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Pancreatic cancer (PC) is considered a silent killer because it does not show specific symptoms at an early stage. Thus, identifying
suitable biomarkers is important to avoid the burden of PC. Stratifin (SFN) encodes the 14-3-3σ protein, which is expressed in a
tissue-dependent manner and plays a vital role in cell cycle regulation. Thus, SFN could be a promising therapeutic target for
several types of cancer. This study was aimed at investigating, using online bioinformatics tools, whether SFN could be used as
a diagnostic and prognostic biomarker in PC. SFN expression was explored by utilizing the ONCOMINE, UALCAN, GEPIA2,
and GENT2 tools, which revealed that SFN expression is higher in PC than in normal tissues. The clinicopathological analysis
using the ULCAN tool showed that the intensity of SFN expression is commensurate with cancer progression. GEPIA2, R2,
and OncoLnc revealed a negative correlation between SFN expression and survival probability in PC patients. The
ONCOMINE, UCSC Xena, and GEPIA2 tools showed that cofilin 1 is strongly coexpressed with SFN. Moreover, enrichment
and network analyses of SFN were performed using the Enrichr and NetworkAnalyst platforms, respectively. Receiver
operating characteristic (ROC) curves revealed that tissue-dependent expression of the SFN gene could serve as a diagnostic
and prognostic biomarker. However, further wet laboratory studies are necessary to determine the relevance of SFN expression
as a biomarker.

1. Introduction

The pancreas is a pear-shaped organ located in the abdo-
men, and it plays an essential role in converting foods to
become fuel for body cells. However, in some cases, the
growth of the pancreas becomes uncontrollable due to
some reasons and thus becomes cancerous. Pancreatic can-
cer (PC) is one of the deadliest cancers and is the seventh
most common cause of cancer-related deaths in both men
and women [1]. According to GLOBOCAN, in 2018, the
estimated number of PC cases and deaths were 458,918
and 432,242, respectively, corresponding to 2.5% of all

new cancer diagnoses and 4.5% of all cancer deaths [1].
PC has become more common in recent decades, and
the number of new cases will reach 355,317 by 2040 [2,
3]. PC incidence is 3–4 times greater in developed coun-
tries than in developing and poor countries [4]. In the
United States, it is estimated that in 2021, approximately
60,430 individuals (31,950 men and 28,480 women) will
be diagnosed with PC and approximately 48,220 individ-
uals (25,270 men and 22,950 women) will die of PC [5].
Furthermore, PC is expected to overtake breast cancer as
the third leading cause of cancer-related death in the
European Union, as in the United States [3, 6].

Hindawi
BioMed Research International
Volume 2022, Article ID 1617989, 17 pages
https://doi.org/10.1155/2022/1617989

https://orcid.org/0000-0002-1349-5677
https://orcid.org/0000-0003-1297-5019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1617989


PC is often difficult to diagnose at an early stage; as a
result, the majority of PC cases are diagnosed at an advanced
stage, and only 10–20% of cases are surgically treatable [7].
This trend is due to the lack of distinct clinical signs and
symptoms, due to a lack of accurate biomarkers, and due
to the limited resolution of imaging techniques, resulting
in a high mortality rate in PC [7, 8]. The 5-year overall sur-
vival rate for PC has remained low at 3% in recent years, as
more than half of PC patients are diagnosed at an advanced
stage [9, 10]. Compared with the screening programs for
other cancers, such as lung, breast, colon, and cervical can-
cers, those for PC are difficult to implement due to the lack
of specificity of a particular test [11]. The most common bio-
marker that has been approved by the US Food and Drug
Administration (FDA) for PC diagnosis is the carbohydrate
antigen (CA) 19-9. However, CA has not been considered to
be the most effective screening tool due to its low sensitivity
and specificity and poor predictive value of 0.5–0.9% in
asymptomatic patients [12, 13]. Meanwhile, CA 19-9 expres-
sion may increase in other medical conditions, such as acute
cholangitis, pancreatitis, obstructive jaundice, and liver cir-
rhosis [11]. Currently, there are no biomarkers with an ade-
quately high accuracy that could be used to screen sporadic
PC; therefore, there is an urgent need to identify biomarkers
for PC [14].

Stratifin (SFN) encodes the 14-3-3σ protein, which is a
member of a highly conserved family of 14-3-3 proteins
found in all eukaryotic organisms [15]. SFN was first identi-
fied as human mammary epithelial marker 1 before being

rediscovered as a key regulator of cell cycle checkpoints
[16, 17]. Decreased SFN expression has been found in vari-
ous cancers, including breast [18], lung [19], liver [20],
endometrium [21], head and neck [22, 23], vulva [24], and
prostate cancers [25, 26]. Conversely, upregulation of the
SFN gene expression has been observed in other cancers,
including pancreatic [27–29], colorectal [30], and esopha-
geal squamous cell carcinoma [31]. The expression of the
SFN gene varies in different cancers, and it performs a
double-edged function [32]. Therefore, the role of SFN
expression is likely context dependent. On the basis of its
tissue-dependent expression pattern, SFN can be used as a
diagnostic and prognostic biomarker in PC. However, there
has been insufficient evidence demonstrating that SFN
expression can be used as a biomarker for PC.

This study compared the expression pattern of SFN in
PC patients and healthy individuals based on data obtained
from online databases. Moreover, clinicopathological fea-
tures, coexpression, prognostic values, gene ontologies, sig-
naling pathways, and network analysis were performed.
The workflow for this study is depicted in Figure 1.

2. Material and Methods

2.1. Investigation of mRNA Expression in Human Cancers.
The ONCOMINE (https://http://www.ONCOMINE.org/)
tool was used to examine the mRNA expression levels of
SFN in different cancers, wherein the threshold level for P
value, gene rank, and fold change were fixed at 1 × 10−4,
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Figure 1: Schematic of the overall workflow in this study.
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10%, and 2, respectively. ONCOMINE is a web-based data-
mining platform that is aimed at facilitating the identifica-
tion of cancer-related genes by analyzing genome-wide
expression [33, 34]. The pancancer view for SFN was deter-
mined using the UALCAN (http://ualcan.path.uab.edu/)
platform. UALCAN is a comprehensive, user-friendly, and
interactive web-based resource used to study cancer OMICS
data [35]. Then, GENT2 (http://gent2.appex.kr/gent2/) [36]
was adopted by using the GPL570 platform (HG_U133_
Plus_2) to investigate the SFN expression levels in different
types of cancer.

2.2. SFN Expression in PC versus Healthy Tissues. We exam-
ined the SFN expression in various datasets collected from
the ONCOMINE tool. The SFN expression levels under nor-
mal conditions were explored in different PC subtypes, such
as pancreatic carcinoma, pancreatic adenocarcinoma, and
pancreatic ductal adenocarcinoma. Moreover, the SFN
expression in PC obtained from the GEPIA2 (http://gepia2
.cancer-pku.cn/#index) platform was compared with that
in their normal counterpart. GEPIA2 is a web-based plat-
form used for gene expression analysis involving data for
tumor and normal samples retrieved from the TCGA and
GTEx databases [37]. UALCAN was utilized to obtain SFN
expression data in PC and then compared with those in nor-
mal tissues.

2.3. SFN Expression in relation to Clinicopathological
Parameters in PC. The UALCAN web tool with default set-
tings was used to assess the mRNA expression of the SFN
gene in PC patients based on their clinicopathological fea-
tures. In this investigation, SFN expression was analyzed
based on clinicopathological parameters, such as cancer
stages, race, age, nodal metastasis status, and tumor grade.
Only the statistically significant results were taken into
account in the analysis.

2.4. Association between SFN Expression and Survival
Probability in PC Patients. The impact of SFN expression
on the survival probability of PC patients was investigated
using the GEPIA2, R2 (http://r2platform.com), and OncoLnc
(http://www.oncolnc.org/). The R2 genomics platform is a
publicly available web-based platform that allows researchers
to integrate, analyze, and visualize clinical and genomics data
[38]. OncoLnc is an online tool for estimating survival
relationships and for accessing clinical data for mRNAs,
miRNAs, and lncRNAs (long noncoding RNAs) [39]. The
R2 platform was utilized to generate a Kaplan-Meier plot
(OS) for the SFN gene against the mixed tumor pancreas
Hussain-130-rma-sketch-hugene10t and mixed pancreatic
adenocarcinoma Sadanandam-47-MAS5.0-u133p2 datasets
by setting the optimum cut-off values. The Kaplan-Meier
plot was drawn by splitting the patient population at the
median. A P < 0:05 was considered significant.

2.5. Coexpression Analysis of the SFN Gene in PC Cancer.
The SFN gene’s coexpression profile in PC was determined,
and the corresponding heat map was obtained from the Col-
lisson Pancreas dataset through the ONCOMINE web tool.
From this dataset, the cofilin 1 (CFL1) gene was the most

positively correlated with SFN expression in PC. To confirm
the relationship between SFN and CFL1, we used the TCGA
(PAAD) dataset from the UCSC Xena server (https://
xenabrowser.net/) [40]. Furthermore, correlation data were
obtained from the UCSC Xena server, and a scatter plot
was drawn by using ggplot2 [41]. The GEPIA2 was utilized
to confirm the positive correlation between SFN and CFL1
transcripts in the PC.

2.6. Enrichment Analysis of the SFN Gene. The Enrichr
(https://maayanlab.cloud/Enrichr/) web tool was used to
extract the gene ontologies and signaling pathways of the
SFN gene, as well as the corresponding bar graphs. Enrichr
is a user-friendly web-based enrichment analysis tool that
graphically presents the collective functions of genes [42,
43]. Gene ontologies were analyzed using GO Biological
Process 2018, GO Molecular Process 2018, and GO Cellular
Process 2018. Signaling pathways were determined using
BioPlanet 2019, Reactome 2016, WikiPathway 2021 Human,
KEGG 2021 Human, Biocarta 2016, and Panther 2016.

2.7. Evaluation of the SFN Interaction Network. The
STRING (https://string-db.org/) database was employed to
investigate the interactions of SFN with other proteins.
STRING is a database that contains information on direct
(physical) and indirect (functional) connections for over
2000 organisms [44]. We also used the GeneMANIA
(https://genemania.org/) web platform to create an interac-
tion network of closely linked genes. GeneMANIA is used
to predict the function of a gene or gene lists and to identify
the physical interaction, genetic interactions, coexpression,
pathway, colocalization, and shared protein domain [45].

2.8. TF and miRNA Network Analyses. TFs are proteins
that regulate gene expression by binding to certain DNA
sequences [46], and miRNAs are a type of noncoding
RNAs that play crucial functions in gene regulation [47].
TF and miRNA networks were constructed based on the
ChEA [48] and TarBase [49] repositories, respectively,
using the NetworkAnalyst (https://dev.networkanalyst.ca/
NetworkAnalyst/uploads/ListUploadView.xhtml) web plat-
form. NetworkAnalyst is a comprehensive web tool used
for gene expression analysis, and it generates visual net-
works [50].

2.9. ROC Curve Analysis of the SFN Gene. For determining
the diagnostic and prognostic values of the SFN gene,
receiver operating characteristic (ROC) curves were drawn.
For this purpose, gene expression data (GSE16515) were
retrieved from the Gene Expression Omnibus (GEO) data-
base (https://www.ncbi.nlm.nih.gov/gds), and survival data
were obtained from TCGA-PAAD through the OncoLnc
(http://www.oncolnc.org/) platform. The ROC curve was
plotted, and the area under the ROC curve (AUC) was calcu-
lated by exploiting the Statistical Packages for Social Sciences
(SPSS for Windows, version 20, IBM Corp., Armonk, New
York, USA) software.
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Figure 2: Continued.
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3. Results

3.1. mRNA Expression in Human Cancers. We analyzed the
expression pattern of SFN in numerous cancer studies by
using the ONCOMINE platform. The results showed that
SFN was upregulated in seven cancer types, namely, bladder,
head and neck, kidney, liver, lung, ovarian, and pancreatic
cancers (Figure 2(a)). In the pancancer view based from
the ULCAN tool, we found that SFN was upregulated in
16 cancer types, downregulated in 6 cancer types, and
equally expressed in 2 cancer types (Figure 2(b)). We also
confirmed the upregulation of SFN in different cancers using
the GENT2 tool.

3.2. SFN Expression in PC versus Healthy Tissues. SFN was
significantly upregulated in different PC types, including
pancreatic adenocarcinoma, pancreatic carcinoma, and pan-
creatic ductal adenocarcinoma, compared with its expres-
sion in normal tissues (Figures 3(a)–3(c) and Table 1).
Using the GEPIA2 and UALCAN platforms, we further
assessed the upregulation of SFN. Our findings indicated
that SFN expression was significantly higher in PC tissues
than in normal tissues (Figures 3(d) and 3(e)).

3.3. SFN Expression in relation to Clinicopathological
Parameters in PC. We looked at variations in SFN gene
expression levels in PC patients based on their clinicopatho-
logical features. In terms of individual cancer stages, the
increase in SFN expression correlated with that in PC pro-
gression (Figure 4(a)). In terms of patients’ race, SFN
expression is increased in Asian patients (Figure 4(b)). In

terms of patient’s age, higher SFN expression levels were
observed in 41–60- and 81–100-year-old patients, whereas
lower SFN expression levels were observed in 21–40-year-
old patients (Figure 4(c)). As regards nodal metastasis status,
a positive nodal status revealed a high SFN expression in PC
(Figure 4(d)). Analysis based on tumor grade showed
increased SFN expression in grade 3 PC (Figure 4(e)).

3.4. Association between SFN Expression and Survival
Probability in PC Patients. To evaluate the prognostic value
of the SFN gene, we determined the survival probability of
PC patients using GEPIA2, R2, and OncoLnc. The results
obtained from these tools revealed a negative correlation
between survival probability and SFN expression (i.e., high
SFN expression results in low survival probability). GEPI
A2 provided data on the overall and disease-free survival
probability of PC patients (Figures 5(a) and 5(b)), whereas
R2 and OncoLnc provided information on overall survival
probability (Figures 5(c)–5(e)). The analysis results under-
scored the prognostic relevance of a high SFN expression
in PC patients.

3.5. Coexpression Analysis of the SFN Gene in PC Cancer.We
determined the genes that are positively associated with SFN
expression to identify the coexpressed genes associated with
PC development. A heat map (Figure 6(a)) involving 13
genes coexpressed with SFN was obtained from ONCO-
MINE. Among these genes, CFL1 was strongly (R = 0:92)
coexpressed with SFN. Moreover, we observed a positive
association between SFN and CFL1 using the TCGA data
from the UCSC Xena tool, with Pearson’s and Spearman’s
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Figure 2: SFN mRNA expression in different types of cancer. (a) A graphic constructed based on the data retrieved from the ONCOMINE
database; it indicates the number of statistically significant (P < 0:01) datasets. mRNA overexpression is represented in red, and
downregulation is represented in blue. (b) Expression across TCGA cancer data; tumor (red) and normal (blue) samples are represented
by boxplots. (c) The SFN expression patterns in different cancers were determined by utilizing the GENT2 server, where blue represents
healthy cells and red represents cancer cells.
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Figure 3: Comparison of SFN expression in PC and normal tissues. (a–c) Boxplot comparing the specific SFN expression in normal (left)
and cancer (right) tissues; this boxplot was retrieved from the ONCOMINE tool. (d) Boxplot showing the SFN expression in normal tissue
(right) and PC (left) (∗ indicates P ≤ 0:05). (e) SFN expression based on the TCGA dataset obtained from UALCAN, where red represents
primary tumor and blue represents normal tissues.
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Table 1: SFN expression in different PC subtypes.

Datasets Pancreatic cancer subtype P value t test Fold change

Logsdon pancreas Pancreatic adenocarcinoma (10) 7.02E-9 16.428 24.921

Iacobuzio-Donahue pancreas 2 Pancreatic adenocarcinoma (12) 1.14E-6 10.684 20.186

Segara pancreas Pancreatic carcinoma (11) 3.31E-6 7.810 9.735

Pei pancreas Pancreatic carcinoma (36) 2.27E-9 8.043 7.017

Badea pancreas Pancreatic ductal adenocarcinoma (39) 1.82E-11 7.746 6.660
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values of 0.67 and 0.60, respectively (Figure 6(b)). The GEPI
A2 tool validated the positive correlation between SFN and
CFL1, with a Pearson value of 0.54 (Figure 6(c)).

3.6. Enrichment Analysis of the SFN Gene. Significantly
enriched pathways involving the SFN gene were determined
from six databases depicted in Figures 7(a)–7(f). For
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Figure 5: Correlation between SFN expression and prognosis in cancer patients. Red lines indicate SFN overexpression, and blue lines
indicate low SFN expression. (a) Overall survival (OS) data retrieved from GEPIA2. (b) Disease-free survival (DFS) data retrieved from
GEPIA2. (c) OS from the R2 platform (mixed tumor pancreas Hussain-130-rma-sketch-hugene10t SFN (7899265)). (d) OS from the R2
platform (mixed pancreatic adenocarcinoma Sadanandam-47-MAS5.0-u133p2 SFN (33323-r-at)). (e) OS data collected from the
OncoLnc server.
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BioPlanet 2019, we observed significantly enriched path-
ways, namely, cell cycle control pathway, p38 MK2 pathway,
G2/M checkpoint control pathway, insulin regulation of
blood glucose, PICK3C/AKT pathway, and PI3K/PLC/TRK
pathway (Figure 7(a)). Similarly, Reactome 2016 revealed
the significantly enriched pathways related to Chk1/Chk2-

mediated inactivation of cyclin B, BAD activation and its
translocation to the mitochondria, TP53-regulated G2 cell
cycle arrest genes, activation of BH3-only proteins, intrinsic
pathway of apoptosis, and TP53-regulated cell genes
(Figure 7(b)). In WikiPathway 2021 (Figure 7(c)), KEGG
2021 (Figure 7(d)), Biocarta 2016 (Figure 7(e)), and Panther
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Figure 6: Coexpression analysis of the SFN gene in PC. (a) Heat map presenting the genes that are positively correlated with SFN based on
the data retrieved from ONCOMINE. (b) Correlation analysis between SFN and CFL1 using the UCSC Xena web tool. (c) Coexpression of
the SFN and CFL1 transcript levels in PC tissue is illustrated using the GEPIA2 web tool.
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Figure 7: Continued.
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2016 (Figure 7(f)), the most prominent pathways were DNA
damage response, miRNA regulation of DNA damage
response, cell cycle regulation, p53 signaling pathway, and
FGF signaling pathway. Furthermore, we investigated the
gene ontologies for the SFN gene. The GO Biological Process
2021 determined the predominant biological processes, such
as positive regulation of epidermal development, release of
cytochrome c from mitochondria, regulation of water loss
via the skin, positive regulation of epidermal and epithelial

cell differentiation, and apoptotic mitochondrial change
(Figure 7(g)). In GO Molecular Function 2021, the most sig-
nificantly enriched function was the protein serine/threo-
nine kinase inhibitory activity (Figure 7(h)).

3.7. Evaluation of the SFN Interaction Network. We utilized
GeneMANIA and STRING, two different web-based net-
work analysis tools, to explore the SFN interaction network.
Protein–protein interactions (PPIs) play important roles in
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Figure 7: Enrichment analysis of the SFN gene: (a) BioPlanet 2019 pathway; (b) Reactome 2016 pathway; (c) WikiPathway 2021 Human;
(d) KEGG 2021 Human pathway; (e) Biocarta 2016 pathway; (f) Panther 2016 pathway; (g) GO Biological Process 2021. (H) GO Molecular
Function 2021.
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cellular activities and biological signaling in all animals, and
this information helps researchers to gain a better under-
standing of various connections and pathways [51]. The
PPI network from the STRING database showed the interac-
tions of SFN with TP53, FOXO1, LRRK2, RAF1, CDK2,
BAD, CDC25B, AKT1, ANPEP, and YWHAZ
(Figure 8(a)). Analysis of the network provided information
about the number of nodes (i.e., 11), number of edges (i.e.,
49), average node degree (i.e., 8.91), average local clustering
coefficient (i.e., 0.922), and PPI enrichment P value (i.e.,
6.49e-10). GeneMANIA revealed the interaction of SNF with

FOXO1, BRAF, HDAC7, FKBP5, ARAF, EGFR, MST1R,
YWHAZ, YWHAQ, YWHAG, TPC1D4, ZNF385A, LRRK2,
PPP3CC, YWHAB, YWHAH, YWHAE, PI4KB, CDK3, and
GPRIN2 (Figure 8(b)).

3.8. TF and miRNA Network Analyses. The TF network con-
structed using the NetworkAnalyst platform revealed the
direct interaction of 21 transcription factors (TFs) with
SFN. The TFs for SFN were ASH2L, E2F4, CNOT3, SRY,
ZNF281, NANOG, TFCP2L1, HSF1, POU5F1, SMAD3,
KLF4, XRN2, MITF, TCF4, SMAD4, TP63, SMAD2, REST,

(a)

(b)

Figure 8: SFN interaction network. SFN-interacting proteins play a role in cell cycle regulation, apoptosis, and cancer. (a) PPI interaction
network obtained from the STRING database. (b) SFN interaction network retrieved from GeneMANIA.
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E2F1, MYC, and MYBL2 (Figure 9(a)). Modification of these
TFs might play a significant role in altering the SFN gene
expression in PC. In the miRNA analysis, we obtained a net-
work showing the direct interaction of 19 miRNAs with SFN
(Figure 9(b)). These miRNAs can modify the SFN expres-
sion at the posttranscriptional stage.

3.9. ROC Curve Analysis of the SFN Gene. In the ROC curve,
the area under the curve (AUC) is used to discriminate
between classes. In the GSE16515 dataset, the AUC for the

SFN gene expression was 0.965 (Figure 10(a)) and the
AUC for the survival of patients was 0.637 (Figure 10(b)).
These AUC results indicate that the SFN gene might be used
as a diagnostic and prognostic marker.

4. Discussion

PC is one of the most aggressive cancers affecting human
health, and it is considered the “silent disease,” as it does
not show noticeable symptoms at an early stage [52]. Given
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Figure 9: Interaction network of SFN with TFs and miRNAs. (a) TF network constructed from the ChEA database through the
NetworkAnalyst platform. (b) miRNA network constructed from the TarBase database using the NetworkAnalyst platform.
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that it displays characteristics similar to those of other dis-
eases, such as ulcer, gastritis, and pancreatitis, it is mostly
diagnosed at an advanced stage [53]. As early detection
remains difficult, finding a potential novel biomarker that
aids in early detection is desired. In this study, we utilized
bioinformatics approaches to assess the importance of the
SFN gene as a biomarker in PC prediction.

Upregulated SFN gene expression in PC and other can-
cer types was observed in ONCOMINE, UALCAN, and
GENT2. The upregulated SFN expression in PC cells was
compared with that in normal pancreatic cells using the data
from ONCOMINE, GEPIA2, and UALCAN. A study on the
molecular profiling of stroma in pancreatic ductal adenocar-
cinoma has revealed the upregulated expression of SFN,
along with other genes [54]. This upregulated SFN expres-
sion in PC is supported by other studies [27, 55–57]. Gene
expression levels in cancers can vary under different clinico-
pathological conditions, as cancer is a heterogeneous and
complex disease. We analyzed the SFN expression based
on patients’ age, race, tumor grade, tumor stage, and nodal
status. The results showed that SFN was highly upregulated
among Asians, among 41–60-year-old individuals, among
those with a positive nodal status, and among grade 3 tumor
patients. Interestingly, in the case of cancer stages, SFN
expression increased proportionally with cancer stage pro-
gression. Then, the prognostic value of SFN in PC was eval-
uated using the GEPIA2, OncoLnc, and R2 platforms. High
SFN expression significantly (P < 0:05) correlated with low
overall and disease-free survival. Our current findings agreed
with those of another study in which SFN was considered an
independent prognostic biomarker in pancreatic ductal ade-
nocarcinoma [54]. Moreover, it has been demonstrated that
the elevated 14-3-3σ protein levels likely contribute to the
poor prognostic outcome of human pancreatic tumors, as
they promote resistance to radiation and anticancer treat-
ments [15].

Gene coexpression provides information that aids in the
identification of functionally linked genes. Coexpression
analysis using the ONCOMINE platform revealed 13 genes,
among which CFL1 was highly coexpressed with SFN. Fur-
thermore, CFL1 coexpression in PC was confirmed by
GEPIA2 and UCSC Xena. CFL1 is a small, ubiquitous,
actin-binding protein that plays important roles in cytokine-
sis, endocytosis, apoptosis, cell proliferation, and migration,
as well as in tumor development, infiltration, and metastasis
[58, 59]. Moreover, it has been reported that this protein is
necessary for the invasion and spread of numerous human
malignant solid tumors [60, 61]. Recent studies have found
a positive association between high CFL1 gene expression
and PC progression [59, 62].

Enrichment analysis for the SFN gene was performed by
utilizing the Enrichr web platform. The most prominent path-
ways, including cell cycle control, Chk1/Chk2-mediated inac-
tivation of cyclin B, DNA damage response, aldosterone-
regulated sodium reabsorption, estrogen-responsive protein
efp control cell cycle, and p53 pathway, were obtained from
BioPlanet 2019, Reactome 2016, WikiPathway 2021, KEGG
2021, Biocarta 2016, and Panther 2016, respectively. SFN
was initially found to be a p53-inducible gene that responds
to DNA-damaging agents [63]. A study has reported that
SFN inhibits the initiation of mitosis by sequestering the
mitotic initiation complex (cdc2-cyclin B1) and preventing
it from entering the nucleus [64]. In this manner, SFN causes
G2 arrest, allowing damaged DNA to be repaired. It has been
demonstrated that SFN directly controls the G2/M check-
point of the cell cycle by protecting p53 against MDM2-
mediated ubiquitination and degradation [65–67]. These
findings indicate that SFN acts as a negative regulator of cell
cycle progression and might be considered a tumor suppres-
sor. However, SFN plays a double-edged function in human
cancers, and its function may vary among organs and tissues
[32, 68]. Meanwhile, accumulation of 14-3-3σ has been
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Figure 10: Evaluation of the diagnostic and prognostic values of the SFN gene. (a) ROC curve for SFN expression in pancreatic cancer. (b)
ROC curve for patients’ survival. AUC: area under the curve, CI: confidence interval.
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observed in PC, but it cannot perform its major ascribed
functions, such as sustaining a G2 checkpoint and perform-
ing an antiapoptotic action, due to multiple alterations in
its interaction with downstream partners [69].

Network analysis based from the STRING database
revealed the functional interaction partners of SFN, namely,
TP53, FOXO1, LRRK2, RAF1, CDK2, BAD, CDC25B,
AKT1, ANPEP, and YWHAZ. It has been reported that
overexpression of CDC25B is associated with pancreatic
ductal adenocarcinoma and that its inhibitor prevents PC
cell growth by blocking the G2/Mphase transition via the
inhibition of cdc2 dephosphorylation [70]. According to
the NCBI, defects in the ANPEP gene enhances angiogene-
sis, tumor growth, and metastasis [71]. Meanwhile, overex-
pression of the YWHAZ gene has been demonstrated to be
a prognostic and therapeutic target in gastric cancer [72,
73]. In GeneMANIA, SFN shares consolidated pathways
with MST1R and YWHAG. MST1R expression has been
shown to play an oncogenic function in human pancreatic
intraepithelial neoplasia, as well as in primary human and
animal metastatic cell lines [74]. In PC, the overexpression
of the YWHAG gene is associated with poor overall survival
compared with low YWHAG expression [75]. Furthermore,
our network analysis revealed some TFs and miRNAs that
might play important roles in determining how SFN gene
expression is regulated at the transcriptional and posttran-
scriptional levels.

In ROC analysis, SFN expression showed excellent
(AUC = 0:917) diagnostic value of pancreatic cancer. A
meta-analysis study showed that the sensitivity and specific-
ity of CA 19-9 were 78.2% and 82.8%, respectively [76].
However, the CA 19-9 level may be augmented in other
medical conditions, such as acute cholangitis, pancreatitis,
obstructive jaundice, and liver cirrhosis [11]. In our study,
SFN also exhibited as a good (AUC = 0:637) prognostic
marker in pancreatic cancer. In these aspects, SFN might
be considered as an auxiliary biomarker of CA 19-9 in PC.
Of course, there are some limitations in our study. First,
due to the lack of enough datasets, the sample size for anal-
ysis was relatively small. Second, the absence of in vivo and
in vitro experiments is another flaw of our study. Third, this
study cannot explain how the tissue-specific upregulation
SFN gene is related to pancreatic cancer. Therefore, further
wet laboratory molecular studies are needed.

5. Conclusion

Data from the online bioinformatics platforms utilized in
this study showed that SFN expression in PC was upregu-
lated relative to that in normal tissues. Moreover, a negative
correlation between SFN expression and survival probability
was found in PC. In our network analysis, SFN-associated
proteins, TFs, and miRNAs were identified. Based on these
findings, we can conclude that the high tissue-dependent
SFN expression might be used as a biomarker for diagnosis,
prognosis, and therapeutic purposes. However, further wet
laboratory-based studies are needed to bolster the signifi-
cance of SFN overexpression in PC.
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