TEMPO [19, 70, 73]. The t-PA and 4-amino-TEMPO-con-
taining self-assembled polyion composite nanoparticles (t-
PA @ iRNP, which means iRNP containing t-PA) improved
the half-life and bioavailability of t-PA compared with t-PA
alone in MCAO mice. Furthermore, t-PA @ iRNP also
reduces the hemorrhage induced by t-PA [74]. Monodis-
perse nanoceria are loaded with edaravone and modified
with PEG and angiopep-2 on their surface to form EA/P-
CeO2 and show synergistic scavenging activity of free radi-
cals in both in vivo and in vitro models [31]. Additionally,

agonistic micelles carrying edaravone, liposomes or PLGA
carrying vitamins C and E, and PAMAM dendrimer or
PLGA carrying N-acetylcysteine (NAC), all demonstrated
good stability and antioxidant activity [20, 45, 54, 72, 75].

3.1.3. Nanomaterials as Carriers to Transport Antioxidant
Enzymes. Nanomaterials may be used as carriers for antioxi-
dant enzymes. Antioxidant enzymes are capable of scaveng-
ing more ROS in stroke. Natural antioxidant enzymes
remain in the blood for approximately 6 minutes and then
quickly degrade in the serum, as it is difficult to cross the
BBB [55]. PLGA-coated SOD can reduce the infarct area by
65% during rat ischemia/reperfusion and has a better survival
rate at 28 days [55, 76]. This is obviously related to the
increased bioavailability of SOD as a result of the long
half-life. SOD1 and human immunodeficiency virus (HIV)
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Figure 1: Antioxidant mechanism of nanoparticles in ischemia stroke. Nanoparticles enter cell by receptor-mediated endocytosis; based on
their composition, nanoparticles can be divided to four main groups: metallic and metal oxide nanoparticles, carbon-based nanoparticles,
liposome nanoparticles, and polymeric nanoparticles. Metallic and metal oxide nanoparticles and carbon-based nanoparticles exert free
radical scavenging properties. AuNPs are found in both cytoplasm and lysosome. PtNPs mimic the activity of SOD, CAT, and
mitochondrial complex I and decrease the ROS and MMP-9 activation. Ce3+ in nanoceria reacts with •OH to generate Ce4+ and then
generates Ce3+ and O2 under the action of H+. Nanoceria downregulate iNOS to reduce the production of NO and eliminate ONOO-.
Modification of C60 and HCCs allows them to be localized in mitochondria. Hexasulfobutylated C60 reduces LDH release. Meanwhile,
PEG-HCCs exert functions as SOD. Liposome and polymeric nanoparticles can load antioxidants, antioxidant enzymes, and genes to
reduce the free radical in stroke. Most of antioxidants activate Nrf2, promote Nrf2 translocation to nucleus, and bind with antioxidant
response element (ARE) to promote the expression of ARE-derived antioxidant gene. These protect brain injury from stroke. NPs:
nanoparticles; Au: gold nanoparticles; Pt: platinum nanoparticles; CeO2: nanoceria; HCC: hydrophilic carbon clusters; SOD: superoxide
dismutase; CAT: catalase; MMP-9: matrix metalloproteinase-9; iNOS: inducible nitric oxide synthase; NO: nitric oxide; ONOO-:
peroxynitrite; LDH: lactate dehydrogenase; Nrf2: nuclear factor-erythroid 2-related factor 2; ARE: antioxidant response element; ROS:
reactive oxygen species; PEG: polyethylene glycol; •OH: hydroxyl radicals.
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transactivator protein (TAT) form into a fusion protein, which
can be loaded onto silica nanoparticles to penetrate the BBB by
TAT [29]. SOD is loaded onto methoxy-PEG-poly(L-lysine
hydrochloride), polyethyleneimine-polyethylene glycol (PEI-
PEG) polymer, and nanosized polyion complexes or silica
to facilitate the transportation and reduction of hydrolysis
of antioxidant enzymes and increase the activity of scaveng-
ing ROS [77–80].

3.1.4. Nanomaterials as Carriers to Transport Antioxidant
Drugs. Nanomaterials transport and reduce the metabolism
of antioxidants in the serum to target the ischemic area. Poly-
phenols and flavonoids, such as resveratrol, thymoquinone,
and quercetin, have antioxidation capabilities through the
activation of nuclear factor-erythroid 2-related factor 2
(Nrf2), peroxisome proliferator-activated receptor γ (PPARγ),
and forkhead box O (FoxO) [81, 82]. Thus, nanoparticle-
loaded polyphenols have been widely studied. Resveratrol-
loaded nanoparticles (RES-NPs) basing on poly(N-vinylpyr-
rolidone)-b-poly(ε-caprolactone) polymer (PVP-b-PCL) has
biodegradability and high drug-loading capacity; mesoporous
silica nanoparticles (MSNP) loaded resveratrol, modified with
biodegradable ROS-sensitive PLA, and used a new peptide
(Ac- [cMPRLRGC]c-NH2) as a ligand for LDLR to cross the
BBB via transcytosis. Additionally, resveratrol polymer nano-
particles all exert protective effects against brain injury [30, 83,
84]. Thymoquinone nanoemulsion and PLGA-chitosan nano-
particles reduced lipid peroxidation when administered intra-
nasally [85, 86]. Meanwhile, PLGA polymer-encapsulated
quercetin can reduce neuronal damage in rats, but quercetin
does not have effect on brain I/R damage, mainly due to
hydrophobicity [87].

Other antioxidants carried by nanomaterials have also
been studied. Panax notoginseng (PNS) is a traditional Chi-
nese medicine with antioxidant properties. Zhang et al. [88]
studied novel liposomal systems encapsulating methyl ether
PEG-PLGA-based nanoparticles, namely, core-shell hybrid
liposomal vesicles (HLVs). Compared with liposomes, the
encapsulation efficiency and the stability of the HLVs are bet-
ter and more suitable for oral administration. Lycopene lipo-
somes reduce the levels of nitric oxide synthase (NOS) and
NADPH oxidase 2 (NOX2) [89]. Acetyl-11-keto-β-boswellic
acid o-carboxymethyl chitosan nanoparticles (AKBA-NP),
gallic acid o-carboxymethyl chitosan nanoparticles (GA-
NP), retinoic acid nanoparticles (RA-NP), erythropoietin
(EPO) liposomes, and EPO-coated PLGA nanoparticles all
show better neuroprotective effects compared with AKBA,
GA, RA, and EPO alone, respectively [90–95].

Neutrophils migrate into injured tissue after ischemic
stroke. Promotion of neutrophil clearance in the ischemic
brain can attenuate the volume of cerebral infarction after
tMCAO [96]. Tang et al. invented platelet-mimetic nanopar-
ticles (PTNPs), which use piceatannol, a selective spleen tyro-
sine kinase (Syk) inhibitor, coloaded PLGA core, with a
platelet membrane surrounding the core. Under the guidance
of p-selectin, nanoparticles can specifically bind to neutro-
phils to internalize and release piceatannol, which effectively
inhibits Syk phosphorylation and significantly alleviates
neutrophil adhesion and migration, preventing neutrophilic

infiltration into the ischemic tissue. It was found that PTNPs
reduced the infarct area in MCAO mice, which provided a
novel idea for the application of nanomaterials in OS [97].

3.1.5. Nanomaterials as Carriers to Transport Antioxidant
Genes. Nanomaterials can be used as gene delivery carriers
to interfere with the OS in stroke. They have minimal cyto-
toxicity and higher transfection efficiency (Table 1). HSAP-
NP/pHO1 micelles are created based on deoxycholate-
conjugated polyethylenimine-2k (DP2k) and loaded with
hypoxia-specific anti-RAGE peptide (HSAP) and the heme
oxygenase-1 plasmid (pHO1); they are internalized by RAGE
in vivo and deliver pHO1 to protect hypoxic cells andMCAO
mice [32]. R3V6 peptide micelles, which have a strong hydro-
phobic core, are assembled by 3-arginine, 6-valine, and dexa-
methasone, had a high transfection efficiency; meanwhile,
deoxycholic acid-conjugated PEI (DA-PEI) for delivery of
heme oxygenase-1 gene achieved higher HO-1 expression
[98, 99]. Reducible poly(oligo-D-arginines) (rPOA) were
synthesized and demonstrated lower toxicity, but higher
transfection efficiency than PEI [100]. Polyamidoamine
generation 2 dendrimer (PG2) conjugated histidine and argi-
nine, synthesized PG2HR, reduced cytotoxicity, demon-
strated protective effects, and may also be an efficient gene
carrier [101]. Therefore, nanomaterials can be a safe and
biodegradable gene carrier for antioxidant therapy.

3.2. Targeting Oxidative Stress in Hemorrhage Stroke. Cere-
bral parenchymal and subarachnoid hemorrhages are the
most common types of hemorrhagic strokes. A substantial
amount of blood enters the brain, causing OS and nerve injury
in intracerebral hemorrhage (ICH). Similar to ischemic stroke,
antioxidants, such as deferoxamine (DEF), have not demon-
strated significant effects in clinical trials [102]. Dharmalin-
gam et al. [103] found that DEF and PEG-HCCs bound
covalently to form the DEF-HCC-PEG and can reduce DNA
damage response signaling, mitochondrial DNA damage,
and ROS formation caused by heme in both in vivo and
in vitro experiments, and the dosage of DEF-HCC-PEG is
reduced by 200-300 times when compared with deferoxamine.
Meanwhile, quercetin loaded nanoemulsions (which mainly
use phospholipids as surfactants) with an entrapment effi-
ciency of 98.4% and improved locomotor function compared
with quercetin alone in an ICH rat model [104].

Subarachnoid hemorrhage (SAH), a dangerous type of
stroke with a very high mortality rate, has an etiology of cere-
bral artery rupture [105]. Excessive ROS production in the
early stage of SAH causes microcirculation dysfunction,
leading to early brain injury (EBI) [106]. Antioxidant therapy
is essential for SAH. Nanoceria were modified with amino-
caproic acid and PEG, which reduced the apoptosis of
macrophages and accumulation in the ipsilateral cerebral
hemisphere where the aneurysm was ruptured [38]. Mean-
while, curcumin, encapsulated in PLGA nanoparticles and
NO-loaded ELIP (NO-ELIP), extenuates EBI [49, 107].
Aneurysmal repair essentially functions as a prophylactic
for future hemorrhages, and platinum coils are used in
clinical practice. Pt-coated nanofibers (created via electro-
spinning and electroplating) show very low permeability
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and can be used as a substitute for platinum coils [108].
Although these Pt-coated nanofibers have not been evalu-
ated for OS in blood vessels, they still have viable clinical
potential. The antioxidant effect of nanomaterials in cerebral
hemorrhage and subarachnoid hemorrhage has not been
thoroughly studied, but it is undeniable that there are great
therapeutic prospects.

Cerebral cavernous malformation (CCM) is a multifacto-
rial disease that affects approximately 0.4–0.8% of the general
population [109]. CCM is caused by CCM gene (CCM1,
CCM2, and CCM3) mutations [110], which cause abnor-
mally dilated capillaries and a risk of seizure and intracranial
hemorrhage [109]. Meanwhile, it affects cellular redox
homeostasis and autophagy, leading to mitochondrial dys-
function and increased ROS [111, 112]. PtNPs have been
studied in mouse embryonic fibroblast (MEF) cells, which
are derived from a CCM1 knockout mouse model that reca-
pitulates the human CCM. They found that ROS levels are
close to normal cells, which means that PtNPs recover cellu-
lar ROS homeostasis in MEF cells [16]. De Luca et al. [113]
studied multifunctional platinum@BSA-rapamycin nano-
particles (Pt5@Rapa NPs), which consist of 5 nm PtNPs,
rapamycin, and bovine serum albumin (BSA). These deliver
rapamycin to lysosomes in MEF cells, modulate ROS homeo-
stasis and angiogenesis, and achieve maximum synergy in
treatments. Studies have shown the effect of nanomaterials
on CCM in vitro, but these effects on CCM must be studied
in vivo. Multifunctional nanocarriers in combinatorial treat-
ments of CCM warrant further investigation.

3.3. Targeting Oxidative Stress in Neural Regeneration. Neu-
ral regeneration after stroke is related to the prognosis. More-
over, OS and the inflammatory environment after nerve
injury cause secondary damage to the nerve, leading to the
death of the neural network. Studies have found that antiox-
idants can promote regeneration after nerve injury [114].
Nanoscaffolds used in nerve repair can provide a microenvi-
ronment for cell attachment and can guide cell growth and
imitate the extracellular matrix of neurons for tissue repair
[115, 116] (Figure 2). The electrospun nanofiber scaffold,
modified with 10nm AuNPs, promoted immature neurons
to grow axons more than branched trees [117]. Nanoceria
fibers (synthesized by nanoceria and gelatin) promote β3-
tubulin mRNA expression (related to neuronal differentia-
tion) and axonal growth, as well as demonstrate improved
neuron electrical activity [118–120]. However, Gliga et al.
reported a contradictory result [121]. This may be related
to the differences in sizes, doses, modification, and ratios
of Ce3+ to Ce4+, but nanoceria in low ratios of Ce3+ to
Ce4+ promote cell proliferation [122, 123]. Carbon-based
nanoparticles, such as agarose CNT fibers, promote cellular
adhesion and neuronal differentiation and can be used for
neural tissue engineering [124–126]. Anti-transferrin recep-
tor monoclonal antibody-PEGylated Se nanoparticles (PEG-
Se NPs) and lignin-polycaprolactone copolymer nanofiber
scaffolds also promote cell proliferation [127, 128]. Mean-
while, gelatin hydrogels containing epidermal growth factor
(Gtn-EGF), when injected into the cavity after ICH, can
support the brain tissue in rats, providing an innovative

direction for antioxidant therapy and neural regeneration
treatment after ICH [129].

Mesenchymal stem cell- (MSC-) based therapy had great
potential application for ischemic stroke and was utilized in
developing phase II trials in humans [130]. MSCs have obvi-
ous antioxidant properties that function through a variety of
mechanisms, such as free radical scavenging, promotion of
endogenous antioxidant defense, immune regulation by inhi-
biting ROS, changing the energy flow of mitochondria, and
donating functional mitochondria to damaged cells [131].
Preclinical research has shown obvious benefits, but clinical
studies had not observed obvious efficacy, which may be
related to the death of MSCs caused by the environmental
OS in transplantation [132, 133]. Nanomaterials can play a
role in regulating the transplantation environment of MSCs
and assist in the growth of neurons. After modifying human
umbilical cord mesenchymal stem cells (HucMSCs) with
hyaluronic acid-coated nanoceria, HucMSCs exerted signifi-
cantly enhanced antioxidant capacities [134]. Nanoscaffolds
and hydrogels can be used to encapsulate stem cells and
provide conductive microenvironments for neural tissue
regeneration [135, 136]. Moreover, nanostructured CeO2-
loaded PLGA–ceramic scaffolds, MnO2 NP-dotted hydrogel
(MnO2 nanoparticles in hyaluronic acid hydrogel), and
core-shell hydrogel-loaded iron chelator agents (minocycline
hydrochloride) have been found to allow more MSCs to
survive, promoting cellular adhesion and support for MSC
differentiation [135, 137, 138]. MSCs can be modified or
encapsulated by nanomaterials to increase survival and pro-
mote neural regeneration.

4. Challenges and Prospect for Nanomaterials
Application in the Treatment of Stroke

Nanomaterials have many advantages in the antioxidant
application of stroke. At the same time, nanomaterials also
have toxic effects. Nanomaterials can interact with com-
pounds in cells, and they have cytotoxic effects that interfere
with cell homeostasis. These cytotoxic effects are related to
the size, shape, and surface properties of nanomaterials
[139, 140]. The size of nanomaterials is an important factor
affecting cytotoxicity. The smaller the nanomaterials, the
greater the surface area to volume ratio, which allows them
to react with a variety of chemical molecules within the cell,
enhancing cytotoxicity [141]. The 5nm AuNPs exhibit an
oxidative stress-causing effect, as Au-NPs with a smaller
diameter tend to accumulate in the nucleus and organelles,
causing DNA damage [34, 142]. Polystyrene nanomaterials
are changed from a sphere to a disk, with lower cell uptake
and little impact on cell functions, such as cellular ROS gen-
eration [143]. Surface properties, such as chemical properties
(hydrophobicity or hydrophilicity) and electrical properties
(negatively charged or positive charged), are also aspects of
nanotoxicity. Hydrophobic nanomaterials are more easily
absorbed because of the presence of lipid membranes, so they
are relatively more toxic. Similarly, the cell membrane is neg-
atively charged. Therefore, positively charged nanomaterials
are more easily absorbed than negatively charged nanoma-
terials [144–146]. The cytotoxicity is related to inflammatory
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reactions and ROS generation. For example, nanoceria cause
proinflammatory cytokine production [147]. The cytotoxic
effects limit the application of nanomaterials in the clinical
setting, and it needs to find a compromised method to reduce
cytotoxic effects by continuously changing the size, shape,
and surface properties of nanomaterials.

Nanomaterials > 30nm can be cleared by the MPS [46].
Moreover, they were cleared by the phagocytic cells in the
liver and spleen, which may cause damage to the respective
organs [148]. A study found that nanomaterials can be
detected in the liver (40.04%), kidney (25.97%), brain
(12.86%), heart, lungs, and spleen after oral administration
of PLGA for 7 days [149]. Nanomaterials cause the adsorp-
tion of complement proteins and antibodies on their sur-
faces in blood called “corona,” act as signals to membrane
receptors in immune cell, and induce phagocytosis [150,
151]. This decreased drug exposure and cerebral penetration
causes nanomaterial accumulation in other organs besides
the brain. Studies have found that nonionic, hydrophobic
surfaces promote protein adsorption [152]. Thus, coating
nanomaterials with hydrophilic polymers, such as PEG,
can decrease MPS uptake, reduce immunogenicity, and pre-
vent interactions with nontarget organs [153]. Moreover, as
a result of higher ROS and H+ concentrations in the injured
brain, nanomaterials that are pH/redox-responsive can
achieve drug accumulation in ischemic tissue and decrease
the dosage and off-target effects [154]. For example, the aryl
oxalate can react with H2O2 to generate CO2 [155], copo-
lyoxalate can be degraded into cyclohexanedimethanol and
CO2 [156–158], and PLA is ROS-sensitive [30], and nano-
material containing these substances can be pH/redox-
responsive. The role and function of nanomaterials in other
organs warrant evaluation, as methods to decrease off-target

effects are related to the application of nanomaterials in
clinical settings, which remain quite unclear and require
further investigation.

Nanomaterials have promising clinical application; they
are not used clinically in stroke. However, some researches
indicated that nanomaterials have a big breakthrough in clin-
ical application in stroke. Nanocurcumin has been used clin-
ically in neurological diseases, such as amyotrophic lateral
sclerosis (ALS) and multiple sclerosis (MS), showing antiox-
idant and immunity modulation [159–161]. Moreover,
nanocurcumin demonstrates safety and tolerability in human
subjects. However, there are possible side effects, such as
abdominal pain [159]. It is believable that nanocurcumin
can be studied clinically in stroke in the future. Although
most nanomaterials appear to be harmless in preclinical tri-
als, and their safety and tolerability in clinical application
remain unknown. There are numerous demands for the use
of nanomaterials in stroke antioxidant therapy. Firstly, the
combined use of multiple antioxidants through various anti-
oxidant pathways is a possible direction for antioxidant ther-
apy in stroke, which poses a challenge to the drug-loading
capacity of nanomaterials. Secondly, smart nanomaterial
designs and physicochemical property studies are necessary
to further increase the half-life and antioxidant effects of
nanomaterials, decrease MPS resorption, and enhance suit-
ability of nanomaterials for oral and intranasal administra-
tion. Lastly, many characteristics of nanomaterials used in
antioxidant therapy, such as toxicity and off-targeted, require
further elucidation in other animal models or organoids to
promote clinical translation in stroke treatment and neural
regeneration. The increasing incidence of stroke and the
urgency of stroke antioxidant therapy will further promote
the research of nanomaterials.

Electrospinning/wet spinning

Nanocomposite fibers
Substrates:
gelatin, agarose, chitosan, hyal-
uronic acid, poly (acrylic acid),

polycaprolactone

Antioxidants:
CeO2, CNT, lignin

Cell differentiation ↑
Electrical activities ↑

Cell culture

Figure 2: Schematic representation of nanocomposite formation mechanisms and their antioxidant effects in neuronal regeneration.
Nanocomposite fibers are prepared by substrates and antioxidants, using electrospinning or wet spinning, and promote cell differentiation
and electrical activities in neuron culture. CeO2: nanoceria; CNT: carbon nanotube.
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5. Conclusion

Nanomaterials are advanced biomaterials with controlled
delivery of the antioxidants in stroke treatment and neural
regeneration, suggesting a solution to overcome the lack of
clinical translation. Some metals, metal oxides and carbon-
based nanomaterials have antioxidant effects, which have
been studied in numerous preclinical studies. The majority
of studies have shown that nanomaterials deliver antioxi-
dants to the brain at therapeutic doses with prolonged half-
life, achieving greater therapeutic effects than free drugs.
Nanomaterials improve the microenvironment after nerve
injury and promote the survival of MSCs for poststroke
repair. Nanomaterials possess promising biological applica-
tions and may address the current dilemma of antioxidant
treatment in stroke.
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