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The Quantum Chemical Topological Force Field (QCTFF) uses

the machine learning method kriging to map atomic multipole

moments to the coordinates of all atoms in the molecular sys-

tem. It is important that kriging operates on relevant and real-

istic training sets of molecular geometries. Therefore, we

sampled single amino acid geometries directly from protein

crystal structures stored in the Protein Databank (PDB). This

sampling enhances the conformational realism (in terms of

dihedral angles) of the training geometries. However, these

geometries can be fraught with inaccurate bond lengths and

valence angles due to artefacts of the refinement process of

the X-ray diffraction patterns, combined with experimentally

invisible hydrogen atoms. This is why we developed a hybrid

PDB/nonstationary normal modes (NM) sampling approach

called PDB/NM. This method is superior over standard NM

sampling, which captures only geometries optimized from the

stationary points of single amino acids in the gas phase.

Indeed, PDB/NM combines the sampling of relevant dihedral

angles with chemically correct local geometries. Geometries

sampled using PDB/NM were used to build kriging models for

alanine and lysine, and their prediction accuracy was com-

pared to models built from geometries sampled from three

other sampling approaches. Bond length variation, as opposed

to variation in dihedral angles, puts pressure on prediction

accuracy, potentially lowering it. Hence, the larger coverage of

dihedral angles of the PDB/NM method does not deteriorate

the predictive accuracy of kriging models, compared to the

NM sampling around local energetic minima used so far in the

development of QCTFF. VC 2015 The Authors. Journal of Com-

putational Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24006

Introduction

The rapid but accurate evaluation of potential energy for bio-

molecular simulation continues to be a challenge. Next gener-

ation force fields, which could eventually replace the

traditional force fields, continue to be developed. Among the

former are AMOEBA,[1] XED,[2] SIBFA,[3] and ACKS2,[4] which all

advocate multipolar electrostatics,[5,6] absent in classical archi-

tectures.[7,8] The Quantum Chemical Topological Force Field

(QCTFF)[9,10] shares this approach to improved electrostatic

energy prediction but, on top of this, introduces machine

learning to handle electron density fluctuations in response to

changes in nuclear configuration. QCTFF aims at capturing the

end result of this polarization process rather than the process

itself. The machine learning models that QCTFF depends on

need to be properly trained with a sufficient number of con-

figurations, but perhaps more importantly, with relevant con-

figurations. The work presented here deals with this problem,

and does so in the context of real protein structures.

Machine learning focuses on algorithms that can learn from

data, in this case properties (multipole moments and energies)

of topological atoms. Machine learning proposes computa-

tional methods that generate predictive models that map an

output variable to a set of input variables. Models are then

built through a training procedure using a set of input values

with known output. QCTFF, which continues to be developed

in our lab, is an innovative approach to predicting the energy

of a molecular system much faster than first principle calcula-

tions can. For that purpose, QCTFF captures atomically parti-

tioned first principle information of the system trained for.

QCTFF achieves this by relying on a machine learning method

called kriging,[11–13] which is increasingly being used[14–19] in

the community of force field and potential design.

Traditional force fields approximate energy through bonded

and nonbonded contributions that incorporate often loosely

defined atom types with their own set of experimentally or

computationally obtained parameters. QCTFF operates outside

this traditional framework: its architecture does not distinguish

between bonded and nonbonded interactions, and atom types

do not need to be defined. Instead, QCTFF focuses directly on

how atoms interact, allowing for a spectrum of covalency

rather than a bonded/nonbonded dichotomy. QCTFF maps

atomic properties (the output variables) to molecular coordi-

nates (a set of input variables) using kriging. Therefore, a

QCTFF atom will be endowed with a number of kriging
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models, each describing how an atomic property changes as a

function of the coordinates of the molecular system.

To build a QCTFF kriging model, example molecular geome-

tries must be obtained to train the model. QCTFF develop-

ment targets the simulation of biomolecules, in particular

proteins, hence amino acids are molecules of key interest.

When sampling amino acid geometries as input for kriging

models, the sampled geometries must include all the confor-

mations that one may reasonably expect to occur during the

simulation of a protein. Our current paradigm for the sampling

of molecular geometries is to use a NM sampling approach. To

do this, a small number of stationary points on the potential

energy surface of a given molecule of interest are located, and

the NM at each stationary point (or local energy minimum) are

calculated. Energy is then put randomly into the NM to distort

the molecule, and “snapshots” are taken to obtain distorted

geometries. The minimum energy conformations of all 20 nat-

urally occurring amino acids have been reported in a compre-

hensive study,[20] all obtained at the same level of theory.

Kriging models built from NM sampled geometries have been

used to predict successfully the atomic multipole moments of

a range of molecules. These include small organics, amino

acids, and hydrogen bonded dimers.[17,21–26] Recently, the elec-

tronic kinetic energy of QCT atoms (see Quantum Chemical

Topology section) has been successfully incorporated into krig-

ing models for methanol, NMA, glycine and triglycine.[27] Intra-

atomic terms such as the (electronic) kinetic energy are not

explicitly incorporated in classical force fields but to gain an

appreciation of chemical phenomena, such as steric hindrance,

intra-atomic terms have been proven important and therefore

should be included in QCTFF.[28] Some interesting work quanti-

fies the steric effect, still within QCT, but in the context of

experimental[29] electron densities, conceptual DFT,[30] and

energy decomposition analysis.[31]

The only other alternative sampling approach investigated

draws snapshots from a molecular dynamics simulation, which

has been done[32] for liquid water. In the current work, a third

sampling method is investigated, one that is pivotal for a real-

istic sampling of amino acid conformations and one that incor-

porates experimental information (X-ray structures).

Amino acids are typically described as consisting of two

units: a back bone and a side chain. The conformational pref-

erence of the backbone unit is dictated by the secondary

structure of the proteins and is well understood. The dihedral

angles denoted U and W describe the back bone using Rama-

chandran plots. These plots relate the values of U and W to a

particular secondary structure. Different amino acids display

preferences for different regions of the Ramachandran plot,

and a thorough investigation of the preferences for all 20 nat-

urally occurring amino acids has been performed before.[33,34]

The side chain of an amino acid may exist as a number of dif-

ferent rotamers depending on the side chain dihedrals. Exten-

sive work has been undertaken by other groups to understand

the relative populations of the different rotamers occupied by

each amino acid, and this has led to a number of rotamer

libraries being constructed.[35–40] A rotamer library is a com-

prehensive guide, drawn from molecular dynamics simulation

or protein crystallography, detailing the statistical populations

and frequencies of the dihedral angles adopted by amino acid

side chains. These libraries may then be used to predict, build,

design and solve new protein structures.[41] Torsional energy

terms are so important that they receive special attention in

force field design, see Ref. [42] for a recent example.

Normal modes sampling has proved successful at sampling

conformational space around an input energetic minimum or

stationary point. However, one must consider whether the gas

phase minimum energy geometries of an amino acid accu-

rately mimic the amino acid structures found in proteins. We

note that, in more general terms, the biases induced by data-

sets that are restricted to stationary or only little deformed

structures were also discussed within the context of DFT.[43] It

is accepted that amino acids and polypeptides have an intrin-

sic propensity for specific molecular configurations, and that

this preference can differ depending on whether the amino

acid exists in a folded protein tertiary structure or a disor-

dered, solvated state.[44] Ramos and coworkers[45] performed

ab initio calculations on all 20 natural amino acids using both

gas phase and PCM solvation. Of the 323 chemical bonds and

469 angles present, they found mean unsigned errors of less

than 0.02 Å and 38 between the PCM and gas phase bonds

and angles, respectively. However, the environment of a globu-

lar protein is different to that of a hydrated polypeptide due

to a number of factors such as intraresidue hydrogen bonding

and steric considerations that have an effect on the amino

acid conformation.

The work of Jha et al.[46] clearly shows the effect of the envi-

ronment on the backbone angles U and W. They compared

the geometric preferences of all 20 amino acids using data

from two protein coil libraries: one including residues in struc-

tural motifs, and the other only those residues in disordered

sections of the proteins. The ratios of structures found in the

b-sheet, PPII and a-helical regions were clearly different

between the two libraries. To further demonstrate the effect of

environment on the structural preferences of amino acids, the

distribution of structures obtained from both coil libraries also

differed significantly from those obtained experimentally for

the central residue of Gly-X-Gly tripeptides (where X is a natu-

rally occurring amino acid).[47,48] It has been shown, both

experimentally (using NMR J couplings) and computationally,

that disordered amino acid residues favor specific regions of

the Ramachandran plot (typically b-sheet and PPII regions) in

contrast to the conformational populations found in ordered

protein secondary structures.[44,46,49–51] It has also been shown

that the side chain rotamer preference of an amino acid is

related to the secondary structure of the polypeptide in which

it resides,[52] and this relationship between environment and

structure has been used successfully in rotamer libraries to

predict side chain conformations.[53] In the long term, these

results imply that gas phase energy minima of single amino

acids used to sample geometries from, are insufficient to sam-

ple all important chemically relevant structures.

The efficient sampling of molecular geometries is a challeng-

ing problem due to the rapid increase in the available confor-

mational space as molecules grow in size. A systematic search
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of conformational space to find low energy structures is

impractical and inefficient. A number of efficient approaches

have been presented in the literature including the use of

molecular dynamics,[54,55] Monte Carlo,[56] transition path sam-

pling,[57–59] and metadynamics.[60] Additionally, fragment based

approaches may be used to improve a systematic approach by

reducing the number of conformations searched though elimi-

nation processes. An example of such an approach is that of

Luo and coworkers[61] where, by fragmenting the Gly-Tyr-Gly-

Arg tetrapeptide, they reduced 19.6 billion possible candidates

for the global minimum conformation down to only 5760.

An alternative to computational sampling approaches for

finding important amino acid geometries is to source them

from protein crystal structures. Unfortunately, crystal structures

cannot be used directly as input into kriging models for sev-

eral reasons. First, only heavy atoms are detectable by X-ray

crystallography and so the hydrogen atom coordinates are

dependent upon the refinement process used. Second, remov-

ing an amino acid from a crystal structure breaks the peptide

bonds at either end of the backbone, which drastically

changes the chemical environment and results in incomplete

valence of the terminal atoms. Therefore, some post-Protein

Databank (PDB)-extraction modifications to the sampled amino

acids are required before input to QCTFF. Thirdly and finally,

the resolution of the atomic coordinates varies from one crys-

tal structure to another, and sometimes unrealistic bond

lengths and angles may be present within a crystal structure.

To address the above concerns, a novel sampling approach is

presented here. This approach samples amino acids from the

PDB, relaxes bond lengths, and valence angles by an ab initio

method while preserving the dihedral angles, and then per-

forms nonstationary NM sampling around each sampled amino

acid. This approach is termed PDB/NM and the details of both

sampling approaches are explained in the following sections.

Background and Methods

Because many of the technical points concerning QCTFF have

been described in detail in previous work of our lab, we only

give a brief overview of the key concepts here. A comprehen-

sive introduction to kriging and how it features in QCTFF is

given in Ref. [19] while Refs. [24,25] provides the most up-to-

date detail on the overall training procedure of QCTFF, now

called GAIA. Additional descriptions of the machine learning

method are also provided in Refs. [17,26].

Quantum chemical topology

Underpinning the development of QCTFF[9] is Quantum Chemi-

cal Topology (QCT),[62] which embraces all work[63] in quantum

chemistry that uses the topological language of dynamical sys-

tems (e.g. attractor, basin, homeomorphism, gradient path, sep-

aratrix, critical points). QCT contains the “quantum theory of

atoms in molecules”[64–66] as a special case where this topologi-

cal language is applied to the electron density q and its Lapla-

cian. A topological atom XA is a bundle of gradient paths (i.e.,

trajectories of steepest ascent through q), terminating at a maxi-

mum critical point, which typically coincides with the nucleus A.

Topological atoms are defined in a parameter-free manner, and

they are nonoverlapping and sharply bounded (at the inside of

the molecule) by so-called interatomic surfaces.

It is a good idea to expand the 1/r12 expression occurring in

the equation for the Coulomb energy between two electron

densities. A popular and compact expansion introduces spheri-

cal harmonics, which in turn lead to atomic multipole

moments. Multipole moments are able to describe the aniso-

tropy[67] of the electron density, in contrast to (isotropic) point

charges used by popular force fields such as AMBER[68] and

CHARMM.[69] The charge of an atom is the zero-order term of

the multipolar expansion, and it is only by including higher-

order terms that the anisotropy of the electron density is

described. There is considerable evidence, as collected in a

recent review,[5] of the advantages of multipolar electrostatics

over point charges. QCTFF incorporates multipolar electro-

statics, and in the current work it is the atomic multipole

moments that are the topological property of interest, that is,

they are the output that kriging is tasked to predict.

The Coulomb interaction between two topological atoms

XA and XB is given[70] by

ECoul
AB 5

X
lA lB mA mB

QlA mA
TlA lBmAmB

QlB mB
(1)

where QlA mA
is a multipole moment and TlA lB mA mB

is the interac-

tion tensor between two multipole moments. A convenient

concept when dealing with the electrostatic interaction

between two multipole moments of order lA and lB is the

interaction rank, L, given by:

L5lA1lB11 (2)

It has been shown that interaction rank L55 provides a sat-

isfactory description of the electrostatics acting in system.[71,72]

Note that L55 requires all atomic multipole moments up to

and including hexadecupole (fourth order multipole moments,

‘5 4) to be calculated, resulting in 25 multipole moments for

each atom.

Atomic properties other than multipole moments may be

obtained from QCT. The interacting quantum atoms (IQA)[73]

method is a well-developed topological energy decomposition

scheme based on the calculation[74] of the exact nonexpanded

topological Coulomb energy. IQA decomposes a molecular sys-

tem in a combination of both intra-atomic (“self” ) and intera-

tomic energy terms. Details of the decomposition scheme are

beyond the scope of this article but QCTFF is currently incor-

porating the non-Coulomb terms by the same kriging treat-

ment as the atomic multipole moments in the current work.

The atomic local frame and kriging

QCTFF uses kriging,[11,13,75] also known as Gaussian process

regression,[12] which is a method of capturing the changes in

atomic multipole moments as a function of molecular geome-

try. A detailed description is provided in earlier work[25] so

only a brief description is provided here. As the coordinates of
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an atomic system evolve, for example when bonds stretch and

angles bend, the topological properties of the atoms involved

will change, e.g. example their atomic charges (or monopole

moments). Using kriging, it is possible to build models capable

of predicting changes in an atomic property by evaluating the

molecular coordinates. In the present work, kriging models are

built for the first 25 atomic multipole moments (up to, and

including, hexadecapole moment) of each atom in the amino

acids alanine (Ala) and lysine (Lys). By treating the atomic mul-

tipole moments in this way, both polarization and charge

transfer effects are captured.

A chemical system may be defined by a minimum of 3N26

internal coordinates. In the language of machine learning, the

3N26 coordinates around an atom are referred to as features,

and it is these features that a multipole moment is mapped

to. In QCTFF an atomic local frame (ALF) is defined to describe

the 3N26 coordinates around a central atom. Consider a cen-

tral atom, denoted A. First, the Cahn–Ingold–Prelog rules are

used to determine the two atoms of highest priority bonded

to A, and these atoms are termed X and Y in order of priority.

The distances RAX and RAY, and the angle hXAY define the three

ALF coordinates. Subsequently a right-handed coordinate sys-

tem is stabilized using the XAY plane. All other atoms in the

system can then be described by three polar coordinates,

RAK ;/AK , and hAK . One therefore obtains N23 sets of three

spherical polar coordinates each, which combined with the

aforementioned ALF coordinates make up the 3N26 coordi-

nates required, that is, 3(N23)13 5 3N26.

Returning to kriging, the change in a given multipole moment

is smooth with respect to a change in the ALF coordinates.

Therefore it is safe to interpolate the atomic multipole moments

of an unknown molecular geometry existing inside a set of

known geometries. Kriging is used to build models capable of

accurate interpolation of the atomic multipole moments by

mapping an input (nuclear coordinates) to an output (a multi-

pole moment). To achieve this, a training set of molecular geo-

metries with known atomic multipole moments is required. The

sampling of molecular geometries for training kriging models is

described below. Kriging models calculate atomic multipole

moments of a new geometry by the following process:

ŷðx*Þ5l̂1
Xn

i51

ai � ri (3)

where ŷðx*Þ is a multipole moment at a new set of coordi-

nates x* and l̂ is the global (average) value of the moment.

The factor ai is the ith element of the vector a5R-1 y21l̂ð Þ
and ri is the ith element of r, defined by

r5fcor½eðx*Þ; eðx1Þ�; cor½eðx*Þ; eðx2Þ�; :::; cor½eðx*Þ; eðxnÞ�gT (4)

where T marks the transpose.

Kriging treats all moments as an error from the global value,

and it is the correlation of these errors for a given multipole

moment between all n training points that is calculated by krig-

ing. This is achieved by building a n3n correlation matrix R

between all pairs of training points with elements Rij, given by

Rij5cor½eðxiÞ; eðxjÞ�5exp 2
Xd

h51

hhjxi
h2xj

hj
ph

" #
(5)

where xi and xj are training points composed of d features.

The parameters hh (hh � 0) and ph (1 < ph � 2) describe the

importance of each feature h and may be written as the

d-dimensional vectors h and p. A large value of hh corresponds

to a feature being highly correlated to the output multipole

moment. The parameter ph describes the smoothness of the

function, and is often close to 2.

A second crucial concept underpinning kriging is the so-called

concentrated (or reduced) log-likelihood function L̂, defined as

L̂ðh;pÞ52
n

2
logðr̂2Þ2 1

2
logðjRjÞ (6)

where

r̂25
ðy21l̂ÞT R21ðy21l̂Þ

n
(7)

and

l̂5
1T R21y

1T R211
(8)

where y is a vector of response values for each training point

and 1 is a vector of 1s. Another (very different) machine learn-

ing method called particle swarm optimization[76] then

searches for the optimum values of h and p that maximize the

concentrated log-likelihood function.

In Quantum Chemical Topology section, it was stated that

each atom is described by 25 multipole moments, and there-

fore there are 25 kriging models associated with each atom.

The kriging models are tested on an external test set of geo-

metries, which is strictly not part of the training set. For each

test molecule, we predict all the multipole moments of all

the atoms in the system, and then calculate all electrostatic

interactions between atoms separated by a minimum of

three covalent bonds (i.e., 1, n and n> 3 interactions). Each

predicted interaction energy (between two atoms A and B) is

then compared to the original (i.e., not trained) interaction

energy obtained from the original (i.e., not kriged) atomic

multipole moments. Then the errors of all the aforemen-

tioned interactions within one molecular geometry are

summed. The absolute value of this summed error (for each

test geometry) will be plotted against percentile (i.e., % of

test geometries) to obtain a called S-curve. Each point on

such a curve corresponds to this final absolute error (i.e.,

|DEsystem|) in eq. (9)). The S-curve will be described later when

one is obtained. The complete description of errors just men-

tioned is expressed is eq. (9),

jDEsystemj5jEoriginal
system 2Epredicted

system j5
����X

AB

Eoriginal
AB 2

X
AB

Epredicted
AB

����
5

����X
AB

Eoriginal
AB 2Epredicted

AB

� ����� (9)
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PDB sampling method

PDB sampling is performed by the in-house (scripting) code

MOROS and is used to extract all seed geometries of a particu-

lar amino acid from a set of crystal structures. A list of the 260

PDB crystal structure codes sampled from is provided in Part A

of the Supporting Information. Hydrogen atoms were added

to all protein crystal structures using the HAAD code of Li

et al.[77] The HAAD algorithm was developed to add accurately

hydrogen atoms by analyzing the positions of nearby heavy

atoms, following the basic rules of orbital hybridization and

through optimization of steric and electrostatic parameters.

HAAD was found to outperform the popular software

CHARMM and REDUCE[78] with the RMSD of predicted hydro-

gen atom positions decreased by 26% and 11%, respectively,

when compared to high resolution X-ray and neutron diffrac-

tion structures. MOROS returns as output “capped” amino acids

meaning that H3CC(@O)A and AN(H)CH3 are appended at the

N and C termini of the sampled amino acid, respectively. These

atoms are included so that the peptide bonds remain intact,

and thereby yield a more realistic representation of an amino

acid while present in a protein. The capping groups are built by

extracting the atomic coordinates from the residues preceding

and following the residue of interest. Figure 1 shows the atoms

extracted by MOROS including the amino acid of interest (blue

box), and also atoms that make up the caps (red box).

In preparation for nonstationary NM treatment, the sampled

amino acid geometries are then allowed to partially geometry-relax,

that is under the restriction of fixed dihedral angles. This stage is

important as it removes some of the outlying bond lengths origi-

nally present due to the poor quality crystal structure resolution.

The next step in PDB sampling is to perform a frequency

calculation on each amino acid geometry, by first obtaining

the Hessian of the potential energy on that point of the sur-

face, for input for the non-stationary NM sampling of the

geometry. A choice must be made regarding the number of

PDB-sampled amino acid geometries to use as input for non-

stationary NM, as this choice influences the number of geome-

tries sampled using NM. This choice is investigated in Results

and Discussion section, and unless otherwise stated, 300 ran-

dom PDB-sampled amino acid geometries are input to the

nonstationary NM. The combined PDB and nonstationary NM

sampling method will henceforth be referred to as PDB/NM.

“Normal Modes” sampling

Typical normal mode analysis is conducted at an energetic

minimum (or stationary point) on the molecular potential

energy surface. However, the mathematics leading to NM does

not restrict their use only at stationary points. A simple gener-

alization of the derivation of the molecular NM enables their

evaluation at nonstationary points on the potential energy sur-

face. This derivation is provided in Part B of the Supporting

Information. In the following, we present a conformational

sampling methodology, which uses these “non-stationary point

normal modes” as a means for distorting a molecule, that is,

sample its configurations. By diagonalization of the mass-

weighted Hessian, H, the frequency of each of the Nvib 5 3N –

6 NM is evaluated. These Nvib NM are orthogonal and form a

complete basis within which internal molecular motions can

be described. With the mass-weighted force vector, F, a set of

Nvib harmonic equations of motion is obtained. These equa-

tions of motion allow us to distort the molecular geometries,

and perform a sampling of conformational space.

We now discuss the computational means utilized to obtain

the various parameters required to evolve the NM. This subse-

quently permits us to obtain a set of geometries we consider

representative of realistic vibrational states of a molecular sys-

tem. What follows is a brief paraphrase of the excellent explana-

tion given by Ochterski.[79] Beginning with the transformation

from the mass-weighted Cartesian coordinates, q, to the set of

Nvib internal coordinates, s, we construct the 3N33N transfor-

mation matrix, D, satisfying

s5Dq (10)

Outlining the construction of D is beyond the scope of this

article. Suffice to say that six orthonormal vectors occupy the

first six columns of D, and correspond to the global transla-

tional and rotational motions of the system (as given by the

Sayvetz conditions). The remaining Nvib vectors are generated

by means of a Gram–Schmidt orthonormalization procedure.

The mass-weighted force F and the mass-weighted Hessian

H, both outlined in Part B of the Supporting Information, are

transformed into the internal coordinate basis, by use of D

Fs5D Fq Hs5D>HqD (11)

where the subscripts denote the basis in which these quantities

are expressed and T denotes the transpose. To evaluate the fre-

quencies of the various modes of motion, we diagonalize Hs,

E-1HsE5Ik (12)

where E denote the eigenvectors of Hs and I is the identity

matrix. The resultant eigenvalues, Ikð Þii5ki , are related to the

mode frequencies, mi , by

mi5

ffiffiffiffiffiffiffiffiffiffiffiffi
ki

4p2c2

r
8i51; . . . ; 3N (13)

where c is a factor comprising the speed of light and the con-

version between atomic units and cm21. Of course, six of

these frequencies correspond to the global translational and

rotational degrees of freedom of the system, thus yielding Nvib

Figure 1. Diagrammatic representation of the atoms extracted by MOROS

including the target amino acid (blue box) and also the full set of atoms

including those used to make the peptide caps (red box).
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nonzero frequencies. The reduced masses and force constants,

corresponding to the modes with nonvanishing frequency, are

given by similar manipulations of these quantities. The reader

is again directed to Ochterski[79] for a discussion of their

calculation.

The amplitude of the ith mode, Ai , is given by rearrange-

ment of the familiar expression for the energy of a simple har-

monic oscillator

Ai5

ffiffiffiffiffi
2E

ki

r
(14)

where ki is the force constant of the mode of motion, and E is

the energy available to it. We now have all quantities required

to evolve the modes of motion and replicate the vibrational

dynamics of the system. The total energy available to the sys-

tem is given by the expression for thermal energy, E5NvibkT=2,

and is stochastically distributed throughout the modes. A tem-

perature of 298 K was used throughout this work. The phase

factors of the modes, /, are also randomly assigned: if /50 for

all modes, then they oscillate in unison, which is physically

unrealistic. Instead, we assume the modes to resonate out of

phase with one another, as energy transfer to each mode from

an external heat bath will be strongly decoherent.

Let us note that the average thermal energy available to

each mode will comply with a standard equipartition of

energy for a physically realistic sampling methodology. The

energy available to each mode is then subjected to small sto-

chastic fluctuations. However, one deduces from the above

description of our own methodology that we did not follow

the route of equipartition. The driving force for this decision

was to increase the domain of conformational space, which is

then accessible to our sampling methodology. As explained

above, we have chosen to distribute the total thermal energy

stochastically through all modes. Given a standard equiparti-

tion of thermal energy, the ith mode, qi, is limited to the

domain qi
0 2 Ai/2� qi� qi

0 1 Ai/2, where qi
0 is the reference

state of the mode and Ai is given in eq. (14). However, by sto-

chastically distributing the thermal energy through the modes,

the energy available to the ith mode, Ei, can then take any

value in the range 0 � Ei� nkBT/2, as long as the sum of the

Ei is nkBT/2. In this sense the currently applied methodology is

more general than that of the equipartition. If Ei takes the

value of kBT/2 for all modes, then the sampling domain coin-

cides with the sampling domain of a standard equipartition of

energy. However, all other combinations of the Ei have differ-

ent sampling domains. The sampling domain that is accessible

to our stochastic distribution of thermal energy through the

modes is then the union of all sampling domains that arise

from all possible combinations of the Ei. We therefore obtain

the largest sampling domain possible for our methodology,

which is necessary for the construction of a widely applicable

kriging model.

Two issues arise with stochastically distributing the thermal

energy through the modes, one methodological and one con-

ceptual. The methodological concern is that there is a non-

negligible probability for a significant proportion of the avail-

able thermal energy being placed into one mode. If this mode

is strongly linked to the motion of a bond length or valence

angle, then there is the potential for sampling nonphysical

geometries. We have implemented a filtering procedure that

prevents the output of such nonphysical geometries. Consider

a bond between atoms A and B, of length ‘AB, within a seed

geometry. If ‘AB exceeds a value of kBOND multiplied by the

sum of the atomic covalent radii, (rA 1 rB), then the geometry

is considered nonphysical and rejected. Similarly, if ‘AB is lower

than the inverse of kBOND multiplied by the sum of the atomic

covalent radii, the bond is considered too short and rejected.

In other words, every bond length must obey the inequality

(1/kBOND)(rA 1 rB) � ‘AB � kBOND(rA1 rB). Valence angles

undergo a similar treatment, so that given any valence angle

of the seed geometry, a0, the corresponding valence angle of

the sampled geometry, a, must obey the inequality a0/kANGLE �
a � kANGLEa0. In the following work, the “stretching” parameters,

kBOND and kANGLE, were both set to 1.20. The conceptual con-

cern that we mentioned is that distributing the thermal energy

stochastically throughout the modes is nonphysical in terms of

equilibrium thermodynamics. For our purposes we are more

interested in sufficiently large sampling domain.

The sole remaining issue is the choice of a dynamical time

step with which to evolve the various modes of motion. We

ensure that a single oscillation of a mode is sampled uni-

formly. In other words, for a complete cycle of the ith har-

monic equation of motion, the time period of the mode is

Ti51=mi . A parameter, ncycle, defines the number points to be

evaluated along a single cycle of the harmonic equation of

motion. From this, we define the quantity Dti5Ti=ncycle, which

is the dynamical timestep for the equation of motion. The

quantity ncycle is left as a user-defined input, and is set to

ncycle = 10 from now on. Additionally, the distribution of the

total energy throughout the modes is considered a dynamic

quantity, and so for every nreset samples that are output, the

energy is randomly redistributed throughout the system. The

phase factors are also redefined at the same frequency. Again,

nreset is left as a user-defined parameter, and is set as nreset5 2

in the following. A further justification for the way we sample

is given in Part C of the Supporting Information.

Computational details

Sampling of amino acids from the crystal structures was per-

formed by the in-house code MOROS while the in-house FOR-

TRAN code TYCHE distorted the geometries according to NM.

The fully automated GAIA code (formerly named AUTOLINE in

previous work) was used to build the training and test sets of

molecular geometries (Fig. 2). An expanded flow chart of the

GAIA procedure is given by Fletcher et al.[24] Once the sampled

amino acid geometries were obtained from either PDB/NM or

NM, the molecular wave function for each geometry was

obtained at the B3LYP/aug-cc-pVDZ level using GAUSSIAN09.[80]

The FORTRAN program AIMAll[81] obtained the atomic multipole

moments. The parameters briaq 5 auto and boaq 5 high, which

are standard in GAIA, because boaq 5 high has been seen in the

past as a good compromise between accuracy and speed.
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Kriging models were built and then tested using the in-house

codes FEREBUS and NYX, respectively. All kriging models were

built using Ntrain 5 1000 training geometries and were tested on

400 randomly selected geometries from the remaining 1000.

Experience has shown that kriging models deteriorate in predic-

tion quality as the standard integration error (i.e., the familiar

Lagrangian L of atom X or L(X)) increases. Hence it is best to set

L(X) as low as possible but this norm causes an increasing num-

ber of integrations to have to be discarded. A good compromise

is allowing a maximum integration error of L(X)=0.001 a.u. This

value was enforced throughout this work, which keeps the num-

ber of discarded atoms reasonable but not nil, explaining the

surplus of sampled geometries at the outset.

Results and Discussion

Kriging models were built for the two amino acids alanine

(Ala) and lysine (Lys) using geometries sampled from four dif-

ferent sampling approaches: PDB_NO_OPT, PDB_OPT, NM and

PDB/NM. These four methods are described in Table 1.

Alanine was chosen because it is the smallest amino acid

with a (nontrivial) side chain. Because there is only one side

chain dihedral angle (v1), as opposed to the four dihedral

angles (v1, v2, v3, v4) controlling the side chain of lysine, the /
and w angles dominate the dihedral motion of alanine. Lysine

has the most flexible side chain of all 20 naturally occurring

amino acids, and therefore has been chosen as a rigorous test

of the performance of kriging when dealing with highly flexi-

ble molecules. Figure 3 shows the four side chain dihedrals in

lysine around CAC bonds or v1, v2, v3, and v4.

Testing the PDB/NM sampling approach

Kriging models were built for the amino acids Ala and Lys

using the four sampling strategies defined in Table 1. Rama-

chandran plots for the sampled alanine geometries by each of

the sampling methods are shown in Figure 4. The dihedral

angles are fixed to the same values in both the PDB_OPT and

PDB_NO_OPT approach, which is why Figure 4 assigns the

same color (blue) to the distribution of w and / angles of their

geometries. As expected, the PDB-sampled Ramachandran

plots for both Ala and Lys display a sampling bias toward the

a-helix and b-sheet regions with additional clusters of geome-

tries in the left-handed helix region. The green Ramachandran

plots display the sampled geometries obtained by the NM

method. A number of islands of geometries around the gas-

phase energy minima are observed. Several islands are clearly

disconnected but some may overlap, such as the long island

in lysine (bottom box) at the bottom right of the whole cluster

of islands. Because there are regions of conformational space

populated by the PDB sampling approaches but not the NM

approach, we conclude here that NM sampling from gas phase

energy minima is inadequate for building kriging models to

be used in biomolecular simulation. This is most noticeable in

the case of Lys, where the NM Ramachandran plot appears

sparsely populated compared to both the other sampling

methods and the Ala NM Ramachandran plot. This is because

the side chain of lysine is very flexible, and for each of the

nine actual islands in the Ramachandran plot, there are multi-

ple overlapping energy minima with different side chain con-

formations. This explains why the 39 input minima only

Figure 2. The fully automated GAIA protocol followed to obtain and to

test kriging models.

Table 1. An overview of the four sampling approaches.

PDB_OPT Molecular geometries sampled directly from crys-

tal structure coordinates and H atoms added by

the HAAD program. GAUSSIAN fully optimizes

bond lengths and valence angles but all dihe-

dral angles remain fixed.

PDB_NO_OPT Molecular geometries taken directly from PDB

coordinates and H atoms added by HAAD.

Single-point GAUSSIAN calculations without any

geometry relaxation.

NM Standard NM sampling procedure using TYCHE to

sample molecular geometries from a number of

local energy minima in the gas phase. The local

energy minima themselves are not included in

either training or test sets.

PDB/NM 300 randomly selected PDB “seed geometries”

sampled with PDB_OPT, each acquiring 7 geo-

metries generated from the nonstationary NM.

The “seed geometries” themselves are not

included in either training or test sets.

Figure 3. The four dihedral angles in the side chain of Lys, referred to as v1

(blue), v2 (red), v3 (green), and v4 (purple). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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appear as nine islands on the Ramachandran. The orange

Ramachandran plots, containing the Ala and Lys geometries

sampled by the PDB/NM approach, strongly resemble the

plots of both PDB_OPT (blue) and PDB_NO_OPT (blue) but

with fewer points in regions away from the a-helix and b-sheet

region. This is because the 300 “seed” geometries used as

input for the NM sampling were randomly selected from the

PDB_OPT sampled geometries and, statistically, they are most

likely to be sampled from these well populated a-helix and

b-sheet regions. The benefit of PDB/NM (orange) is that, on

top of realistic distributions of dihedral angles, bond lengths

and angles are more realistic and they are both varied.

Figure 5 shows so-called spider plots of the side chain dihe-

dral angles sampled by each of the sampling approaches. In a

spider plot, each of the four axes (meeting at the origin) corre-

sponds to all values that each of the four side chain dihedrals

vn (n 5 1, 2, 3, or 4) can adopt, that is, from 21808 to 1808.

Each sampled geometry then corresponds to a quadruplet of

dihedral values (v1, v2, v3, v4), each marked by a point on each

of the four corresponding axes. These four points are then

linked by four colored lines, which form a (typically lozenge-

like) pattern. From the density of these patterns one obtains

an instant glimpse of the conformational diversity (or lack

thereof ) of the side chain geometries.

Clearly, the NM sampling approach (green) samples a very

limited range of side chain geometries and does not return

the regions of high sampling frequency obtained by the

PDB_OPT and PDB_NO_OPT (blue) approaches. For example,

the gauche2 (2608) conformation of v1 is the most sampled

conformation in the protein crystal structures but this confor-

mation is not at all present in NM. The preference of v1 to be

in the gauche2 conformation in proteins is a well-documented

Figure 4. Ramachandran plots of Ala (top box) and Lys (bottom box) sampled using PDB_OPT and PDB_NO_OPT (blue), NM (green), and PDB/NM (orange).

In the bottom right panel of the top box is a guide to the regions corresponding to the secondary structural motifs, b-sheet (labeled b), a-helix (labeled

a), and left-handed alpha helix (labeled LH). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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phenomenon[35] and thus NM sampling’s shortcomings are

highlighted. The PDB/NM spider plot (orange) shows a better

sampling of side chain dihedral angles than that of NM. How-

ever, the former shows a sparser sampling of the less popu-

lated combinations of dihedral angles compared to PDB_OPT

and PDB_NO_OPT (blue).

Table 2 presents a summary of the relative performance of

each sampling approach and the resulting kriging model accu-

racy for both amino acids. The range in the B3LYP/aug-cc-

pVDZ energy of the Ala and Lys geometries sampled by each

of the four methods is also included in Table 2. For both

amino acids the NM sampled geometries show the smallest

range in ab initio energy. This is because the NM sampling

method uses the lowest energy gas phase conformations as

the input minima, and hence all sampled geometries from this

method are distortions of these low energy geometries. There-

fore, large deviations from the various energy minima cannot

occur because the distorted geometries are confined by their

respective well. This situation is different to that found in PDB

geometries. Here, the lysine geometries sampled by the PDB/

NM method have the largest range in ab initio energy, 421 kJ

mol21, which is much larger than found in any other sampling

approach. This is expected as the PDB/NM geometries

undergo substantial dihedral sampling, as well as bond length

and angle distortions caused by the nonstationary NM

sampling.

Table 2 also lists the average bond length range for all

bonded atom pairs in the sampled Ala and Lys geometries,

calculated for each sampling method. For both Ala and Lys,

PDB_OPT yields the lowest average bond length range, 0.02 Å,

due to the relaxation of the bonds to their optimal lengths

(and obviously no bond length variation is introduced by NM).

The average bond length ranges of 0.07 Å and 0.08 Å for

PDB_NO_OPT Ala and Lys, respectively, are the next lowest val-

ues. The reason for the low average bond length range of the

PDB_NO_OPT geometries is that the hydrogen addition soft-

ware used, HAAD, add hydrogens at a fixed length of 0.985 Å.

Therefore, the average range in bond length is reduced by all

bonds containing a hydrogen atom. A more informative metric

to describe the sampling of bond lengths by each method is

to study the range of a single bond containing two heavy

atoms. The bond between Ca and Cb was chosen for this pur-

pose. Again, the PDB_OPT showed the lowest ranges of 0.03

and 0.05 Å, respectively, but the PDB_NO_OPT Ala geometries

showed the highest range in CaACb distance of 0.22 Å as

expected. NM and PDB/NM showed the same range in CaACb

bond length of 0.14 Å. This highlights the similarity of both

the stationary and nonstationary NM sampling algorithms in

TYCHE.

Kriging models were built for both Ala and Lys using 1000

molecular geometries obtained from each of the four sampling

approaches and were tested on 400 previously unseen (i.e.,

external and not trained for) molecular geometries obtained

by the corresponding sampling approach. For example, kriging

models built using geometries sampled using the PDB_NO_OPT

method were tested on PDB_NO_OPT geometries, PDB/NM

kriging models were tested on PDB/NM geometries, etc. Figure

6 shows the S-curves for all four sampling methods. As an

example of how to read such an S-curve: 88% of geometries in

the external test set for alanine’s PDB_NO_OPT kriging models

(top, red curve) have an error of maximum 4 kJ mol21 (or 1

kcal mol21) (where the red curve intersects the purple dashed

line). The more the S-curve is situated at the left of the plot,

Table 2. Statistical information detailing the sampling of Ala and Lys by

the four sampling methods.

PDB_OPT PDB_NO_OPT NM

PDB/

NM

Alanine

Range in ab initio Energy 132.5 281.0 84.4 111.0

Average Bond

Length Range[a]
0.02 0.07 0.11 0.12

CaACb Bond Length Range 0.03 0.22 0.14 0.14

Average jDEsystemj[b] 0.7 1.8 4.0 3.4

Average jEoriginal
AB 2Epredicted

AB j 0.1 0.2 0.4 0.4

Max jDEsystemj 6.8 25.8 18.4 17.2

Max jEoriginal
AB 2Epredicted

AB j 10.0 9.4 13.7 9.4

Lysine

Range in ab initio Energy 126.0 310.6 111.1 420.9

Average Bond

Length Range[a]
0.02 0.08 0.13 0.14

CaACb Bond Length Range 0.05 0.12 0.13 0.13

Average jDEsystemj 1.6 2.5 3.3 3.8

Average jEoriginal
AB 2Epredicted

AB j 0.2 0.3 0.3 0.4

Max jDEsystemj 20.4 23.1 15.2 18.1

Max jEoriginal
AB 2Epredicted

AB j 32.5 34.2 7.1 28.4

All energies are in kJ mol21 and all distances in Å. [a] The set of train-

ing geometries provides a range (i.e., maximum–minimum) for each

bond length. The ranges of all bonds appearing in the system are then

averaged (over these bonds). [b] The symbols referring to all energetic

quantities (except the range) in this table also appear in eq. (9).

Figure 5. Spider plots displaying the Lys side chain conformations sampled by each of the four sampling approaches: PDB_OPT and PDB_NO_OPT (blue), NM

(green), and PDB/NM (orange). Each axis ranges from 21808 to 1808. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the more accurate the model that it describes. The error dis-

played by an S-curve corresponds to that given by eq. (9), that

is,

����P
A;B

Eoriginal
AB 2Epredicted

AB

����. As such, each point on an S-curve cor-

responds to the absolute value of the sum of the errors of all

predicted Coulombic interactions between pairs of atoms in

one test molecular geometry, relative to the original interaction

energies. This value is referred to as both the “total absolute

error” and also the “S-curve error.”

In connection with the information shown in Figure 6, note

that Table 2 also reports the average absolute total error and

the highest total error for each S-curve. The alanine models

built using PDB_OPT geometries (blue curve) had the lowest

average error of 0.7 kJ mol21. This is attributable to the lack of

bond length and angle variation in the training and test sets

and so the kriging problem is “less challenging” as there are

fewer dimensions of conformational space being sampled. The

second left-most S-curve corresponds to the predictions made

using the models built using PDB_NO_OPT geometries (red

curve). This is most likely a result of the lack of bond length

variation of all hydrogen-containing bonds. However, the

PDB_NO_OPT does have the highest maximum total error of

all sampling approaches, amounting to 25.8 kJ mol21, despite

the low average error. This is attributable to an alanine residue

extracted from a crystal structure with a significantly stretched

CaACb bond length and the HaACaACb angle of 1158, which is

significantly distorted from the stationary value of �1088. This

fact illustrates the unsuitability of sampling amino acid geome-

tries directly from crystal structures for QCTFF development,

and emphasizes the need for a PDB/NM hybrid sampling

approach. The kriging models obtained from the PDB/NM and

NM sampled geometries perform worst overall, which is due

to the large quantity of bond length sampling relative to the

PDB_OPT and PDB_NO_OPT approaches. Despite being the

S-curves furthest to the right, PDB/NM and NM have average

S-curve errors of only 3.4 and 4.0 kJ mol21, respectively. More

than 60% of the test geometries of alanine were predicted by

kriging models with an error of less than 1 kcal mol21, a value

often described as “chemical accuracy.”

It is interesting to note that the dihedral sampling appears

to have less effect on the difficulty of the kriging problem

than well-sampled bond lengths. Figure 7 plots the average

bond length range against average total (S-curve) error for all

four sampling approaches for Ala. The correlation between

bond length and average S-curve error ( 1
Ntrain

PNtrain

i51 jDEi;systemj)
is fairly strong, with an R2 value of 0.90 (see Fig. 7). To illus-

trate this point further, the difference in average total error

(S-curve error or |DEsystem|) between PDB/NM and NM is 0.6

kJ mol21 (see Table 2), although the PDB/NM approach sam-

ples a much larger range of dihedral conformational space

than NM. In contrast to this, PDB_OPT, which has a much

larger sampling of dihedral space than NM but also the small-

est average range of bond lengths, has an average total error

3.3 kJ mol21 lower than that of NM. This observation is a

result of the following effect. Under the assumption of an

identical dihedral sampling (as is the case for PDB_NO_OPT

and PDB_OPT), increasing the range of bond lengths

increases the volume of configurational space that the krig-

ing models have to describe. This increase results in a more

difficult kriging problem leading to increased prediction

errors. It also is observed that changing a bond length has a

dominant effect on the multipole moments of the atoms

involved. This is illustrated in Supporting Information Figures

S1–S3 where plots of Ca charge against both NACa bond

length and backbone w angle are provided for the Ala geo-

metries sampled by the PDB/NM, PDB_OPT and NM

approaches, respectively. In both the PDB/NM and NM

sampled plots, the Ca charge shows correlation with the

NACa bond length but not with the w angle. It is only in

the plots obtained from the PDB_OPT geometries (where the

NACa bond length range is significantly reduced as a result

of partial geometry relaxation) that any correlation between

Ca charge and w can be seen. In summary, the correlation

Figure 6. Errors in the predicted total electrostatic interaction energies (1–

4 and higher) of alanine (top) and lysine (bottom) for kriging models

trained with molecular geometries obtained by: PDB_OPT (blue),

PDB_NO_OPT (red), NM (green), and PDB/NM (orange). The dashed purple

lines mark the 1 kcal mol21 threshold. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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patterns above prove the dominance of bond length varia-

tion over dihedral sampling in posing a challenge to kriging.

The same conclusions may be drawn from the Lys S-curves

as from the Ala S-curves: average bond length deviation is the

most import factor dictating the average S-curve error (Fig. 7),

and although larger dihedral sampling increases the average

error, it does this to a lesser extent than a large average bond

length deviation. PDB_OPT has the lowest average S-curve

error (Lys: 1.6 kJ mol21 and Ala: 0.7 kJ mol21) due to the opti-

mized bond lengths having the lowest average deviation

(0.02 Å for both ALa and Lys). The PDB/NM S-curve has the high-

est average error due to having the largest average bond length

deviation and also a large dihedral sampling. PDB_NO_OPT has

the largest maximum S-curve error but, unlike the high error

PDB_NO_OPT point on the Ala S-curve, there is no clear struc-

tural reason behind the highest energy geometry. This could

indicate that the geometry lies outside of the configurational

space of the training set. The overall shape of an S-curve may be

related to the quality of the test geometries and the range of

conformational space. For example, the NM S-curve (green) is

steep with only a small bend at the top. This is a result of the

relatively small set of seed geometries causing the sampled geo-

metries to be clustered close together. Therefore all test geome-

tries are close to a training geometry within the kriging model

and the errors remain constant throughout. In contrast, the

PDB_NO_OPT (red) geometries are not clustered together and

therefore the test geometries can be further away from the near-

est training set geometry leading to larger errors. This gives rise

Figure 7. Average bond length deviation against average total (S-curve) error for the different sampling approaches of Ala (left) and Lys (right): PDB_OPT

(blue), PDB_NO_OPT (red), NM (green), and PDB/NM (orange). All data taken from Table 2. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 8. Individual intramolecular interaction prediction errors in Ala against interaction distance obtained for models built using the four sampling

approaches: PDB_OPT (blue), PDB_NO_OPT (red), NM (green), and PDB/NM (orange). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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to the less steep climb of this S-curve and its longer tail toward

the 100% ceiling.

Each point on the S-curve is a sum of all 1,4 and higher

intramolecular interaction prediction errors within a single test

geometry (j
P

ABðE
original
AB 2Epredicted

AB Þj from eq. (9)). Because of

the sum, potential cancellation of positive and negative inter-

action errors is included within the S-curve. To increase the

transparency of the results we now focus on the construction

of the S-curve. Figure 8 shows all interaction errors for all Ala

test geometries plotted against interaction distance for each

sampling approach. The maximum absolute interaction error

(max jEoriginal
AB 2Epredicted

AB jÞ and average absolute interaction

error (average jEoriginal
AB 2Epredicted

AB j) for each approach is included

in Table 2. Supporting Information Figure S4 shows a plot anal-

ogous to Figure 8 but for the sampled Lys geometries. The

average absolute interaction errors follow the same trend as the

total S-curve error (PDB/NM � NM> PDB_NO_OPT> PDB_OPT).

For all sampling approaches used, the largest average absolute

interaction error was only 0.4 kJ mol21 (NM and PDB/NM

sampled geometries). The correlation between average absolute

interaction error and total error is very high with an R2 of 0.97

for Ala and 0.99 for Lys. The plots of the average interaction

prediction error versus the total error can be seen in Supporting

Information Figure S5.

The standard deviation of the interaction errors for each

method is provided in Table 3 for both Ala and Lys. Both

PDB_OPT and PDB_NO_OPT have significantly larger standard

deviations for Lys (0.5 kJ mol21 and 0.8 kJ mol21, respectively)

than for Ala (0.2 kJ mol21 and 0.4 kJ mol21, respectively) as is

expected by comparison of the blue and green plots in Fig-

ures 8 and Supporting Information S4. The PDB/NM interac-

tions in Lys also have a larger standard deviation (0.7 kJ

mol21) than the PDB_NM interactions in Ala (0.6 kJ mol21).

Larger standard deviations emerge for Lys because it is a

larger, more flexible molecule than Ala and so the kriging

problem for PDB sampled geometries is much harder. Thus

the kriging model is unable to find as good a solution for Lys

than for Ala.

Optimum ratio of input geometries to sampled geometries

for the PDB/NM sampling approach

The hybrid PDB/NM sampling approach has been presented as

a means of sampling chemically relevant amino acid geome-

tries for kriging models, taking advantage of the benefits

afforded by both PDB and NM sampling whilst avoiding the

problems associated with either method. The ratio (denoted

1:n) of PDB-seed geometries (set to 1) to nonstationary NM

sampled geometries (set to n) will now be discussed. The max-

imum dihedral sampling corresponds to a 1:1 ratio of PDB

sampled “seed geometries” to NM sampled geometries. How-

ever, this ratio is computationally expensive because each

PDB-sampled amino acid seed geometry then needs to be par-

tially geometry-relaxed. Conversely, a ratio smaller than 1:1

(i.e., 1:n where n>1) requires fewer geometry optimizations,

but decreases the sampling of (dihedral) conformational space.

A smaller number of sampled geometries per PDB-seed geom-

etry will also affect the difficulty of the kriging problem as the

sampling of conformational space will increase (assuming a

constant training set size).

Training sets have been built, using the PDB/NM sampling

approach, for ratios of seed geometries to NM-sampled geo-

metries of 1:20, 1:10, 1:4, 1:2, and 1:1, always with a total of

1200 NM-sampled geometries in each case. These geometries

were randomly reshuffled and then kriging models were built

using 800 training geometries, and were tested on 400 (exter-

nal) geometries.

Table 3. Standard deviation of interaction prediction errors for both Ala

and Lys from kriging models built from geometries sampled from the

four sampling approaches (kJ mol21).

Sampling Ala Lys

PDB_OPT 0.2 0.5

PDB_NO_OPT 0.4 0.8

NM 0.7 0.5

PDB/NM 0.6 0.7

Figure 9. Errors in the predicted total 1–4 and higher electrostatic interac-

tion energies of lysine by kriging models trained with molecular geome-

tries obtained by the PDB/NM approach with different numbers of PDB-

seed geometries (see key on graph, 1200 corresponds to the 1:1 ratio in

the main text). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 10. Average total error versus the number of PDB seed geometries

for kriging models of lysine obtained from the PDB/NM sampling method-

ology. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 9 shows the total energy S-curve obtained for each

training set. Increasing the number of PDB-seed geometries

does not significantly reduce the quality of the kriging model

obtained. The average values of the S-curve energies have

been plotted against the number of input minima in Figure

10. There is a trend for a larger number of PDB-seed geome-

tries to have a higher average S-curve error, but not dramati-

cally so. The range of errors is only �0.6 kJ mol21, between a

1:20 ratio of PDB-seed geometries to sampled geometries

(average error of 3.8 kJ mol21) and a 1:1 ratio (average error

of 4.4 kJ mol21).

Conclusions

The topological force field QCTFF contains a machine learning

component that handles polarization and charge transfer (in a

unified way). The machine learning method used, called krig-

ing, needs a data set of molecular geometries to train on.

Here we focus on obtaining a more realistic and relevant train-

ing set for amino acids. Before the current study, we sampled

the training set by distorting the local energy minima of

(peptide-capped) amino acids (in the gas phase) according to

NM obtained at those stationary points. Using the Protein

Data Bank (PDB) we show here that these gas phase stationary

points miss a number of important amino acid geometries

that are present in a folded protein.

We present a new sampling approach that combines sam-

pling of amino acid geometries from the Protein Data Bank

(PDB) with nonstationary NM (NM) distortion. To the best of

our knowledge the latter technique has not been attempted

before. This hybrid approach is called PDB/NM and is tested

on alanine and lysine, the most flexible amino acid of all. The

use of the PDB greatly expands the sampling in the space of

dihedral angles, both in range and density. Does this expan-

sion lead to worse kriging models, given the larger variation

and diversity in dihedral angles? The answer is negative

because it turns out that the range in bond lengths is actually

the prime factor in determining the difficulty and hence the

predictive accuracy of the kriging models. As a result, the new

PDB/NM sampling method (which is more “informed”) per-

forms as well as the original “gas phase energy minimum” NM

sampling. All kriging models lead to very good electrostatic

energy prediction errors where more than 60% of external test

geometries have a value of less than 4 kJ mol21. Within the

PDB/NM paradigm, the quality of the kriging models is not

compromised much even if the training set consists of PDB-

sampled geometries only, which corresponds to maximum

coverage of conformational space. In summary, the good news

is that realistic dihedral angles can safely be combined with

realistic bond lengths and angles into a single successful krig-

ing model.

Further work utilizing rotamer libraries to guide the con-

struction of training sets is planned to create training sets that

do not depend on the crystal structures sampled from, but still

mimic the structures expected in real proteins.

Keywords: quantum theory of atoms in molecules � quantum

chemical topology � conformational sampling � kriging � electro-

statics � protein data bank
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