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Abstract: Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
(coronavirus disease 2019; COVID-19) is associated with adverse outcomes in patients with
cardiovascular disease (CVD). The aim of the study was to characterize the interaction between
SARS-CoV-2 and Angiotensin-Converting Enzyme 2 (ACE2) functional networks with a focus on CVD.
Methods: Using the network medicine approach and publicly available datasets, we investigated ACE2
tissue expression and described ACE2 interaction networks that could be affected by SARS-CoV-2
infection in the heart, lungs and nervous system. We compared them with changes in ACE-2
networks following SARS-CoV-2 infection by analyzing public data of human-induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CMs). This analysis was performed using the Network by
Relative Importance (NERI) algorithm, which integrates protein-protein interaction with co-expression
networks. We also performed miRNA-target predictions to identify which miRNAs regulate
ACE2-related networks and could play a role in the COVID19 outcome. Finally, we performed
enrichment analysis for identifying the main COVID-19 risk groups. Results: We found similar
ACE2 expression confidence levels in respiratory and cardiovascular systems, supporting that heart
tissue is a potential target of SARS-CoV-2. Analysis of ACE2 interaction networks in infected
hiPSC-CMs identified multiple hub genes with corrupted signaling which can be responsible for
cardiovascular symptoms. The most affected genes were EGFR (Epidermal Growth Factor Receptor),
FN1 (Fibronectin 1), TP53, HSP90AA1, and APP (Amyloid Beta Precursor Protein), while the most
affected interactions were associated with MAST2 and CALM1 (Calmodulin 1). Enrichment analysis
revealed multiple diseases associated with the interaction networks of ACE2, especially cancerous
diseases, obesity, hypertensive disease, Alzheimer’s disease, non-insulin-dependent diabetes mellitus,
and congestive heart failure. Among affected ACE2-network components connected with the
SARS-Cov-2 interactome, we identified AGT (Angiotensinogen), CAT (Catalase), DPP4 (Dipeptidyl
Peptidase 4), CCL2 (C-C Motif Chemokine Ligand 2), TFRC (Transferrin Receptor) and CAV1
(Caveolin-1), associated with cardiovascular risk factors. We described for the first time miRNAs
which were common regulators of ACE2 networks and virus-related proteins in all analyzed datasets.
The top miRNAs regulating ACE2 networks were miR-27a-3p, miR-26b-5p, miR-10b-5p, miR-302c-5p,
hsa-miR-587, hsa-miR-1305, hsa-miR-200b-3p, hsa-miR-124-3p, and hsa-miR-16-5p. Conclusion:
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Our study provides a complete mechanistic framework for investigating the ACE2 network which
was validated by expression data. This framework predicted risk groups, including the established
ones, thus providing reliable novel information regarding the complexity of signaling pathways
affected by SARS-CoV-2. It also identified miRNAs that could be used in personalized diagnosis
in COVID-19.

Keywords: ACE2; COVID-19; SARS-CoV-2; cardiovascular; gene expression; miRNA; therapeutic
target; microRNA; miR

1. Introduction

At the end of 2019 in Wuhan (China), a novel coronavirus named severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was discovered [1]. The clinical manifestations of SARS-CoV-2
infection, named coronavirus disease 2019 (COVID-19), vary in severity from asymptomatic infection
to acute viral pneumonia with fatal outcome. Nearly half of patients who were at risk of the acute
course of the disease suffered from comorbidities including hypertension, diabetes mellitus (DM),
and coronary heart disease [2,3]. Importantly, COVID-19 is associated with an increased risk for
mortality and adverse cardiovascular events among patients with underlying cardiovascular diseases
(CVD) [4]. A similar association between the virus and CVD was observed during previous coronavirus
outbreaks such as Middle-East respiratory syndrome coronavirus (MERS) or severe acute respiratory
syndrome coronavirus (SARS-CoV) [5,6]. Therefore, these data suggest a common factor that is
associated with the pathogenesis of COVID-19 and CVD. The etiology of cardiac injury in COVID-19,
however, remains unclear. It is hypothesized that cardiac injury may be ischemia mediated, and the
profound inflammatory and hemodynamic impacts seen in COVID-19 can cause atherosclerotic plaque
rupture or oxygen supply-demand mismatch resulting in ischemia [7]. Most probably, the link between
cardiovascular complications and infection may be related to angiotensin-converting enzyme 2 (ACE2),
which was found to act as a functional receptor for SARS-CoV-2 [8].

ACE2 is a multi-action cell membrane enzyme that is widely expressed in the lungs, heart tissue,
intestine, kidneys, central nervous system, testis, and liver [9]. During the 20 years since its discovery,
investigations targeting the complex role of this enzyme have established ACE2 as an important
regulator in hypertension, heart failure (HF), myocardial infarction (MI), DM, and lung diseases [10,11].
The viral entry to cells is determined by the interaction between the SARS-CoV-2 spike (S) protein
and the N-terminal segment of ACE2 protein, with a subsequent decrease in ACE2 surface expression,
which may be enhanced by cofactor transmembrane protease serine 2 (TMPRSS2) [12]. Publications
of independent research groups have shown that cardiomyocytes can be infected by SARS-CoV-2.
The virus can enter into human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CMs) via
ACE2, and the viral replication and cytopathic effects induce hiPSC-CM apoptosis and cessation of
beating after 72 h of infection while inhibiting metabolic pathways and suppressing ACE2 expression
during this initial infection stage [13]. Moreover, SARS-CoV-2 undergoes a full replication circle
and induces a cytotoxic response in cardiomyocytes, by inducing pathways related to viral response
and interferon signaling, apoptosis and reactive oxygen stress [14]. Consistently, ACE2 mRNA and
protein are expressed in hiPSC-CM, whereas TMPRSS2 was detected only at very low levels by RNA
sequencing [14]. Finally, SARS-CoV-2 was invariably detected in cardiomyocytes of COVID-19 patients
without clinical signs of cardiac involvement, with degrees of injury ranging from the absence of
cell death and subcellular alteration hallmarks to intracellular oedema and sarcomere ruptures [15].
These findings support that heart tissue can be infected by SARS-Cov-2.

As a consequence of SARS-CoV-2 infection, downregulated ACE2 pathways may lead to
myocardial injury, fibrosis, and inflammation which may be responsible for adverse cardiac
outcomes [16]. In line with these findings, several reports have linked SARS-CoV-2 infection with
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myocardial damage and HF, accompanied by acute respiratory distress syndrome (ARDS), acute
kidney injury, arrhythmias, and coagulopathy. The incidence of myocardial injury ranged from 7 to
28% depending on the severity of COVID-19, accompanied by increased levels of cardiac troponins,
creatinine kinase–myocardial band, myo-hemoglobin, and N-terminal pro-B-type natriuretic peptide
(NT-proBNP) [17–19].

In the current work, we characterized the ACE2 interaction network in the context of myocardial
injury. Our quantitative in silico analysis pointed out: (1) the potential tissues and organs which can be
infected by SARS-CoV-2; (2) the top ACE2 interactors associated with the virus-related processes with
altered co-expression networks in hiPSC-CMs after SARS-CoV-2 infection, which are likely to play a
role in the development of CVD; (3) signaling pathways associated with alteration of ACE2 networks;
(4) prediction of risk groups in COVID-19; (5) connections between ACE2 and SARS-Cov2 interactomes,
as well as ACE2 co-expression networks in hiPSC-CMs; (6) the most promising microRNAs (miRNAs,
miR) regulating ACE2 networks for potential diagnostic and prognostic applications.

Our comprehensive analysis investigating ACE2 receptor-related interaction networks, their
connection with SARS-CoV-2 interactome, enriched signaling pathways, miRNAs and associated
diseases provide precise targets for developing predictive tools, with the potential for reducing the
health, personal and economic consequences of the pandemic.

2. Materials and Methods

2.1. Data Collection

ACE2-associated genes used for constructing interaction networks were extracted from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway database (23 genes from renin-angiotensin
system (RAS) pathway) [20]; Cytoscape stringApp-Search Tool for the Retrieval of Interacting
Genes/Proteins (top 40 ACE2 interactors) [21], Archs4 database (https://amp.pharm.mssm.edu/archs4,
top 20 genes with correlated expression), the GeneCards database (https://www.genecards.org,
five interactors and four sister terms), and literature search [22–24]. In total, we collected 69 genes,
which were used further for miRNA prediction analysis and constructing interaction networks. In all
steps of data integration and bioinformatic analyses, we used our R package wizbionet [25].

2.2. Tissue Expression Analysis

The tissue expression of ACE2 and TMPRSS2 was evaluated based on a dataset downloaded from
the TISSUES 2.0 database and the Genotype-Tissue Expression (GTEx) project database [26]. TISSUES
2.0 database integrates transcriptomics datasets from multiple sources and proteomics datasets from
humans and other organisms, quantifying gene expression confidence scores across tissues. All tissues
were sorted by the decreasing expression confidence of ACE2 and TMPRSS2. Additionally, mean
expression confidence for the ACE2 network was calculated for each tissue from the TISSUES 2.0
database. Gene expression confidence scores from this database were also mapped on the visualization
of the interaction networks.

2.3. Interaction Network Analysis

2.3.1. ACE2 Interactome

To analyze connections between ACE2 and other genes, we constructed a Protein-Protein
Interaction PPI network in Cytoscape 3.7.2, using human interactome data from the stringApp 1.5.1
database, including known and predicted protein-protein interactions [21,27]. Interaction networks
were composed of a set of genes (nodes) connected by edges that represent functional relationships
among these genes. As suggested by the StringApp, we took into account connections with edge
interaction confidence cut-off > 0.4 (medium confidence), with 1 being the highest possible confidence
and 0 the lowest. We compared the complete tissue-specific ACE2 network, across the heart, lungs,

https://amp.pharm.mssm.edu/archs4
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and nervous system, as well as the virus-infection-related proteins network. Selection criteria for the
tissue-specific networks were gene expression confidence score > 2.

2.3.2. NERI Method

NERI [28] is a method that computes the relative importance of genes related to seeds. The method
is based on the Network Medicine Hypotheses: Locality, Disease Module, and Network Parsimony.
It integrates the PPI network with expression data (from the two conditions, e.g., control and disease),
and uses a previously chosen seed genes list. NERI computes two relative importance scores for each
gene, one score for each expression condition (control and disease). This is done by selecting the
best of the shortest paths (based on the Parsimony Hypothesis) from seeds to their neighborhood
(based on Locality and Disease Module Hypotheses) and taking into account the expression condition.
The adopted criterion to evaluate a path is the modified Kendall’s concordance (a way to measure a
group correlation) of expression of genes in the given path—the more concordant a path is, the better.
Then, the relative importance score of a given gene is the sum of all concordances of the selected paths
to which the gene belongs, weighted by the proximity to the seeds. This procedure is executed for
two conditions independently, generating two networks (e.g., control and disease networks). In the
end, the NERI method performs the differential network analyses, which outputs two ranked lists
of genes (X, ∆): one based on the sum of the relative importance scores, and another based on the
normalized difference between the relative importance. The first one (X) prioritizes genes with party
hub features, possessing high topological centrality and, at the same time, high co-expression relative to
the seed genes. The second (∆) prioritizes the most altered genes between two conditions as described
before [28]. In the present study, we used the NERI algorithm to analyze raw expression signals
obtained from the GSE150392 dataset from the Gene Expression Omnibus (GEO) database. Besides, we
used the interactome data from The Biological General Repository for Interaction Datasets (BIOGRID)
to construct the PPI network and, as seed genes, the 69 ACE2-related interactors collected as described
in the method section. Differential expression analysis for visualization was performed using the Mann
Whitney test with p False Discovery Rate (FDR) corrected < 0.05.

2.4. Extraction of Disease-Relevant Ontological Terms

To improve the interpretation of the gene functions, we mined the Gene Ontology (GO) database
using the biomaRt R package for extracting GO terms and further genes associated with the following
processes: “inflammation” (22 GO terms; 648 genes), “coagulation” (18 GO terms; 223 genes) [29],
“angiogenesis” (24 GO terms; 535 genes), “cardiac muscle functions” (176 GO terms; 524 genes), “muscle
hypertrophy” (16 GO terms; 85 genes), and “fibrosis” (23 GO terms; 263 genes). A similar methodology
was used to extract genes potentially related to “viral infection” (120 GO terms, 1047 genes). Disease
relevant gene lists were extracted from the http://t2diacod.igib.res.in/ database [30]. From this database,
we used atherosclerosis, nephropathy, CVD, and neuropathy datasets. Diabetes-related genes were
extracted from the StringApp disease database for the term “diabetes type-2”. GO term lists used for
the gene extraction are shown in Table S1.

2.5. Enrichment Analysis

Enrichment analysis is a computational method for increasing the likelihood of identifying the
most significant biological processes related to the study [31]. Enrichment analysis of the diseases and
networks was performed with the EnrichR database [32], using Fisher’s exact with Benjamini and
Hochberg correction, while the reference was the precomputed background for each term in each gene
set library. Signaling pathways were analyzed using BioPlanet2019 and Human KEGG 2019 datasets.
Diseases were analyzed using DisGenet Dataset and Diseases AutoRIF Gene Lists datasets. In all
statistical analyses, the significance cutoff was set to corrected p-value ≤ 0.05.

http://t2diacod.igib.res.in/
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2.6. miRNA Predictions

To identify miRNAs regulating ACE2 related genes, we used the R and multimiR package with
default settings, similar to previous publications from our group [29,33–35]. Interaction networks
between ACE2-related genes and miRNAs were constructed in R and exported to Cytoscape 3.7.2.
Next, the interaction networks were merged with the predicted PPI network for ACE2 and the network
constructed using StringApp. Both networks were merged using official gene symbols and Ensembl
gene IDs.

3. Results

3.1. ACE2 Tissue-Specific Expression

To evaluate the potential susceptibility of the heart for SARS-CoV-2 infection, we ranked all
6668 human tissues from the TISSUES 2.0 database, based on the provided gene expression confidence
(scale 0–5). This analysis revealed that lungs and respiratory systems are in the 14th and 15th place in
terms of ACE2 expression confidence, after heart and cardiovascular systems (12th and 13th place,
respectively), and before the nervous system (16th place; Figure 1A). TMPRSS2 gene expression
confidence was lower in the lungs and heart than in the nervous system. The mean expression of
69 genes from the network was highest in the nervous system in comparison to heart and respiratory
system tissues. Exceptionally high scores for ACE2 expression were assigned to urogenital and
reproductive tissues. As an additional validation, we used the expression dataset from the GTEx
database, which confirmed our findings when using the TISSUES 2.0 database (Figure 1B). According
to the GTEx database, the testis showed the highest expression of ACE2, while the prostate showed
high expression of TMPRSS2. Heart-related tissues were located respectively in 5th, 7th, and 15th
place. In turn, the gastrointestinal tract in GTEx appears in second place while in the TISSUES 2.0
database it was not present among the top hits. In both datasets, female reproductive glands (TISSUES
2.0) and mammary glands (GTEx) showed a high expression of the ACE2 receptor.

3.2. Construction of the Complete ACE2 Network

By using the available literature and interactome data, we made an attempt to construct the
ACE2 network as completely as possible based on the interactions with other genes and proteins.
We developed the network based on three assumptions from the network medicine field: (i) disease
module hypothesis: gene-products associated with the same disease phenotype tend to form a cluster
in the PPI network; (ii) network parsimony: shortest paths between known disease genes often coincide
with disease pathways; (iii) local hypothesis: gene products associated with similar diseases are likely
to strongly interact with each other [36]. Besides protein–protein interactions, we also included genes
that showed correlated expression with ACE2, taking into account that these genes could not yet have a
strong representation in PPI databases. This synthesis aimed to gather available knowledge regarding
the ACE2 interactome which could be useful for interpreting new findings in the context of the disease
and could be further narrowed down by using expression or proteomic data. In our work, we used
expression data from TISSUES 2.0 for sub-setting tissue-specific sub-networks and Gene Ontology to
identify virus specific-proteins. This complete ACE2 network also provided a starting point for our new
analysis, added to the manuscript of SARS-CoV-2 infected hiPSC-CMs, where those 68 genes served
as seed nodes for the NERI algorithm which integrated co-expression networks with PPI networks.
The workflow of the bioinformatic analyses performed in this study is shown in Figure 2.
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Figure 1. Tissues sorted by the potential of being infected by SARS-CoV-2. These lists of tissues were 
generated according to the concentration of membrane receptors Angiotensin-Converting Enzyme 2 

Figure 1. Tissues sorted by the potential of being infected by SARS-CoV-2. These lists of tissues were
generated according to the concentration of membrane receptors Angiotensin-Converting Enzyme 2
(ACE2) and Transmembrane Protease Serine 2 (TMPRSS2), obtained from (A) TISSUES 2.0 database
expression confidence values, and (B) Genotype-Tissue Expression (GTEx) project Transcripts Per
Million (TPM) values. The virus starts the cell infection by binding to ACE2, a major hub in multiple
physiological processes: this binding can block ACE2 network activity. However, the virus will
enter the host cell when TMPRSS2 cleavages ACE2. The first column depicts the average gene
and protein expression confidence for the ACE2 receptor; the second column depicts the average
expression confidence of TMPRSS2. The mean and standard deviation of expression confidence across
69 genes/proteins of the ACE2 network are presented in the third and fourth columns of panel A,
respectively. Notice that the lungs and respiratory system are ranked as #14–15 in the TISSUES 2.0 list,
while the heart and cardiovascular system are #12–13. Nervous and reproductive systems are ranked
as #16–17 and #1–10, respectively.
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pluripotent stem cell-derived cardiomyocyte (hiPSC-CMs) 72 h post-infection with SARS-CoV2 using 

Figure 2. The workflow of bioinformatic analyses. (A) data collection to construct complete ACE2
(Angiotensin-Converting Enzyme 2) network; (B) generation of the complete ACE2 network as well
as tissue-specific sub-networks; (C) ACE2-related co-expression network analysis of human-induced
pluripotent stem cell-derived cardiomyocyte (hiPSC-CMs) 72 h post-infection with SARS-CoV2 using
Network by Relative Importance (NERI) algorithm; (D) Enrichment analysis of signaling pathways
and diseases related to alterations in ACE2 networks; (E) integration of complete ACE2 network with
NERI; and (F) miRNA prediction analysis in ACE2 related networks.

From the 68 genes included in the complete ACE2 network, only two did not show any interactions
according to the String database which we used for the visualization of the network (Figure 3A).
This figure depicts the complexity of this disease, presenting the possible primary alterations following
SARS-CoV-2 infection, on level of proteins, and the secondary alterations on gene expression level
(including initial ACE2 downregulation and later ACE2 overexpression). The genes from the ACE2
network were sorted using circular sorting by the number of connections with other genes to simplify
the visualization.

3.2.1. Identification of Genes Showing the Highest Connectivity within the Complete ACE2 Network

Analysis of the complete interaction network between ACE2 and associated genes showed,
as expected, the highest number of interactions between ACE2 and other genes (49 interactions),
followed by ACE, which was not directly connected with ACE2 (33 interactions), renin (REN,
32 interactions), insulin (INS, 31 interactions), kininogen 1 (KNG1, 30 interactions) and angiotensinogen
(AGT, 28 interactions) (Figure 3A).

3.2.2. Identification of the Virus Infection-Related Proteins within the Complete ACE2 Network

Analysis of the ACE2 interaction network revealed 11 genes associated with virus infection-related
ontological terms (ACE2, DPP4, ANPEP, CCL2, TFRC, MEP1A, ADAM17, FABP2, NPC1, CLEC4M,
TMPRSS2) which could be especially affected in SARS-CoV-2 infection, leading to disturbance of
the network. All these genes were connected directly with ACE2 according to the String database,
except for gene FABP2 (six interactions with ACE2 neighbours) and CCL2 (15 interactions). From this
group, the highest degree of connectivity with other genes from the network was found for DPP4
(22 interactions), ANPEP (19 interactions), and CCL2 (C-C Motif Chemokine Ligand 2) indirectly
connected with ACE2 (15 interactions, as presented before). Two genes CDHR2 and MS4A10 did not
have any known connections with other genes according to the String database, for edge confidence
score cut-off > 0.4.
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Figure 3. Predicted ACE2 (Angiotensin-Converting Enzyme 2) interaction network. (A) Complete
ACE2 network visualized as two circles ordered by the number of connections (degree) with other
nodes. A circular degree-sorted layout was used to enable us to hide the edges to simplify visualization.
The external circle depicts the first level ACE2 interactors; the internal circle depicts the second level
of interactors, with genes that do not connect directly with ACE2. For clarity, on the main figure,
we showed only the edges associated with virus-related proteins (gene id in red). Edges associated with
virus-related proteins are shown in red for first-level (direct) and in grey for the second-level (indirect)
ACE2 interactors. Inset in the top right depicts the additional information for each gene/protein,
as associated processes (blue letters), associated diseases (color-label ring), and expression confidence
across key tissues (black bars). Inset in the bottom right depicts the same network including all edges.
Genes present on the bottom, toward the right of the circular network, showed the highest connectivity
within the network. Notice that the closest ACE2 interactors are ACE (Angiotensin-Converting Enzyme
1), renin (REN) and inulin (INS), which play a central role in the pathophysiology of a number
of cardiovascular disorders. The following interactor is KNG1 (Kininogen 1), essential for blood
coagulation and assembly of the kallikrein-kinin system and AGT (Angiotensinogen) influencing
the renin-angiotensin system (RAS) function. In the network are present 11 virus-infection-related
proteins (red labels) forming a dense connection with ACE2 and its top interactors which can affect
its functionality. (B) Subsets of ACE2 network containing only highly expressed proteins in the heart,
lung, and nervous system; analogous network for virus-related proteins (right). From the genes which
did not have direct interactions with ACE2, the gene ACE showed the highest connectivity.
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3.2.3. Sub-Setting of the Tissues-Specific ACE-2 Related Networks

We also made subsets of complete ACE2 network to show interactions for heart tissue, lungs,
and nervous system as well as virus-infection related proteins. Tissue-specific networks were selected
based on their tissue expression confidence in analyzed tissues. These enabled us to evaluate similarities
between selected tissues to predict the impact of ACE2 alterations in the heart tissue. Lung tissue was
selected based on how affected it is by the SARS-CoV-2 infection and served as the control for our
analysis. Nervous tissue was selected due to multiple neurological symptoms recently reported as
associated with COVID19 disease [37].

We set this score as 2, which is relatively high taking into account scores for the genes from
this database. For all tissues, the median expression confidence score was 0.914, for the heart
0.989, lung 1.319, and nervous system 1.556. We found 48 genes out of 68 overlapped between
tissue-specific networks, and eight of them were virus-infection related proteins according to the GO
database (Figure 3B). This ACE2-interactome also provided a starting point for our analysis of ACE2
co-expression networks in cardiomyocytes performed in this study, where those 68 genes served as
seed nodes for the NERI algorithm which integrated co-expression networks with PPI networks.

Descriptions of the genes from the complete ACE2 network and link to its interactive version are
available in Table S2.

3.3. Analysis of Changes in ACE2 Co-Expression Network in Infected Cardiomyocytes

To evaluate how alteration in the ACE2 network can affect cardiomyocytes we re-analyzed the
GSE150392 GEO expression dataset for human-induced pluripotent stem cell-derived cardiomyocyte
(hiPSC-CMs) 72 h post-infection with SARS-CoV2. We utilized the NERI algorithm [28,38] that
integrates the PPI BioGrid interactome data with co-expression networks to take a closer look at the
ACE2-related network in the infected cardiomyocytes. We used 68 genes from the predicted ACE2
network as seed genes, to focus on this region of the transcriptome. The goal of this analysis was to
identify the genes and interactions between them that could be affected by the alterations in the ACE2
protein network caused by the virus and impact the functionality of cardiomyocytes. By assuming
a network medicine hypothesis, the method explored the neighborhood of a gene set by locating
paths possessing more co-expressed genes with seeds—this is independently performed for two
conditions (control and disease). This approach enabled us to identify within a large co-expression
network a central cluster of genes also called “hub nodes”, highly connected with other affected
genes. Corroborating signals across affected hub nodes can result in changes in cellular signaling
and/or transcript and protein expression levels of neighboring genes leading to pathological changes in
cardiomyocytes, even when hub nodes themselves show little or no changes in expression. In order to
identify those genes, we selected nodes and edges in which Rank numbers generated by NERI ranged
from 1 to 200 in terms of the difference in co-expression between control and disease (Rank Delta) and
changes in connectivity (Rank X).

3.3.1. Identification of the ACE-2 Related Hub Genes Related to Corrupted Co-expression Networks

We identified 139 hub genes, four of them CAT (Catalase), AGT, AGTRAP, MME (reduced
co-expression networks) and ATP6AP2 (enhanced co-expression networks) were also present among
ACE2 seed genes. Decreased co-expression networks among top hub genes were observed for EGFR
(Epidermal Growth Factor Receptor), FN1, TP53, FBXO6, RNF2, ELAVL1, PCNA, and HSP90AA1;
while the strongest increase in co-expression network was observed for hub genes NTRK, COPS6,
RAD51, PTEN, PSMA3, FRMD5, TRIM25 and APP.
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3.3.2. Identification of the Most Altered Connections between ACE2-Related Hub Genes

Most enhanced interactions were between HSP90AA1-MAST2 and ISYNA1 (ACE2 interactor)
with TRIM25. The most diminished interactions were between APP-MAST2 and EGFR-MAST2. W also
observed an enhancement of the co-expression network for EWS RNA Binding Protein 1 (EWSR1).

3.3.3. Identification of the Most Altered Connections between ACE2-Related Seed Genes and
Hub Genes

Analysis of interactions between the seed genes and hub genes showed the strongest alterations
in the connection between CALM1 (Calmodulin 1) and RNF2 involved in cardiac development [9]
(Figure 4B). Analysis of the alterations in connections between seed genes showed also affected
ACE2-CALM1 interaction (RankDelta = 60, Rank X = 155) and AGT-MME (Rank Delta = 85, RankX = 63).
ACE2 placed in terms of Rank Delta at 115, and Rank X placed 257 from 7844. In total, we identified 34
from our 69 seed genes showing changes in-expression networks. Fourteen of them were co-expressed
with each other (Figure 5A)

3.3.4. Identification of the Most Altered Connections between ACE2-Related Seed Genes

The strongest interaction between ACE2 and other genes was for seed gene CALM1 (Rank Delta
= 2280, Rank X = 155). Generally, seeds were not expected to have high-Rank X numbers unless they
were not a hub of interactions for other seed genes.

3.4. Enrichment Analysis of the Signalling within ACE2-Tissue-Specific Network

In order to compare our in silico predictions of the ACE2 network with its co-expression changes in
infected cardiomyocytes, we performed enrichment analysis of signaling pathways using the EnrichR
website (Figure 5). The aim also was to correlate those results with later disease predictions. We used
68 genes from the complete ACE-network and its subnetworks in the heart, lungs, and nervous system,
as well as the top 139 hub genes identified by the NERI algorithm as most affected by the SARS-Cov-2
infection. Enrichment analysis of those networks showed multiple shared pathways associated with
disease-related signaling, TGF-beta regulation of extracellular matrix, renin-angiotensin pathway,
Alzheimer-disease, and AP-1 transcription factor network. Among top pathways shared between
complete ACE2 networks, subnetworks and ACE2 network in cardiomyocytes, we observed many
terms directly associated with heart functions, for example, microRNAs in cardiomyocyte hypertrophy,
EGF receptor transactivation by G protein-coupled receptors (GPCRs) in cardiac hypertrophy, actions of
nitric oxide in the heart, corticosteroids and cardio-protection. We also observed significant enrichment
in all analyzed datasets of cellular senescence, apelin signaling, AGE-RAGE signaling pathway in
diabetic complications, and estrogen signaling pathway identified using the KEGG database.

By comparing the complete ACE2 network to the co-expression in the hiPSC-CMs network,
we observed in the former a higher number of genes associated with renin-angiotensin related
signaling, ACE inhibitor pathway, renin secretion, protein digestion, and absorption. On the other
hand, in infected cardiomyocytes, there are more genes related to cell cycle signaling, interleukin-2
signaling, cancer-related pathways, T cell receptor regulation of apoptosis, and hemostasis pathway.
Additionally, the platelet-degranulation pathway was enriched in infected cardiomyocytes, but also in
heart and lung subnetworks, but not in the complete ACE2 network.
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Figure 4. Alteration of ACE2 (Angiotensin-Converting Enzyme 2) networks in cardiomyocytes infected
with SARS-CoV-2. (A) ACE-2 related hub genes with corroborated signaling obtained by analyzing
expression data of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) after
72 h of infection with SARS-CoV2. The network was constructed by using the NERI (Network by
Relative Importance) algorithm which integrates protein-protein interaction (PPI) BioGrid interactome
with gene co-expression network. For clarity, we selected top genes and edges which had Rank Delta
and Rank S number between 1 and 200; additionally, we showed nodes with the best NERI scores
(low-rank number) which did not have associated edges with best scores (low-rank number). Genes
marked with orange triangles showed direct interaction with SARS-Cov-2 [39]. Notice that EGFR
(Epidermal Growth Factor Receptor) and APP (Amyloid Beta Precursor Protein) showed the strongest
alterations in their co-expression networks. (B) PPI network between top co-expressed hub genes from
panel A (circular shapes) and seed genes (diamond shapes) related to the complete ACE2 network
identified using data mining. The size of the nodes and weight of the edges is associated with Rank
X number, related to biological importance, while color is associated with Rank Delta, related to the
difference in co-expression network between control and disease. Notice that ACE2 shows a reduced
number of connections, consistent with its initial downregulation in the early stage of infection; in later
stages of infection, we can expect an inversion of observed regulation caused by the virus-related ACE2
overexpression [40].
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Figure 5. ACE2 (Angiotensin-Converting Enzyme 2) network in infected human-induced pluripotent
stem cell-derived cardiomyocyte (hiPSC-CMs) and top signaling pathways enriched in ACE2 interaction
networks. (A) ACE2 related genes identified using data mining and co-expression network in stem
cell-derived cardiomyocytes (hiPSC-CMs) 72 h after infection. Pathway enrichment analysis of the
complete ACE2 network (68 genes) and 139 top hub genes identified in ACE2 related co-expression
network analysis for hiPSC-CMs. Notice that the strongest altered interaction was between AGT-MME
(membrane metallo-endopeptidase) and ACE2 and CALM1 (Calmodulin 1), and the strongest affected
nodes are AGT (Angiotensinogen) and CAT (Catalase). (B) Bioplanet database (top 30 pathways) and
(C) KEGG database (additional pathways not present in Bioplanet). Virus-infection related proteins
from the complete ACE2 network are marked with red font. All circles presented on the graph are
associated with significantly enriched pathways (False Discovery Rate corrected p-value < 0.05). In this
analysis, we also included ACE2-sub-networks for the heart, lungs, and nervous system, but due to
high similarity with results for the complete ACE2 network, we excluded them from the figure for
better clarity.
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3.5. Enrichment Analysis of the Disease Terms Associated with ACE2 Tissue-Specific Network

In order to identify the disease traits which would be helpful in precise identification of the risk
groups of patients with COVID-19, we performed an enrichment analysis of the DisGenet disease and
Rare Diseases AutoRIF database (associating genes with publications PubMed Ids) using the EnrichR
website to evaluate phenotypes associated with ACE2 interaction in different tissues. This analysis
guides the identification of phenotypes that can be triggered by ACE2-network alterations in selected
tissues heart, lungs, nervous system, and hiPSC-CMs as well as virus-protein-related network and
complete ACE2 network. Moreover, the analysis of rare traits, usually related to single genes enabled us
to precisely characterize the consequences of alterations in the specific genes from the ACE2-network.

3.5.1. Analysis of the ACE2-Related Common Diseases

The analysis of non-cancerous diseases in the DisGenet database revealed that the highest number
of genes from all analyzed networks was associated with the following disease phenotypes (in decreasing
order): numerous cancerous diseases, obesity, hypertensive disease, non-insulin-dependent DM,
congestive HF, coronary artery disease and atherosclerosis, were observed in all analyzed networks
(Figure 6A). Terms not enriched in the virus-related network but containing virus-infection related genes
were: Alzheimer’s disease, heart failure, diabetes mellitus, asthma and rheumatoid arthritis. Cancer,
Alzheimer’s disease and leukemia were the strongest enriched terms in infected cardiomyocytes.

3.5.2. Analysis of ACE2-Related Cancerous Diseases

Cancerous diseases were grouped on the separate graph by using cancer-related key-words and
showed the strongest enrichment of breast cancers and prostate-related cancers, as well as general
carcinogenesis-related processes including neoplasm metastasis (Figure 6B).

3.5.3. Analysis of ACE2-Related Rare Diseases

The analysis focused on rare diseases revealed that the most significant ones were SARS,
blood-coagulation-related diseases (Marburg hemorrhagic fever, hereditary hemorrhagic telangiectasia,
plasma thromboplastin deficiency, Coats disease), and multiple diseases associated with hypertension
(Kallikrein hypertension and aortic coarctation) (Figure 6C). Among rare diseases, we also observed
significant enrichment of Eclampsia (average 7.1 genes from each dataset), HELLP (haemolysis, elevated
liver enzymes, low platelet count) syndrome (average 6.3 genes from each dataset) and Kawasaki
disease (average 3.3 genes from each dataset) observed occasionally in COVID-19 [41].

3.6. Integration of ACE2 Network with SARS-CoV-2/Human Interactome

To identify how the ACE2 network is connected with the SARS-CoV-2/Human Interactome and
how it could affect the heart, we combined the previously published SARS-CoV-2 interactome [39] with
our complete ACE2 network and top findings from the co-expression network analysis in hiPSC-CMs
72 h after infection.

3.6.1. Identification of ACE2-Related Genes Interacting with the Virus Proteins

We found that three proteins from our network, ACE2, CLEC4M, and TMPRSS2, directly interact
with virus glycoprotein S. Top hub nodes identified in NERI analysis, CAV1 (Caveolin-1), UBE2I,
and IKBKB, also showed connections with virus proteins ORF3a, N and M. In total, 45 proteins from
the complete ACE2 network interact with 38 from 94 human host proteins for SARS-CoV-2.
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Figure 6. Top potential COVID-19 risk groups are significantly associated with ACE2 interaction
networks. Risk groups are characterized as (A) common, (B) cancerous and (C) rare diseases. This list
is based on enrichment analysis of a database of gene-disease associations (DisGeNET), analyzed
through the EnrichR database. We performed disease enrichment analysis in the complete ACE2
network (leftmost column of symbols), and subsets of this network expressed in the heart, lung, and
nervous system; we also performed this same analysis for 11 virus-infection related proteins (rightmost
column) and ACE2-co-expression network in stem cell-derived cardiomyocytes (hiPSC-CMs) after
72 h of infection. Diseases marked with asterisks include the ACE2 gene. For heart, lung and nervous
system tissue, we used the cutoff of expression confidence > 2, obtained from the Tissue2.0 database.
All circles presented on the graph are associated with significantly enriched disease terms (False
Discovery Rate corrected p-value < 0.05). Top cancer-related diseases are shown on panel B and were
subset from the DisGeNET diseases list by using cancer-related keywords. Notice that top diseases
are already known as major risk groups in COVID-19. Label colors are associated with evidence of
underlying medical conditions that increase the risk of severe illness from COVID-19 according to the
Centers for Disease Control and Prevention (CDC) [https://www.cdc.gov/coronavirus/2019-ncov/need-
extra-precautions/evidence-table.html updated on 2 November 2020]. “Strongest and most consistent
evidence” was defined as consistent evidence from multiple small studies or a strong association from
a large study; “Mixed evidence” was defined as multiple studies that reached different conclusions
about risk associated with a condition; and “Limited evidence” was defined as consistent evidence
from a small number of studies. Unassigned terms are marked with black color.

https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/evidence-table.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/evidence-table.html
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3.6.2. Identification of ACE2-Related Genes Interacting with the Host Proteins

We also found that SARS-CoV-2 interactome strongly connects with 23 hub genes which were
also the strongest affected in hiPSC-CMs co-expression network analysis including EGFR, APP,
FN1, and TP53. SARS-CoV-2 interactome strongly connects with the complete ACE2 network
through INS, CDK4 (Cyclin-Dependent Kinase 4), CCL2, and ALB (Albumin), all of them associated
with atherosclerosis processes. The strongest connection between the complete ACE2 network
and SARS-CoV-2/Human Interactome was with INS, which interacted with 12 host proteins from
SARS-CoV-2/Human Interactome. Other top interactors were seed genes CAT, CCL2, CDK4, CALM1
connected with at least six host proteins. The strongest interaction for ACE2-related co-expression
networks in hiPSC-CMs was between HSP90AA1 and TP53, connected with 16 host proteins from
the SARS interactome. Among host proteins directly interacting with virus proteins, the strongest
connection with the ACE2 network occurs by ALB (30 interactors form ACE2 network) and CAV1
(13 interactors) which had affected the co-expression network after virus infection in hiPSC-CMs
(Figure 7).
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of predictions, we analyzed miRNAs that showed expression in blood, serum, or plasma according 
to the TISSUES 2.0 database. In further analyses, we focused on miRNAs which regulated the highest 
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Figure 7. Combined ACE2 network with SARS-CoV-2/Human interactome and co-expression network
in infected human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). (A) Hub
nodes identified in the co-expression network analysis of infected hiPSC-CMs using the NERI
algorithm, showing the highest connectivity with SARS-CoV-2/Human interactome (top 15 genes).
(B) SARS-CoV-2/Human interactome as shown in previously published work [39]. (C) ACE2 network
components that interact with SARS-CoV-2/Human interactome proteins. Nodes from network A
which have the highest connectivity are sorted from right to left. Nodes from the networks B and C are
circularly sorted by the number of connections with virus interactome. Virus proteins are shown as
orange octagons, while virus-infection related human proteins have red labels.
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3.7. ACE2 Network-Related miRNA Predictions

In order to identify miRNAs which could play a regulatory role in COVID19, and especially its
cardiovascular consequences, we performed miRNA-target predictions using the following sets of
genes: 69 genes from the complete ACE2 network, gene lists from its subnetworks for heart, lungs,
nervous system, and virus-related proteins, as well as top hub genes from the ACE2 co-expression
network in hiPSC-CMs. Because among the top nodes identified in the co-expression analysis of
hiPSC-CMs only four seed genes were present, we decided to also include for target predictions
ACE-related seed genes which showed interactions with the top hub genes. For improving the precision
of predictions, we analyzed miRNAs that showed expression in blood, serum, or plasma according to
the TISSUES 2.0 database. In further analyses, we focused on miRNAs which regulated the highest
number of the genes from the network as well as including ACE2. Analysis of the top 10 miRNAs
regulating each from those seven networks revealed overall 10 miRNAs, also regulating the ACE2 gene
(Figure 8A). Seven (hsa-miR-302c-5p, hsa-miR-27a-3p, hsa-miR-1305, hsa-miR-587, hsa-miR-26b-5p,
hsa-miR-10b-5p, hsa-miR-200b-3p) were also regulating a high number of virus-related proteins
(Figure 8B). Among miRNAs shared across analyzed networks that were not regulating ACE2 but were
present among the top 10 in all analyzed datasets, we identified i.e., hsa-miR-124-3p, hsa-miR-34a-5p,
hsa-miR-548c-3p and hsa-miR-16-5p.
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regulating the highest number of genes within all ACE2 related-networks. Pink squares are showing if
miRNA was present among the top 10 miRNAs in a given dataset. (B) Interaction network between
virus-infection related proteins (red labels) and top miRNAs (bolded label on the A panel) regulating
ACE2 and shared between analyzed networks and regulating at least four virus-related proteins from
the complete network. Numbers on the right side of the miRNAs depict the number of targeted genes
within the network. CCL2 and FABP2 genes are not direct interactors of the ACE2, so they are presented
outside of the ACE2-interactors box. “S” refers to SARS-CoV-2 spike glycoprotein S. Human-induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).
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4. Discussion

In the current study, we characterized the interaction between SARS-CoV-2 infection and ACE2
functional networks with a focus on CVD. Using an integrative multi-omic approach, we described the
ACE2 interaction network and evaluated its expression using the hiPSC-CMs dataset. The approach of
integrating multiple sources of biological data used in our study is becoming increasingly popular [42].
There are currently numerous databases integrating and systematizing data from different levels
of biological regulation making this knowledge easily accessible. To improve the identification
and prioritization of genes associated with complex diseases, some works have begun to integrate
PPI networks with information derived from other omics data, which have contributed to a better
understanding of gene functions, interactions, and pathways [25,43,44]. The integration of PPI networks
and gene expression data has also improved disease classification and identification of disease-specific
deregulated pathways in COVID19 [45–47].

The main findings of our analysis are the following: (1) Expression of ACE2 is similar in lungs
and heart, which provides a rationale why the cardiovascular system is also a target of SARS-CoV-2
infection; (2) Analysis of co-expression networks in infected hiPSC-CMs identified multiple hub
genes, highly connected with other affected genes and associated with cardiovascular risk factors;
(3) SARS-CoV-2 binding to the ACE2 receptor leads to major disturbances in signaling pathways
linked to cardiac adverse outcomes in COVID19; (4) Analysis of ACE2 interaction networks revealed
its association with numerous diseases including main COVID19 co-morbidities; (5) Analysis of the
SARS-CoV-2 interactome revealed extensive connections with the top regulators of the ACE2 network;
(6) We identified multiple miRNAs regulating ACE2 network (hsa-miR-302c-5p, hsa-miR-27a-3p,
hsa-miR-1305, hsa-miR-587, hsa-miR-26b-5p, hsa-miR-10b-5p, hsa-miR-200b-3p; hsa-miR-124-3p
and hsa-miR-16-5p).

Our hypothesis states that major implications of COVID19 cardiovascular outcomes are related
to alteration in ACE2 receptor signaling associated with SARS-CoV-2 binding. Due to the difference
between tissue-specific ACE2 networks, different pathological processes can be triggered in different
organs. Our comparative analysis of multiple tissues showed consistency in crucial pathways
including RAS signaling. This could help explain cardiac abnormalities presented in COVID-19
patients, including elevated troponin, myocarditis, arrhythmias, and sudden cardiac death [48].
Moreover, as the myocardial interaction network of ACE2 and its own expression is altered in patients
with coexisting CVD, SARS-CoV-2 infection may result in greater damage to cardiomyocytes and
account for greater disease acuity and poorer survival. This is consistent with recent data regarding the
analysis of RNA-seq data of SARS-Cov-2 infected patients alongside controls: ACE2 network alteration
seems to be the source of most recognized manifestations of COVID19 disease [40].

4.1. The High Expression of ACE2 in the Cardiovascular System Explains Why SARS-CoV-2 Infection May
Target the Heart

The analysis focusing on the ACE2 tissue-specific expression showed that lungs and respiratory
systems have similar ACE2 and TMPRSS2 expressions as the heart and cardiovascular systems and the
nervous system. Recent publications regarding the impact of SARS-CoV-2 on the heart tissue showed
that cardiomyocytes can indeed be infected with the virus [13,14].

4.2. The High Expression of ACE2 in the Reproductive System and Endocrine Glands and Enrichment of
Cancerous Diseases Related to Those Organs Suggest Wider Implications of SARS-CoV-2

In our analyses, we also observed strong confidence in ACE2 expression in urogenital and
endocrine tissues. Moreover, we found that the highest expression of TMPRSS2 gene which is known
to positively regulate viral entry into the host cell via proteolytic cleavage of ACE2 is present in in
the genitourinary tracts. There are studies supporting the high expression of ACE2 in the urogenital
tissues [49–51] and endocrine tissues [52]. Additionally, there is increasing evidence of symptoms like
male infertility [53,54], urinary tract inflammation linked to viral cystitis [55], and transmission of
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the virus through urine [56]. On the other hand, so far qPCR experiments to detect SARS-CoV-2 in
semen and testicular biopsy did not find signs of virus infection [50]. We hypothesize that in this case
disturbances in urogenital tissues could be associated with alternative regulation of the ACE2 network.
Additionally, our analyses using the NERI algorithm showed strong alterations in cancer-related TP53,
NTRK, COPS6, and RAD51 co-expression networks and exceptionally high enrichment of cancerous
processes associated with reproductive organs. Thus, we predict that additional impacts of SARS-CoV-2
infection can be observed much later than acute infection. Interestingly, TP53 is considered a master
regulator of maintenance of cardiac tissue transcriptomic homeostasis [57].

4.3. ACE, REN, INS, KNG1, and AGT Play A Role in Cardiovascular Risk Factors Related to SARS-CoV-2
Binding to the ACE2 Receptor

In our study ACE, REN, INS, KNG1, and AGT showed the highest connectivity within the
complete ACE2 network and association with enriched diseases that are known to be a risk factor for a
severe course of COVID-19. Our analysis of the data related to infected hiPSC-CMs confirmed changes
in co-expression networks of ACE, AGT (also present among hub genes), and KNG1. Both ACE and
AGT also showed differential expressions in hiPSC-CMs. On the other hand, expression levels of INS
and REN were extremely low thus suggesting rather their role other than in cardiac tissues. ACE and
ACE2 interplay with the RAS pathway and plasma kallikrein-kinin system (KKS), of which a component
is KNG1, a hormonal pathway that modulates the intrinsic blood coagulation system, angiogenesis,
the complement pathway and bradykinin-related inflammation. Deregulation of KKS may result in
thromboembolic complications and lead to sepsis exacerbation in infections [58–60]. Deregulation of
AGT which is a crucial component of the RAS pathway is associated with the pathogenesis of essential
hypertension and atrial fibrillation.

4.4. Analysis of Infected hiPSC-CMS Using the NERI Algorithm Revealed Affected Co-expression Networks of
EGFR, APP, and CALM1 Implicating Their Role in Cardiac and Thromboembolic Complications

EGFR loss in vascular smooth muscle cells and cardiomyocytes leads to arterial hypotension and
cardiac hypertrophy [61]. EGFR was found as a pivotal regulator of thrombin-mediated inflammation.
It also plays a role in changes from lethal to non-lethal influenza infections [56,62]. EGFR showed
decreased signaling in infected hiPSC-CMs.

APP is a precursor protein for Amyloid-beta (Aβ) peptide which is massively released from
the blood to nearby tissue upon the activation of platelets and has strong antibiotic activity against
viruses, bacteria, and fungi [63]. Accumulation of Aβ in tissues is observed in Alzheimer’s disease,
glaucoma, cancerous disease, myocardium with diastolic dysfunction, and the placenta during
preeclampsia [64,65]. All those diseases were enriched in our study. APP showed an increased
co-expression network in infected hiPSC-CMs. Identification of this interplay between EGFR and APP
can play an important role in intervention targets in COVID19 treatment.

The analysis focusing on the close ACE2 interactors revealed its strongly affected connection
with CALM1 in infected hiPSC-CMs. CALM1 regulates the function of ion channels playing a role in
platelet aggregation and cardiomyocytes activity. It is also an important ACE2 interactor playing a role
in viral pathogenesis [66,67]. In our analysis, CALM1 showed interactions also with hub node PTEN
affecting cardiomyocyte contractions and growth.

4.5. Alterations in the ACE2 Interaction Network Can Aggravate Major Comorbidities in COVID19 through
Related Signalling Pathways

Our analysis of ACE2 interaction networks including co-expression networks in infected
cardiomyocytes showed that change in ACE2 receptor activity can lead to significant disturbances
in signaling pathways linked to well-known complications in COVID-19. These pathways included
TGF-beta regulation of extracellular matrix, renin-angiotensin system AP-1 transcription factor network,
apelin signaling, AGE-RAGE signaling pathway in diabetic complications, and estrogen signaling.
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Signaling pathways most affected in hiPSC-CMs were related to cell cycle (i.e., pathways in cancer,
PI3K-Akt signaling pathway), immune system (i.e., interleukin-2 signaling pathway, T-cell receptor
regulation of apoptosis), hemostasis and platelet activation. Those results were supported by our
subsequent analysis of disease-related phenotypes which are the major comorbidities in COVID19
cancerous diseases, obesity, hypertensive disease, diabetes, and Alzheimer’s disease.

4.6. Renin-Angiotensin Pathway, AGE-RAGE, and Apelin Signalling as Fundamental Mediators of the Blood
Pressure Dysregulation Mediated through ACE2 in COVID-19

In our in silico analysis using ACE2 functional networks, we found that RAS/ACE2, AGE-RAGE,
and Apelin signaling pathways play an important role in SARS-CoV-2 infection. These pathways
have a crucial role in the pathogenesis of DM, CVD, and blood pressure regulations. Abnormalities
of ACE2/RAS pathway signaling and deregulation of angiotensin II as a fundamental mediator of
this axis are closely related to the pathophysiology of hypertension and progression of cardiovascular
remodeling [68,69]. Therefore, binding of the SARS-CoV-2 to the ACE2 receptor leading to disturbances
in the pathways of these key regulators might explain the adverse outcome in COVID-19 patients
with the coexistence of the above mentioned clinical conditions. Apelin signaling is also involved
in many physiological processes such as energy metabolism, blood pressure regulation, and cardiac
contractility and plays an important role in organ and tissue pathologies including DM, obesity, HF,
and HIV-1 infection [70]. After the virus enters the cells, ACE2 is likely to decrease its activity, thus
favoring an increase of the ACE/ACE2 balance toward the prevalence of the ACE arm in the RAS which
causes an increase of ROS production, vasoconstriction, and inflammation [71]. On the other hand,
a recent COVID-19 related study showed decreased expression of ACE in combination with increases
in ACE2 likely causing bradykinin-related increases in vascular dilation, vascular permeability and
hypotension, explaining many of the symptoms being observed in COVID-19 [40].

4.7. The Role of Virus-Infection Related Proteins from ACE2 Network in COVID-19 Adverse Outcomes

Analysis of the connection between SARS-CoV-2 interactome revealed direct interaction of the
virus glycoprotein S with 3 of the 11 virus-infection related proteins identified as incomplete in the
ACE2 network (ACE2, CLEC4M, and TMPRSS2). We also identified DE hub nodes (CAV1, UBE2I)
interacting with other virus proteins. Interestingly, CAV1 was identified as a possible alternative
receptor for SARS-CoV and Canine respiratory coronavirus (CRCoV), which may be associated with the
virus infection, replication, assembly, and budding [72,73]. CAV1 showed an enhanced co-expression
network. Additionally, we observed multiple connections between host genes from virus interactome
and most affected genes in hiPSC-CMs. Those genes included TP53, HSP90AA1 but also ESR1, FN1,
APP and EGFR and seed genes CAT, AGT, AGTRAP, DPP, CCL2 and MME. The especially interesting
genes are discussed below.

HSP90AA1 was recently shown in pre-print as reducing SARS-CoV- 2 viral replication and
TNF and IL1B mRNA levels [74]. Additionally, in our analysis, the strongest affected interaction in
cardiomyocytes was observed between HSP90AA1 and MAST2. MAST2 regulates IL12 production
in macrophages and shows association with red blood cell distribution width which was identified
recently as a biomarker of COVID19 mortality [75]. Interestingly, MAST2 also showed an affected
connection with the top hub gene APP. HSP90AA1 and seed gene CAT showed significant differential
expression and a strong reduction in co-expression networks in infected hiPSC-CMs in our study. CAT
is considered the most effective catalyst for the decomposition of H2O2, regulating the production of
cytokines, protecting from oxidative injury, and repressing replication of SARS-CoV-2 [76].

FN1 in our study showed decreased signaling in hiPSC-CMs. FN1 inhibition attenuates fibrosis
and improves cardiac function in a model of heart failure [77]. Interaction of human plasma fibronectin
with viral proteins of HIV suggests that its binding to virus particles may reduce viremia and thus may
be involved in the clearance of viral proteins from the cells [78].
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Higher plasma DPP4 (Dipeptidyl Peptidase 4) can be found among patients with obesity, metabolic
syndrome, and DM, who are at risk of a severe course of COVID-19 [79]. DPP4 knock-in mice were
found more susceptible to MERS-CoV infections which resulted in the severe inflammatory response
and lethal lung disease [80,81]. Therefore, it should be further investigated whether DPP4 inhibitors,
widely used for the treatment of DM, may act as therapeutic drugs for ARDS caused by SARS-CoV-2
infection [82]. Our study revealed the possible interaction between DPP4 and EGFR which was
identified as the most affected gene in co-expression network analysis.

Among affected virus-related-infection proteins, we also identified CCL2. CCL2 protein has
been implicated in lung inflammatory disorders and contributes to the development of pulmonary
fibrosis [23,83]. It is worth mentioning that among SARS-CoV-infected patients the level of
pro-inflammatory cytokines, especially CCL2 and TGF-β1 (both affected in infected hiPSC-CMs)
were increased in cells expressing ACE2, while this could not be seen in tissue with undetectable ACE2
expression [84]. A comparable pattern of inflammatory cytokines was also found in SARS-CoV-2
infection [85]. This makes CCL2 a promising link between ACE2 and cytokine storm associated with
severe COVID-19 disease.

Altogether, our results suggest that not only is ACE2 affected by the entrance of the virus to the
cardiomyocytes, but that this virus also affects multiple ACE-2 interactors and that the ACE-2 network
can also be a part of the virus propagation machinery.

4.8. miRNAs as Promising Antiviral Modulators of the ACE2 Network and a Potential Biomarker of HF
Associated with COVID-19

In the initial step of our study, we identified miRNAs that may regulate the expression of
ACE2 networks and related processes. To our best knowledge, we present here novel results on the
potential role of miRNAs as a diagnostic and prognostic tool in heart muscle injury in the course of
SARS-CoV-2 infection

4.8.1. miR-1305 and miR-587: TGF-β Signaling Pathway Regulators in HF Progression

MiR-1305 and miR-587 were found to regulate the expression of TGF-β pathway members related
to virus infections and lymphocytes T activation, Mothers Against DPP Family Members - SMAD3,
and SMAD4) [86–89], ventricular remodeling, myocardial fibrosis and hypertrophy and, as a result,
HF progression [90]. The highest expression of miR-587 was found in platelets of patients with acute
coronary syndrome and was closely related to the severity of coronary artery stenosis [91].

4.8.2. miR-26b-5p: Anti-fibrotic Agent and AGTR1-Dependent Hypertension Modulator

In our study, we found that miR-26b-5p may play an important role in the pathogenesis of HF
in COVID-19 patients. Noteworthy, literature data suggest that AGTR1 (Angiotensin II Receptor
Type 1) can modulate hypertension, via the regulation of miR-26b-5p in arachidonic acid metabolism.
Additionally, miR-26b-5p has an anti-fibrotic effect in the liver, in the diabetic mouse myocardium, and
Ang-II-induced mouse cardiac fibroblasts [92].

4.8.3. miR-302c-5p: Potential Antiviral Therapeutic and Biomarker of HF

Another miRNA from our network affecting ACE2 was miR-302c-5p, playing an important role
in many viral infections [93–95]. A study reported an association between the miR-302 and cytokine
storm and showed the potential of miR-302 as an antiviral therapeutic [95]. Our bioinformatic analysis
for the first time showed the importance of miR-302c-5p in SARS-CoV-2 infection. Apart from the
crucial function of miR-302 in viral infections, it may be also associated with CVD [96,97], as circulating
miR-302 was positively correlated with NT-proBNP levels in acute HF patients and showed strong
potential as a novel biomarker for the diagnosis and the differentiation of disease severity of acute
HF [96].
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4.8.4. miR-27a-3p: A Potential Biomarker of Acute HF and NF-κB Signaling Regulator

miR-27a-3p targeting ACE2 and other genes from its network in our study were also found to be
involved in the inflammatory response and oxidative stress through several pathways including PPAR-γ,
NF-κB, and PI3K/AKT/Nrf2 signaling [98–100]. In the animal model of acute lung injury, expression of
miR-27a-3p in alveolar macrophages was significantly decreased, while overexpression of miR-27a-3p
suppressed NF-κB activation and alleviated acute lung injury by binding to its target NFKB1 [98].
Moreover, it was also found that miR-27a-3p may target pathways related to arthero-sclerosis and may
act as a potential biomarker of acute HF [101,102].

4.8.5. Hsa-miR-16-5p: Modulates Inflammatory Signaling and Cytokines including IL-1β, IL-6, and
TNF-α, NF-κB mTOR-Related Pathways

hsa-miR-16-5p was found to affect a phenotypic change of T cells, modulate inflammatory signaling
and cytokines including IL-1β, IL-6 and TNF-α, NF-κB mTOR-related pathways and genes [103,104].
Additionally, MiR-16-5p has been linked with the pathogenesis of several infectious diseases such as
HIV-1 infection and malaria [105–107]. It is worth mentioning that miR-16-5p as a plasma diagnostic
biomarker is able to distinguish severe and mild viral infections [108] and early HIV-1 infection from
healthy individuals [106,109].

4.8.6. Hsa-miR-124-3p: Has a Potentially Aggravating Role in Cardiovascular Consequences of COVID19

MiR-124-3p was identified as regulating the highest number of genes in hiPSC-CMs.
The literature data show its aggravating role in failing hearts by suppressing CD151-facilitated
angiogenesis [110]. miR-124-3p dysregulates NSC maintenance through repression of the transferrin
receptor (TFRC—Transferrin Receptor) in Zika virus infection [111]. TFRC is linked with cardiomyopathy
and was identified in our study as closely interacting with ACE2 in infected cardiomyocytes and is
strongly connected with SARS interactome.

5. Conclusions

This comprehensive analysis provides novel information regarding the complexity of signaling
pathways of SARS-CoV-2 infection affecting the cardiovascular system with a focus on cardiomyocytes,
and forms a basis for the creation of predictive tools and introduction of therapy to improve outcome
in COVID-19, and therefore has a potential to reduce economic consequences of the global pandemic.
We believe that the results of our analysis could be further validated in laboratory and clinical settings
and help to create a paradigm for future studies in this field. MiRNAs identified for the first time in
this study can serve as potential biomarkers helping with the identification of the pathological changes
in COVID-19 or serve as therapeutic targets, due to their stability in the serum, forming a basis for
personalized therapy.
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Abbreviations

ACE2 Angiotensin-Converting Enzyme 2
ACE Angiotensin-Converting Enzyme 1
ARDS Acute respiratory distress syndrome
COVID-19 Coronavirus disease 2019
CVD Cardiovascular disease
DEG Differentially expressed genes
DM Diabetes mellitus
eNOS Endothelial nitric oxide synthase
GEO Gene Expression Omnibus
GO Gene Ontology
GPCRs G-protein-coupled receptors
GTEx Genotype-Tissue Expression
HF Heart failure
HK High molecular weight kininogen
hiPSC-CMs Human-induced pluripotent stem cell-derived cardiomyocytes
INS Insulin
KKS Kallikrein-Kinin system
KNG1 Kininogen 1
MERS Middle-East respiratory syndrome coronavirus
MI Myocardial infarction
miRNAs, miR MicroRNAs
NERI NEtwork by Relative Importance
NT-proBNP N-terminal pro-B-type natriuretic peptide
PPI Protein–protein interaction
RAS Renin–angiotensin system
REN Renin
ROS Reactive oxygen species
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
TMPRSS2 Transmembrane protease serine 2
Gene/protein
ACE2 Angiotensin-Converting Enzyme 2
ADAM17 ADAM metallopeptidase domain 17
AGT Angiotensinogen
AGTR1 Angiotensin II Receptor Type 1
ALB Albumin
APP Amyloid Beta Precursor Protein
ANPEP Alanyl Aminopeptidase
APN/CD13 Aminopeptidase N/CD13
ATP6AP2 ATPase H+ Transporting Accessory Protein 2
CALM1 Calmodulin 1
CAT Catalase
CAV1 Caveolin-1
CCL2 C-C Motif Chemokine Ligand 2
CCN2 Cellular Communication Network Factor 2
CDHR2 Cadherin Related Family Member 2
CDK4 Cyclin-Dependent Kinase 4
CLEC4M C-Type Lectin Domain Family 4 Member M
CTSA Cathepsin A
CTSG Cathepsin G
DPP4 Dipeptidyl Peptidase 4
EGFR Epidermal Growth Factor Receptor
ENPEP Glutamyl Aminopeptidase
EV71 Enterovirus 71
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EWSR1 EWS RNA Binding Protein 1 (EWSR1)
FABP2 Fatty acid-binding protein 2
FN1 Fibronectin 1
FoxO2 Forkhead box O-2
HSP90AA1 Heat Shock Protein 90 Alpha Family Class A Member 1
INS Insulin
KNG1 Kininogen 1
KPNA2 Karyopherin Subunit Alpha 2
LNPEP Leucyl And Cystinyl Aminopeptidase
LTA4H Leukotriene A4 hydrolase
MAPK Mitogen-activated protein kinase
MAST2 Microtubule Associated Serine/Threonine Kinase 2
MCP-1 Monocyte chemoattractant protein-1
MEP1A Meprin A subunit alpha
MME Membrane metallo-endopeptidase
MS4A10 Membrane Spanning 4-Domains A10
NFKB1 Nuclear Factor Kappa B Subunit 1
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NPC1 Niemann-Pick disease, type C1
PAI-1 Plasminogen activator inhibitor-1
PDGFR-b Platelet-derived growth factor receptor-beta
PPARγ Peroxisome proliferator-activated receptor-gamma
PRCP Prolyl-carboxypeptidase
TFRC Transferrin Receptor
TGFB1 Transforming Growth Factor Beta 1
THOP1 Thimet Oligo-peptidase 1
TMPRSS2 Transmembrane protease, serine 2
VEGFR2 Vascular endothelial growth factor receptor 2
Signaling pathways
AGE-RAGE Advanced glycation end products-Receptor for Advanced glycation end products
ERK1/2/AP-1 Extracellular signal-regulated kinases 1/2/AP-1
PI3K/AKT/Nrf2 Phosphatidylinositol 3′-kinase/AKT/NF-E2-related factor 2
ERK1/2/AP-1 Extracellular signal-regulated kinases 1/2/AP-1
PI3K/AKT/Nrf2 Phosphatidylinositol 3′-kinase/AKT/NF-E2-related factor 2
RAS Renin-Angiotensin System
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