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Abstract

Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to

possess many beneficial effects in human bodies, such as vasoprotection, immune support,

anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide tran-

scription in blood cells are still unknown. In order to find out effects of troxerutin on gene

transcription, a high-throughput RNA sequencing was employed to analysis differential

gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated

from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demon-

strated that the expression of only fifteen genes was significantly changed by the treatment

with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regu-

lated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utiliz-

ing the Gene Ontology (GO), and the differential expression induced by troxerutin was

further evaluated by real-time quantitative PCR (Q-PCR).

Introduction

Troxerutin (TX), known as vitamin P4, is a semi-synthetic derivative of the natural bioflavo-

noid rutin (alias rutoside, vitamin P) which is originally extracted from Ruta graveolens L. It is

abundant in capers, olive, buckwheat, asparagus, and raspberries[1–4]. Compared with rutin,

TX can be absorbed more easily through digestion system. The safety of TX has been con-

firmed in human including pregnant women and the aged[5–7], clinical trials have proved

that TX has a very good safety profile and tolerability even at high doses[8].

Accumulative evidence has shown that TX has broad pharmacological effects, such as vaso-

protection, anti-inflammation, immune support and anti-aging[9–16]. It is clinically recog-

nized as an effective agent in treatment of cardiovascular diseases, for instance, varicose veins

and chronic venous deficiency[17,18]. It has been reported that TX can pass through the

blood-brain barrier and influence the nervous system[19,20]. So far, the effects of TX on

genome-wide expression have not been reported, which could help understanding the clinical

effects of TX.
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In molecular biology, transcript identification and quantification of gene expression has

been distinct core activities[21]. The rapid development of high-throughput sequencing of

mRNA (RNA-Seq), for example, Illumina RNA sequencing, has provided efficient technology

for transcriptomic characterization in human and other well-documented experimental ani-

mals like mice[22]. Theoretically, RNA-Seq can characterize every aspect of transcriptional

activities. In this context, we used Illumina HiSeq 4000 to generate a substantial dataset of

transcript reads in different groups treated with or without TX. To understand the transcrip-

tomic effects of TX, bioinformatics analysis was made which contains Gene Ontology (GO)

analyses, and real-time quantitative PCR (Q-PCR) was used to notarize the differential expres-

sion of genes induced by TX.

Materials and methods

Chemicals

TX was purchased from the Abcam Chemical Company (USA). RNAiso Blood RNA Extrac-

tion kit was purchased from Takara, PrimeScriptTM RT reagent kit with gDNA Eraser and

real-time quantitative PCR kit were also obtained from Takara Bio (Dalian, China). Globin-

Zero Gold rRNA Removal Kit for removal of unwanted ribosomal RNA and hemoglobin

mRNA from mammalian blood RNA samples were bought from Illumina, Inc. (USA).

Animal care and maintenance

Male Kunming mice (Swiss mice, SPF), five-weeks old, were purchased from the Experimental

Animal Center of Hainan province. They were housed at temperature of 22 to 24 ºC with 12-h

light/12-h dark cycle. The mice had free access to water and normal chow diets until they were

sacrificed with CO2. All efforts were made to alleviate suffering. All animal procedures were

abide by the Manipulative Technique for the Care and Use of Laboratory Animals (2nd revi-

sion) issued by the State Scientific and Technological Commission of China. All animal experi-

mental protocols were approved by the Institutional Animal Care and Use Committee of

Hainan University (Hainan, China). All animals were randomly divided into control group

and experimental groups (N = 3). The control group received injection of normal saline (NS),

and the experimental group received subcutaneous injection of TX dissolved in NS at dose of

130 mg/kg twice daily at 9:00 AM and 5:00 PM. On the 3th day of treatment, the blood samples

were drawn from the animals’ hearts 4 h after the last dose of TX.

RNA isolation and manipulation

Total RNA was extracted from the blood samples by using a RNA Extraction kit (Takara

RNAiso blood). The concentration of RNA in each sample was determined using a NanoDrop

2000 micro-volume spectrophotometer (Thermo Scientific, USA), and the quality of RNA

samples were examined using an Agilent Bioanalyzer (Agilent Technologies, USA). The

defined criterion for qualification of RNAseq is that the RIN value of a sample is higher than

8.5. Ribosomal RNA and hemoglobin mRNA from the blood RNA samples was removed

using a Globin-Zero Gold rRNA Removal Kit (Illumina, USA).

Sequencing library construction and illumina sequencing for

transcriptomic analysis

The sequencing library construction and Illumina sequencing were performed by AnnoRoad

Biotechnology Co, Ltd, China. Briefly, mRNA was enriched via purification with oligo (dT)

magnetic beads and fragmented into short fragments using fragmentation buffer. First-strand
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cDNA was synthesized using random primers and fragments of mRNA as templates. Subse-

quently, second-strand cDNA was synthesized using DNA polymerase I, buffer, dNTPs, and

RNaseH. After purification, we used a QIAQuick PCR kit and eluted by EB buffer. Purified

double-stranded cDNA were end-repaired, added bases A, and ligated with sequencing adap-

tors. After SDS-PAGE, amplified products were gel extracted. The cDNA were PCR-amplified

for a minimum number of cycles to avoid normalization for downstream quantitative gene

expression analyses. Then it was sequenced on an Illumina HiSeq 4000 with the sequencing

strategy PE150.

Reads processing and identification of differentially expressed genes

To ensure reproducibility and reliability of the results, quality control checks were applied perti-

nently at different stages of the analysis. Quality control for the raw reads contained the analysis

of sequence quality, GC content, the presence of adaptors and low-quality reads. We adopted

DESeq to analyze differential expression of genes (DEGs). Compared with the reference

genome of Kunming mice, we selected standard was |log2Ratio|�1 and q<0.05, then got up-

regulated and down-regulated genes. All expressed genes were monitored, and their gene func-

tions were explored using database annotations such as NR, NT, UNIPROT, GO, and KEGG.

Real-time quantitative PCR

Reverse transcription was carried out using PrimeScriptTM RT reagent kit with gDNA eraser

(Takara, China). Total RNA was isolated from the blood samples drawn from mice hearts. For

cDNA synthesis, one μg of total RNA was reverse-transcribed in a total volume of 20 μL, using

a One-step gDNA Removal and cDNA Synthesis Super Mix kit (Trans Script).

Synthesized cDNA samples were diluted 3 times prior to Q-PCR. The primers were

designed for 9 genes (Table 1). Q-PCR was accomplished using the SYBR premix Ex Taq kit

(Takara, China). β-actin was used as the internal reference gene in this study. The results were

analyzed on an ABI StepOnePlus Real-Time PCR System (Thermofisher Scientific, USA).

Q-PCR was performed with 2 μl of template cDNA, 0.8 μl of forward primer (10 μM), 0.8 μl

of reverse primer (10 μM), and 10 μl of SYBR Primer Ex Taq II (Tli RNaseH Plus) (2 X) in a

total reaction volume of 20 μl. The procedure was conducted as follows—95˚C for 30 s for ini-

tial denaturation followed by 40 cycles of 95˚C for 5 s, and 60˚C for 34 s—and then generated

the melt curves for verification of amplification specificity by a thermal denaturing step. Genes

was normalized to β-actin expression and calculated using the equation: change (x-fold) = 2-

ΔΔCt[23].

Experiment data were analyzed using IBM SPSS statistics 19 software. Statistical signifi-

cance was determined by the Student’s t test or one-way analysis of variance (ANOVA), and

the differences were considered statistically significant at a value of P< 0.05.

Results

Illumina sequencing and data quality

Initial llumina sequencing results existed in the original image data file. Using the CASAVA

softwarh the base calling function, they were transformed into sequenced reads, which were

called the raw data. The raw data were stored in FASTQ file format. FASTQ files include the

name of every read, base sequence and their sequencing quality information.

The raw reads output from the Illumina sequencing platform were trimmed for the purpose

of quality control. Adaptor, N< 10% and low-quality reads were removed to obtain high-qual-

ity reads, which was called clean reads, producing about 23.76 million paired-end reads per
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sample equivalent to over 3.405 to 3.564 billion nucleotides per sample. Among those reads,

over 96.27% of the clean reads with high-quality scores at the Q30 level (a base quality greater

than 30 and an error probability of 0.1%) were identified (Table 2).

The clean reads were used for further analysis (Fig 1A and 1B). The cDNA libraries pro-

duced a total of 140,324,838 clean reads, which represented the majority of the data (almost

covered 90% of the whole gene set), with Q30 scores> 95% (Fig 1C). The mean quality distri-

bution of all samples was shown in Fig 2.

Comparison analysis with a reference genome and gene mapping

The filtered sequencing results were compared with the reference genome of Kunming mice

for its orientation to the genome. For the samples, we used TopHat software, which was specif-

ically designed for comparison of the transcriptome data[24,25]. To ensure accuracy and reli-

ability of the data, about 140 million high-quality reads were generated, and over 88.5% of the

data were mapped to the reference genome for each sample. Most of the sequences were com-

pared to the exon region. Besides, alternative splicing and expression noise maybe come from

the intron region, and the new transcripts and expression noise may belong to the intergenic

sequence. For the control group and experiment group, 95.35% and 96.04% were mapping to

Table 1. Q-PCR primers.

Target gene Primer sequence(5’ to 3’) Product length (bp)

β-actin Forward GGCTGTATTCCCCTCCATCG 154

Reverse CCAGTTGGTAACAATGCCATGT

Tnr Forward GGAGGTGACTACAGAAAGGGC 137

Reverse AGAGGCTTTCAAGTGGCACG

Robo1 Forward TCCAAAGAGAACTGGGGAATGT 142

Reverse GCTCCAGATGGGCGGTAG

Pnp2 Forward CGACCTCAAGTGGCAGTGAT 148

Reverse GCAATCCAAACACCAGTCGG

H2-k1 Forward TGGACGACACGGAGTTCG 147

Reverse CCACTCGGAAACTCTGCTCAT

Fcnb Forward CTGACTGTCCATGCGGCTG 147

Reverse TCCTCTATCTCCTTTGGCACC

Arhgdig Forward GCTTGGTCAAGTACAAGCAGG 126

Reverse CCATGATGATAGGCCCTGGAG

Hbq1a Forward CGGAATCTACACGACCGAGG 146

Reverse TAGCGAGAGTCAGTGCATCG

Srp14 Forward CGTGTTCATCACCCTCAAGAAAT 136

Reverse CACGGTGCTGATCTTCCTTTT

Npy Forward GGCCAGATACTACTCCGCTC 135

Reverse CTTGTTCTGGGGGCGTTTTC

https://doi.org/10.1371/journal.pone.0188261.t001

Table 2. Summary of statistical data for the transcriptome of mice.

Samples C1 C2 C3 YR1 YR2 YR3

Total raw reads 25,037,206 24,771,616 23,903,170 24,938,022 25,995,740 24,499,022

Total clean reads 23,764,936 23,558,544 22,702,076 23,519,160 23,737,328 23,042,794

Clean bases Number 3,564,740,400 3,533,781,600 3,405,311,400 3,527,874,000 3,560,599,200 3,456,419,100

Clean reads rate (%) 94.92 95.1 94.98 94.31 91.31 94.06

Clean Q30 bases rate (%) 98.04 98.03 98.11 97.58 96.27 97.52

https://doi.org/10.1371/journal.pone.0188261.t002
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the exon region, 3.12% and 2.84% belonged to the intron region, and 1.53% and 1.12% were in

the intergenic sequence respectively (Fig 3) (Table 3).

Analysis of differential expression of genes

Differential expression analysis requires that gene expression values be compared among sam-

ples. Reads Per Kilobase Million (RPKM) is used to quantitatively estimate value of gene

expression[26], which has the computation formula:

RPKM ¼ ð1000000�RÞ=ðN�L=1000Þ

Where R is the number of mappable reads in specific genes, N is the total number of reads

mapped to genes in a particular sample, and L is the length of the gene exon.

In general, differential gene expression only account for a small portion of total gene. There

is little effect on the distribution of the sample expression quantity by a few differentially

expressed genes. All samples have similar overall gene expression pattern (S1 Fig).

Differences in gene expression in mice in two different groups were examined. For biologi-

cal triplicate samples, we adopted DESeq to analyze differential expression of genes. In total,

fifteen genes were differentially expressed, among which 5 genes were significantly up-regu-

lated and 10 genes down-regulated in TX-treatment mice (S2 Fig). We identified their gene

functions using database annotations tools such as NCBI, UNIPROT, and GO databases. We

summarized 15 different genes main function influenced by TX in mice (Table 4).

Gene Ontology (GO) analysis for selected gene

To further understand the function of the differential expression of genes, GO term enrich-

ment analysis (q<0.05) was performed. There are three GO domains: biological process

Fig 1. A. Distribution of reads proportion before filtering. C1, C2 and C3 represent control groups that received injection of normal saline (NS), and

YR1, YR2 and YR3 represent experimental groups that received subcutaneous injection of TX dissolved in NS at a dose of 130 mg/kg, twice daily. B.

Data volumes of clean reads for samples. For the purpose of quality control, the raw reads output from the Illumina sequencing platform were filtered:

adaptors, short reads with N < 10%, and low-quality reads were removed. C. Q30 proportion for samples. The clean reads with high-quality scores at

Q30 levels (a base quality greater than 30 and an error probability less than 0.1%) are more than 95%. With a vast majority of bases scoring no less than

the Q30 level, the levels of accuracy are ideal for sequencing applications.

https://doi.org/10.1371/journal.pone.0188261.g001

Transcriptomic effects of troxerutin

PLOS ONE | https://doi.org/10.1371/journal.pone.0188261 November 30, 2017 5 / 21

https://doi.org/10.1371/journal.pone.0188261.g001
https://doi.org/10.1371/journal.pone.0188261


(GOBP), cellular component (GOCC), and molecular function (GOMF). The most signifi-

cantly enriched GO terms were “single-organism process” and “biological regulation” within

GOBP, ‘binding’ and ‘structural molecule’ were the two most abundant terms within GOMF,

and “macromolecular complex” and “organelle part” were the most highly represented terms

in GOCC respectively (Fig 4).

A directed acyclic graph (DAG) showed enrichment analysis results. It is a branch inclusion

relationship that the lower node function was subordinate to the upper nodes function. Top 5

GO enrichment analysis results were selected as master nodes in DAG. The color depth of the

DAG nodes indicates the degree of enrichment, the darker the red color is, the higher the

enrichment degree of the node would be.

We found that genes involved in T cell mediated cytotoxicity (q = 0.000149) and telenceph-

alon development (q = 0.000374) were most highly enriched (Fig 5). Further characterization

of the differential expression of genes using DAG showed that the differentially expressed

genes were implicated in cell surface, cell membrane (q = 5.04e-06) and endoplasmic reticu-

lum exports (q = 0.000153) (Fig 6). In molecular function, genes in β2-mioroglobule binding

(q = 0.000278), TAP-binding (q = 0.000165), T cell and neuropeptide Y receptor binding

(q = 0.000196) were highly enriched (Fig 7).

Fig 2. Mean quality distribution of samples. C1, C2 and C3 represent control groups that received injection

of normal saline (NS), and YR1, YR2 and YR3 represent experimental groups that received subcutaneous

injection of TX dissolved in NS at a dose of 130 mg/kg, twice daily. The x-axis indicates base position of

filtered high quality sequences. The y-axis indicates mean sequencing quality at each position.

https://doi.org/10.1371/journal.pone.0188261.g002
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Real-time quantitative PCR

To further confirm the accuracy and reproducibility of the RNA-Seq results, real-time quanti-

tative Q-PCR was performed to quantify the transcriptional levels. Nine differentially ex-

pressed genes, including Tnr, Robo1, Npy, Arhgdig, Srp14, H2-k1, Pnp2, and Fcnb, Hbq1a were

evaluated, and each genes showed significantly differential expression after the treatment with

TX (Table 5) (P<0.05, Fig 8). We performed the transcriptomic characterization of the effects

of TX in mice to identify differentially expressed genes related with pharmacological properties

of TX (Fig 9).

Fig 3. Reads coverage mapping to the reference genome of Kunming (Swiss) mice. C1, C2 and C3

represent control groups that received injection of normal saline (NS), and YR1, YR2 and YR3 represent

experimental groups that received subcutaneous injection of TX dissolved in NS at a dose of 130 mg/kg, twice

daily. Blue, green and orange refer to intergenic, exon and intron region respectively.

https://doi.org/10.1371/journal.pone.0188261.g003
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Discussion

TX, a rutoside derivative, has raised considerable interest because of its extensive pharmaco-

logical activities. It has been conventionally used for treating diseases including capillary fragil-

ity, chronic venous and varicosity in clinical[27]. Researches over the past decades have

revealed that TX can act againstγ-radiation-induced lipid peroxidation, UV radiation and

colon carcinogenesis[28–30]. Furthermore, TX can cure retinopathy and play a significant role

in the management of type-2 diabetes mellitus[31–33]. Beside, TX can inhibit 2-AA + UVA

radiation-induced DNA damage and environmental carcinogens, showing its potential thera-

peutic activities for cancer[34]. Gene expression behind the pharmacological activities of TX

has not been investigated clearly so far. And our findings provide novel insights into TX,

which could help understanding clinical effects of TX.

In this study, we made a comprehensive analysis of the effects of TX on genome-wide

expression of genes. A total of 15 differentially expressed genes (DEGs) were found, in which 5

genes were up-regulated and 10 genes down-regulated significantly. Moreover, Q-PCR con-

firmed that our RNA-Seq results were reliable. Our experimental findings provide evidence

about the TX against diabetes, cardiovascular diseases and cancer through down- or up-regula-

tion of different genes, implicating its treating capacity.

Tenascin-R (TN-R) is an extracellular matrix protein expressed primarily in the central ner-

vous system. It is a member of the tenascin gene family, which includes 4 known members in

Table 3. Summary statistics of clean reads mapping.

Sample C1 C2 C3 YR1 YR2 YR3

Total Clean Reads 23,764,936 23,558,544 22,702,076 23,519,160 23,737,328 23,042,794

Mapping Reads 22,158,309 22,118,461 21,098,768 20,836,785 21,276,557 20,227,093

Mapped Rate (%) 0.93 0.94 0.93 0.89 0.9 0.88

Exon (%) 95.16% 96.76% 96.20% 92.99% 97.84% 95.21%

Intron (%) 3.47% 2.50% 2.55% 4.81% 1.30% 3.26%

Intergenic

(%)

1.37% 0.74% 1.25% 2.20% 0.86% 1.54%

https://doi.org/10.1371/journal.pone.0188261.t003

Table 4. Summary of 15 genes for the transcriptome of mice.

Gene variation tendency Main function

Tnr up cure neurological diseases and neuroprotection

Hbq1a up impact the activity of oxygen transporter, anti-oxidative

RPL17e up important for ribosome architecture and function, tumor suppressor

GM10499 up against extracellular microbes and toxic molecules

GM5526 up responsible for skeletal muscle tissue development and muscle filament sliding

Robo1 Down protect liver from injury and fibrosis

Pnp2 Down positively regulate T cell-mediated cytotoxicity and proliferation of T cells

H2-k1 Down anti-inflammatory and immune

Fcnb Down ameliorate inflammation

Arhgdig Down catalytic activity and protein localization

Srp14 Down protein export

Npy Down immunomodulatory function, maintenance of body homeostasis and inhibits diabetes

Rpl13e Down drug resistance, virus replication and anti-oxidative defense

GM28114 Down against extracellular microbes and toxic molecules

GM12366 Down anti-cancer

https://doi.org/10.1371/journal.pone.0188261.t004
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vertebrates. During development of mammalian brain, TN-R is found around birth[35]. TN-R

can affect cell migration, cell differentiation and adhesion. TN-R expression is tightly regulated

in a spatiotemporal manner in brain, especially during cortical plate formation[36]. More

importantly, many researches showed that TN-R could play an important role in brain devel-

opment and cognition. By activating microglia, TN-R can indirectly elevate the secretion of

cytokines and growth factors, including brain-derived neurotrophic factor (BDNF), trans-

forming growth factor-β (TGF-β), CXCL2, and nerve growth factor (NGF)[37]. In addition,

loss of TN-R was shown to impair cognition, synaptic plasticity and motor abilities[38]. And it

has been proved to participate in maintaining a balance between excitatory and inhibitory cir-

cuits involved in learning, memory and cognition in mice[39–41]. TN-R deficient mice

showed increased excitatory transmission through reduced perineuronal nets and altered syn-

aptic activities[42]. In summary, TN-R may play a primary or secondary role in many neuro-

logical diseases [43] and have a significant role in neuroprotection. Previous evidence showed

that TX significantly improved behavioral performance of D-galactose-treated mice in the

step-through test and Morris water maze[44], and alleviated the oxidative damage caused by

D-galactose in the liver and kidney, as well as cognitive impairments. In addition, some

researchers think TX could be recommended as a possible candidate for prevention and ther-

apy of cognitive deficits and Alzheimer’s disease[45], and improved synaptic plasticity failure

induced by Amyloid β peptide. The up-regulation of TN-R expression induced by TX may

underlie its neuroprotective function.

Fig 4. Gene Ontology (GO) classification of differentially expressed genes (DEGs). DEGs are classified into three major

domains: biological process (BP), cellular component (CC) and molecular function (MF). The left y-axis indicates the percentage of a

specific category of genes in a domain. The right y-axis indicates the number of genes in the category. (Con, control group; YR,

experimental group).

https://doi.org/10.1371/journal.pone.0188261.g004
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Neuropeptide Y (NPY), a 36-amino acid peptide [46], is a highly conserved neurotransmit-

ter involved in a broad range of fundamental physiological activities. NPY’s pleiotropic func-

tions comprise regulation of body-weight and energy balance, brain activity, food intake,

vasoconstriction, immune function, and emotional response[47]. In fact, its immunomodula-

tory function and maintenance of body homeostasis are also vital [48]. The effects of NPY are

depend on many factors, such as at least four G protein-coupled receptors known as Y1, Y2,

Y4, Y5 and cell types involved[49]. Different receptors are involved in various physiological

activities. During inflammation, immune cells themselves are capable of producing and releas-

ing NPY. NPY can regulate immune cell activities through a paracrine or autocrine mode of

action[50–52]. NPY has different effects on inflammation. The binding of NPY to receptors
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Fig 5. Directed acyclic graph (DAG) for differentially expressed genes (DEGs) in the biological process (BP) ontology.
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influences the activities of immune cells in either a pro-or an anti-inflammatory manner[53].

Recently, it has been proved that NPY possesses a pro-inflammatory function in the gut

[54,55]. Additionally, loss of NPY can combat obesity and diabetes through increased energy

expenditure and lowered fat contents. In our study, we found that under the effect of TX, the

NPY expression was suppressed. It provides evidence that TX can ameliorate lipid abnormali-

ties and diabetes[56,57], and have anti-inflammatory activities at least in part.

Ribosomes are essential components of the protein synthesis machinery. Ribosomes are

formed from two unequally sized subunits: the large ribosomal subunit and small ribosomal

subunit[58]. The process of ribosome biogenesis is well organized and tightly regulated. There

is increasing evidence indicating that ribosomal proteins (RPs) have extraribosomal functions
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Fig 6. Directed acyclic graph (DAG) for differentially expressed genes (DEGs) in the cellular component (CC) ontology.
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including DNA repair and other cellular processes. It has been shown that RPs are related to

the development and progression of metabolic, cancer and cardiovascular diseases [59]. 60S

ribosomal protein L17 (rpl17) is a protein that is encoded by the Rpl17 gene. It has an essential

role in ribosome architecture and function. Rpl17 is thought to stabilize long-range interac-

tions important for establishing the structure of the polypeptide exit tunnel, during 60S sub-

unit assembly[60]. Reducing the amount of rpl17 in mouse cells led to stalled 60S subunit

maturation, causing degradation of most of synthesized precursors, which could affect normal

functions of the ribosome. Elaine et al. discovered that rpl17 is a vascular smooth muscle cell

(VSMC) growth inhibitor, akin to a tumor suppressor[61]. In our study, Rpl17 was found to be

up-regulated by TX. It could have relationship with that TX cures cardiovascular diseases and
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Fig 7. Directed acyclic graph (DAG) for differentially expressed genes (DEGs) in the molecular function (MF) ontology.
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Table 5. Relative expression values determined using RNAseq and real-time quantitative PCR (Q-PCR).

gene RNA-seq Q-PCR(±SD) variation tendency

Fold Change Log2Fold Change Relative expression values(2−ΔΔCT) RNA-seq Q-PCR

Tnr 187.9821351 7.554451752 6.7992±1.27 Up Up

Robo1 0.005668298 -7.462868797 0.3707±0.11 Down Down

Pnp2 0.024258529 -5.365364134 0.5447±0.09 Down Down

H2-k1 0.127654812 -2.969680168 0.7192±0.07 Down Down

Fcnb 0.036825424 -4.763154068 0.5041±0.04 Down Down

Arhgdig 0.015302976 -6.030043964 0.7694±0.12 Down Down

Hbq1a 298.7735665 8.222908703 1.4009±0.15 Up Up

Srp14 0.199374235 -2.326449115 0.4807±0.10 Down Down

Npy 0.000831662 -10.23171562 0.3677±0.01 Down Down

https://doi.org/10.1371/journal.pone.0188261.t005

Fig 8. Q-PCR for nine differentially expressed genes (DEGs). Relative gene expression was normalized by

comparison with the expression of β-actin, and calculated using the 2−ΔΔCT. (C, control group; TX, troxerutin, s.c. injected

at a dose of 130 mg/kg, twice daily. *P < 0.05 and ** P<0.01 vs control group, N = 6–8).

https://doi.org/10.1371/journal.pone.0188261.g008
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is conducive to the formation of ribosomes. Besides, ribosomal protein L3 (rpl3) is known to

be an essential component for the peptidyltransferase center[62]. It acts as a binding site for a

ribosome inhibitory protein and plays an important role in drug resistance and virus replica-

tion[63]. Annapina et al. revealed that Rpl3 was down-regulated and the expression of stress-

response genes was activated in rCalu-6 cells. They found that rpl3 reduced xCT and GST-a1

expression levels. Researches also demonstrated that rpl3 was a negative regulator of cystathio-

nine-β-synthase (CBS) expression. Silencing CBS gene severely reduces cellular glutathione

(GSH) levels, and down-regulation of Rpl3 can induce anti-oxidative defense. These represent

indirect ways for TX to potentiate expression of antioxidant genes to activate defensive re-

sponse. Rpl3 also regulates negatively the activation of NF-kB[64]. Rps2, a 32 kDa ribosomal

protein, is over expressed in prostate cancer and promotes malignancy of human prostate PC-

3ML cells in the severe combined immunodeficiency (SCID) tumor modeling studies[65]. Pre-

vious studies have found that Rps2 is overexpressed in human squamous cell carcinoma and

breast tumor samples. Thus, rps2 might promote cancer and be an excellent therapeutic target

for the treatment of the diseases. In this context, the effect of TX to inhibit RpS2 expression

and thereby stabilize it in cells indicates that TX may have anti-cancer function.

The mammalian signal recognition particle (SRP) is an 11S cytoplasmic ribonucleoprotein

that plays an essential role in protein sorting. It is a cytosolic particle that transiently binds to

the endoplasmic reticulum (ER) signal sequence of a nascent protein, to the large ribosomal

unit, and to the SRP receptor in the ER membrane[66]. Srp14 encodes SRP subunit 14

(SRP14). It can influence protein export, as specified in the Gene Ontology Molecular Func-

tion (GOMF). SRP14 and SRP9 proteins form a heterodimer that bind to the RNA of Alu

domain of SRP which is responsible for translation arrest. This gene is significantly down-reg-

ulated by TX. Besides, GTP hydrolysis plays a vital role in the SRP cycle; SRP protein and both

subunits of the SRP receptor contain G-domains. The GTPase cycle of SRP, modulated by the

ribosome, provides the regulatory link between translation and translocation machineries

[67,68]. Interestingly, in our study, Arhgdig was found to be down-regulation by TX. It’s Gene

Ontology biological process (GOBP) is the regulation of catalytic activity and protein localiza-

tion. This gene encodes a protein which is a GTPase activator. To sum up, our study indicated

that that TX may have pharmacological effects on the synthesis and export of proteins.

Form the DAG, we found that the genes involved in T cell-mediated cytotoxicity and telen-

cephalon development were highly enriched. T cells help eliminate pathogens present in

infected cells and also help B cells make different kinds of antibodies to protect against extra-

cellular microbes and toxic molecules[69]. To accomplish these important functions, T cells

have to interact intimately with other cells and then come into play. However, T cells are

unable to peek beneath the surface of cells to identify the cells that have ingested bacteria. T

cells recognize antigenic peptide only in the context of MHC I or MHC II molecules that are

displaying the antigen on cell surface[70]. MHC I molecules present peptides from the proteins

that are synthesized by cells. This recognition allows the immune system to detect cells in

abnormal states for elimination. Moreover, Reduction of MHC I molecule expression in

human tumors is often detected[71,72]. Among DEGs, H2-k1 and GM10499 gene encode

major histocompatibility complex class I (MHC-I), and GM28114 encodes lymphocyte antigen

6 complexes. Expression of these genes are differently affected by TX. In GOBP, they can posi-

tively regulate T cell-mediated cytotoxicity and endocytosis. Besides, PNP2 is a family of

purine-nucleoside phosphorylase. It can also positively regulate T cell-mediated cytotoxicity

and proliferation of T cells. PNP2 expression is down-regulated by TX.

Natural immunity depends on the ability of some pattern recognition molecules to sense

molecular markers. Ficolin is a group of pattern recognition molecules to recognize molecules

on pathogens, apoptotic and necrotic cells. A series of new findings have indicated that ficolin
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B encoded by Fcnb gene can activate the complement system via the lectin pathway similar to

MBL[73–75]. The activation of the complement system results in the release of multiple

inflammatory signaling molecules[76]. Recently, a number of reports have shown that mem-

brane attack complexes (MACs) were produced by complement activation. MACs can increase

production of pro-inflammatory cytokines IL-8 and NF-kB nuclear translocation. These cyto-

kines and molecules can induce inflammation. Moreover, Ficolins are reported to stimulate

expression of inflammatory cytokines by macrophages[77]. Under the effect of TX, the expres-

sion of Fcnb gene was down-regulated, which may ameliorate inflammation.

The Roundabout (Robo) family proteins are transmembrane receptors. Secreted proteins

Slit-family proteins (SLITs) can act through Robo receptors to mediate axonal guidance and

branching. It could be related with directing migration of many cell types, such as immune, and

tumor cells[78]. Robo1 was initially found in Drosophila. SLIT/ROBO signaling is an important

regulator of cellular interactions[79]. Some researchers have proved that Slit2-Robo1 signaling

may debilitate liver injury and fibrosis[80]. In our study, Robo1 gene expression was decreased

by TX, which could protect liver from injury and fibrosis. In addition, Lvzhen et al. demon-

strated that silencing the expression of Robo1gene inhibited cell proliferation and suppressed

the development of proliferative vitreoretinopathy (PVR), offering a potential therapeutic use-

fulness in treating PVR[81]. Other studies support that ovarian angiogenesis was enhanced by a

partial lack of Robo1 genes and this lack would enhance ability of fertility[82].

In addition to the above, Hbq1a encodes hemoglobin, theta 1A, which is closely connected

with oxygen and iron binding, and impact the activity of oxygen transporter. It may be associ-

ated with anti-oxidative effects of TX[83]. GM5526 is mainly responsible for skeletal muscle

tissue development and muscle filament sliding. It encodes a protein, which is a structural con-

stituent of muscle.

Conclusion

Our study accentuated the beneficial effects of bioflavonoid derivative TX by analyzing differ-

ential gene expression in blood cells. Transcriptomic analysis demonstrated that the expression

Fig 9. Pleiotropic effects of troxerutin.

https://doi.org/10.1371/journal.pone.0188261.g009
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of fifteen genes was significantly changed by the treatment with TX, among which 5 genes

were up-regulated and 10 genes were down-regulated. DAG analysis showed that these genes

could influence T cell-mediated cytotoxicity (q = 0.000149), telencephalon development

(q = 0.000374), cell membrane (q = 5.04e-06), endoplasmic reticulum exports (q = 0.000153),

β2-microglobule binding (q = 0.000278), TAP-binding (q = 0.000165), and T cell and neuro-

peptide Y receptor binding.

Among the 15 DEGs, TX has neuroprotective effects and improves cognitive impairment

by up-regulating TN-R expression, anti-inflammatory effects and inhibits diabetes by down-

regulating Npy and Fcnb, anti-cancer effects by changing ribosome protein gene rps2, effects

on cardiovascular disease by up-regulating Rpl17 and down-regulating robo1, and anti-oxida-

tive activities by changing Rpl3 and Hbq1a expression. In addition, H2-k1 and Pnp2 expression

was also changed. They are involved in positive regulation of T cell-mediated cytotoxicity and

T cell proliferation. Srp14 and Arhgdig expression were also change, which affect synthesis and

export of proteins.
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