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Artificial Intelligence has shown paradigmatic success in defeating world champions

in strategy games. However, the same programming tactics are not a reasonable

approach to creative and ostensibly emotional artistic endeavors such as music

composition. Here we review key examples of current creative music generating AIs,

noting both their progress and limitations. We propose that these limitations are rooted

in current AIs lack of thoroughly embodied, interoceptive processes associated with

the emotional component of music perception and production. We examine some

current music-generating machines that appear to be minimally addressing this issue

by appealing to something akin to interoceptive processes. To conclude, we argue that

a successful music-making AI requires both the generative capacities at which current

AIs are constantly progressing, and thoroughly embodied, interoceptive processes which

more closely resemble the processes underlying human emotions.
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1. INTRODUCTION

In the race to build increasingly autonomous–perhaps even conscious–machines, focus onmachine
learning and machine intelligence is on the rise. Paradigmatic AI successes in games such as chess
and Go have relied heavily on computational processes that occur primarily “in the head” of
game-playing agents. 4E (embodied, embedded, enactive, extended) approaches to cognition are
increasingly demonstrating the importance of cognitive processes which extend beyond such rule-
based symbol manipulation, and into the bodies and external environments of cognitive agents.
The next great frontier for autonomous intelligent systems is human creativity and art. Specifically,
an art form that encapsulates the tenets of 4E cognition and places an emphasis on the agent’s
interaction with their social environment, as well as their external and internal milieu: music.
Numerous music-making AIs have been created in attempts to simulate, understand, or replicate
the process of human creativity in musical composition using artificial neural networks, such as
Google’s Magenta, Cambridge University’s BachBot, or Sony CSL’s Flow Composer.

There are practical reasons that computers have difficulty performing creative tasks as
successfully as strategic tasks, due to both mathematical complexity and a deep connection with
emotional processing in human music-making. These emotional processes have roots in bodily,
physiological, and autonomic states in the performer and the listener. We draw on theories that
emphasize thoroughly embodied, interoceptive processes rooted in the prediction and regulation
of internal physiological processes as part of the mechanism of human emotion (Seth and Friston,
2016), and extend these theories to musical perception and production (Proksch, 2018). If these
bodily processes are crucial to creative musical success, then AIs will need such mechanisms
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(or analogues to them) in order to create authentic music. We
argue that generative music AIs must experience, or robustly
simulate, something akin to the interoceptive processes that
underlie emotional states.

2. ARTIFICIAL INTELLIGENCE: DEFEATING

CHAMPIONS, APPROXIMATING MUSIC

2.1. AI Successes: Defeating Champions
2.1.1. DeepBlue and AlphaGo
If AI Success is measured in terms of the ability to equal (or
outperform) expert human counterparts, then IBM’s Deep Blue
and Google’s AlphaGo are paradigmatic successes. DeepBlue beat
Gary Kasparov in 1997 by mapping every possible combination
of moves it could make, up to the next six moves, according to
a set of pre-programmed rules and evaluations established with
the help of expert chess players (Campbell, 1998). Nearly 20 years
later, AlphaGo beat Lee Sedol, the world champion of the strategy
game “Go.”

DeepBlue and AlphaGo both used a directed graph, called
a game tree, which represents possible moves and positions
for multiple sequences of game play. A complete game-tree
for chess would contain 10120 moves (already more than the
number of atoms in the universe, 1080), and a game-tree for
Go would massively exceed this number. Before AlphaGo, most
Go AIs achieved this computational feat by using a technique
called Monte Carlo Tree Search. Instead of looking through
pre-programmed mappings of every possible combination of
moves from a current state, the AI stores only the rules, and
runs multiple simulations extending from the current state until
any winning state, re-running this simulation for every move.
AlphaGo used machine learning combined with policy and
value (neural) networks to determine the move with the highest
likelihood of a win, in combination with simulative tree-search
methods (Silver et al., 2016). Using a variety of methods, strategy
game AIs have achieved expert-level success. Given AI successes
at strategy games, one might wonder if these techniques extend
to creative (albeit rule-based) endeavors such as music-making.
Could this strategy work for music? Music composition has far
more possibilities at each decision-point than chess or Go, and
does not have rules in the same sense of options being forbidden
and thus eliminated (many of our most beloved songs break a
supposed “rule” of composition; Cochrane, 2000), nor success or
failure states that end the exercise early.

It is impractical to even store a “tree” of all possible musical
sequences of any reasonable length, let alone to encode any
information about their aesthetic viability. A song might range
across two or more octaves, each with twelve notes and 60
possible chords for each instrument part, plus differences in
rhythm, tempo, orchestration, to say nothing of going beyond the
traditional Western paradigm, e.g., including quarter-tones. We
need a shortcut. Current music-making AIs have attempted to
achieve this shortcut in ways similar to AlphaGo, using recurrent
neural networks with value programmed as the probabilistic
likelihood of the next note, given the structural information of
the previous notes in terms of rhythm, pitch, etc. These AIs have

produced promising results (as we shall see) but the evidence is
growing that there is a limit to what can be accomplished with
probabilistic structural data of the musical input alone.

2.2. AI Works in Progress: Approximating

Music
Music-generating AIs work primarily by learning patterns in the
structural information-pitch, rhythm, harmony, etc. of a set of
musical training data. After training, the AI is provided with
a set of rules and some form of starting cue from which it
generates a piece of music. There are many different methods
one can use to create a music generating AI, reviewed in detail
in Carnovalini and Rodà (2020). Here, we will focus on three
examples of generative AIs which learn from musical training
input to probabilistically generate musical compositions.

2.2.1. Magenta
Magenta is a far-reaching Google project that seeks to determine
whether machine learning can be used to create “compelling art
and music”1. Magenta’s early music compositions used Recurrent
Neural Networks (RNNs), which work by learning a probability
distribution of possible inputs given previous data, in order to
predict the next input. After a series of training data, the RNN can
now generate its own output using the same probabilistic rules.
Magenta is trained on thousands of monophonic (single note
at a time) melodies, from which it learns the rules and style of
those melodies, and develops probabilistic models which it uses
to generate new monophonic melodies on its own.

The result, in Magenta’s first ever composition in June 2016,
was a fairly impressive, albeit simplistic composition, reminiscent
of a standard theme and variations2. Just under one and one-
half minutes long, it begins with a simple but clear motif set to
a repeating eighth-note and quarter-note rhythm, which repeats
first verbatim, then again with a bit of clumsy ornamentation,
before entering a “creative” development section introducing
some awkward new rhythms. The piece returns to the original
motif, before ultimately and abruptly stopping mid-phrase with
no clear conclusion.

This abrupt ending occurs because, unlike in a human
composition, many music-making AIs thus far have no concept
of a musical “narrative arc” with conclusive resolutions. Instead,
they will tend to “wander around” their music-making process
unless a human programs it to stop at a certain point.
Much of Magenta’s work thus far has dealt with monophonic
compositions, generating a single note at a time3. This contrasts
with the next examples that use multiple streams of notes.

1Magenta is an open source project from the Google Brain team.Source code and

updates can be found at: https://github.com/tensorflow/magenta.
2To listen to Magenta’s first composition: https://www.youtube.com/watch?v=lht-

emTioLw.
3There has been improvement in establishing a narrative structure by

implementing hierarchical models such as MusicVAE. MusicVAE implements a

variational autoencoder consisting of a bidirectional LSTM network and a novel

hierarchical RNN decoder. This allows for generation of music sequences with

a more coherent long-term structure. Listen to MusicVAE at: https://magenta.

tensorflow.org/music-vae.
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2.2.2. BachBot
At first listen, BachBot’s4 compositions are much more
impressive than the debut single-note melody from the Magenta
Project. BachBot also uses Long-Short Term Memory (LSTM)
RNNs, and is trained specifically on Bach chorales. Unlike
Magenta, its training input is homophonic, or chordal, with a
series of simultaneous pitches (chords) organized as melody plus
harmony, all composed by J.S. Bach. Like Magenta, BachBot
used its probabilistic models of which chords should come next
to generate new pieces (here in the style of Bach chorales)
on its own. The music created by this AI is much more
sophisticated than the melodic-play generated by Magenta, and
to the untrained ear is virtually indistinguishable from that
composed by Bach himself5.

Unlike Magenta’s rough approximation of a theme and
variations, these chorales follow a cadential structure with well-
organized phrases6. Instead of awkwardly-placed ornaments,
BachBot’s chorales contain purposeful passing tones within a
stable rhythmic structure. However, while impressive, BachBot
suffers some of the same problems as Magenta. Unless Bachbot is
given at least one line of a chorale (or a melody) to harmonize
over, it will suffer the same “wandering” fate as Magenta’s
compositions. It maintains its semblance of structure because a
human provides it with a prescribed line of notes, which then
constrains its output and leads BachBot through a structured
journey of composition.

2.2.3. Flow Composer (Paris, Sony Computer Science

Laboratories, ERC Funded Project
The even more impressive Flow Composer7 was created to
produce pop songs. Rather than LSTM’s, Flow Composer uses
Markov constraints. This solves the “wandering” problem faced
by both Magenta and Bachbot by generating finite-length
sequences, and similar to Bachbot it generates these sequences in
accordance with a given composer-style, or genre of music. Flow
Composer takes input for model generation in the form of lead
sheets (basic chord structure plus a melody line), and once again
uses its probabilistic memory to generate a new lead sheet for a
new song all on its own.

Flow Composer created the first ever full-length pop song
composed by an AI, the Beatles-“inspired” track “Daddy’s Car”8.
Daddy’s Car has lyrics, with multiple voices, guitar, drums—a
full orchestration. However, as impressive as this is, and despite
the problems apparently solved from Magenta and Bachbot

4BachBot is also open source, run by researchers at the University of Cambridge

and Microsoft Research Center. You can find source code and updates at: https://

github.com/feynmanliang/bachbot.
5You can listen to BachBot at: https://soundcloud.com/bachbot.
6Performance RNN generates polyphonic compositions of solo piano, and

incorporates expressive timing by encoding a flexible rather than strict metrical

grid while also allowing the dynamics of each note to vary. Listen to Performance

RNN at: https://magenta.tensorflow.org/performance-rnn.
7FlowMachines, by Sony Computer Science Laboratories in Paris, is a European

Research Council funded project. Unfortunately, it is not an open source project.

However, more information on their project, including DeepBach (FlowMachines

take on BachBot) can be found at: http://www.flow-machines.com/.
8You can listen to “Daddy’s Car” at: https://www.youtube.com/watch?v=

LSHZ_b05W7o.

dealing with wandering and improper ornamentation or rhythm,
the only thing that Flow Composer generates is a lead sheet.
The rest of the music composing process, including writing the
harmonies themselves, instrumentation, and writing the lyrics,
are performed by human collaborators9.

2.3. What’s Missing?
There is a common thread amongst these music-making AIs,
and that is the importance of the human in the process. This
is partially rooted in the fact that each example is not truly
generating musical content, but is reliant to some degree on
human intervention. In fact, Magenta, with the most basic and
least impressive of the compositions highlighted here, composes
music with the least help from human musical decisions. If
each composition was subjected to a sort of musical “Turing
test,” Magenta’s might be the least likely to pass because it rests
in an “uncanny valley” between quality music and childlike—
or just plain strange—artificial creativity. However, the other
compositions might pass solely due to the human intervention
necessary to yield the finalmusical product. It might be countered
that this is simply a difference of degree, because human
composers are still better at music than our AIs. But at what,
exactly, are humans better?

Although music students and young musicians are taught and
trained in the rules and norms of their musical culture, there is
a common pre-theoretical or folk-psychological notion that what
is important in composing music is the expression or elicitation
of emotion. Good music does not just blindly follow rules, it has
feeling, emotion. Historical and current work in music cognition
indicates that part of what enables humans to both process
and create music in the way that we do involves inherently
emotional processes (Huron, 2008; Juslin and Västfjäll, 2008;
Trost et al., 2012; Koelsch et al., 2015). Current trends in
the philosophy of cognitive science indicate these emotional
processes are rooted in the prediction and regulation of internal
physiological processes, or interoceptive states. Conceiving of the
experience of emotional states as crucially involving interoceptive
processing has important implications for music-making AIs.

3. EMOTION AND INTEROCEPTION

There are competing accounts of what makes an “emotion,”
however all accounts consider the importance or interoceptive,
physiological states of the body. If an emotional experience
arises from gathering evidence from the state of our body, plus
a subsequent-or simultaneous-cognitive appraisal (James, 1884;
Lange, 1885; Schachter and Singer, 1962), then the brute-force
rule-following and simulation-based success of strategy game AIs
could be extrapolated to emotional and creative processes like
music making. There are some reliable cross cultural mappings
of particular musical sounds to particular (potentially emotional)
functions—such as the downward melodic passages and slow

9Remember, the melody is incorporated as part of the generated leadsheet, as are

the instructions for which notes to include in the harmonies, but not necessarily

which voice those notes should be assigned to the harmonies—e.g., the guitar or

the bass.
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rhythms of soothing lullabies (Mehr et al., 2019). Indeed,
musicians make use of standard motifs within their musical
traditions that are associated with or meant to evoke certain
emotions in an audience. An AI could, in theory, form a reliable
mapping between statistical regularities of music and emotion
across cultures, even without a physical body to instantiate those
interoceptive processes itself.

However, making music that elicits or evokes an appropriate
emotion is not as simple as choosing from a library of sound
sequences coded for emotional content. Emotional experience
relies on expectations about the way that interoceptive states
of the body will unfold with respect to the external and social
context of that experience (Critchley, 2005; Seth, 2013; Seth and
Critchley, 2013). In this vein, making music with emotion relies
on expectations about the way that interoceptive states of the
body will respond to music-listening and music-making. In fact,
experience with the bodily movement involved in making and
moving music leads to enhanced interoceptive awareness for
both musicians and dancers alike (Schirmer-Mokwa et al., 2015;
Christensen et al., 2018). Information from relevant interoceptive
states (whether first-hand, i.e., having a body capable of them,
or second-hand, i.e., interacting with an individual that does),
can enhance artificial music generation systems’ ability to create
compelling music.

The experience of emotion in music listening and music
production is rooted in expectancy of not just the structural
information of music (for which our AIs are very capable),
but also more thoroughly embodied expectancy of the internal,
physiological state which is either cued or expressed in
music listening or creating, respectively (Proksch, 2018). Music
listening is a common tool by which individuals monitor and
regulate their emotional states and supporting neurochemistry
(Chanda and Levitin, 2013). Consider the practice of listening
to calming music as you fall asleep—calming because it cues the
brain to minimize levels of cortisol and adrenaline in your body
(McKinney et al., 1997; Khalfa et al., 2003; Thoma et al., 2013).
Or the opposite, listening to upbeat energetic music on your
morning run, inciting increased general arousal, and enjoyment
of physical exertion (jymming’, c.f. Fritz et al., 2013a,b), while
the exercise itself may even boost increased enjoyment of the
music (Hove et al., 2021). These same processes are leveraged by
a composer, or an improviser, who is creating music in response
to or in order to modulate their audience’s emotional, and by
extension physiological, states.

The exteroceptive information of the music, the structural
organization of pitch and rhythm, is mutually contextualized
by the thoroughly embodied, interoceptive information which
is used to generate the music itself, and the integration of
these two forms of information in the creative process of music
composition is what leads to the pre-theoretical intuition that
may be deemed the “heart and soul” of a musical work. Music-
making AIs, and the music they compose, are thought to lack
this emotional quality. Since computer programs lack the proper
embodied, interoceptive states and homeostatic physiological
drive, by which emotions are proposed to be constituted, then
this pre-theoretical intuition is plainly justified. It seems that
music-making AIs cannot compose authentic music because

they lack the interoceptive, emotional processes necessary to do
so.

Thus far, we have observed that the most musically impressive
programs have a higher degree of human intervention to achieve
a satisfying musical structure. We have justified criticisms of
AI’s musical output by demonstrating that the pre-theoretical
notion that computer composed music lacks the “heart and
soul” of authentic, human composed music can be rooted in
basic interoceptive processes of physiological homeostasis. By
incorporating this more thoroughly embodied process, AIs may
be able to avoid their worst tendencies and ground their musical
output in terms of their own interoceptive states, and come closer
to attaining states resembling something like human emotions. In
this next section, we will present twomoremusicmachines which
may create closer approximations to authentic musical works.

3.1. Minimally Interoceptive Artificial Music

Generation
3.1.1. Magenta: AI Duet
We return to the Magenta project to visit an interactive,
improvising music machine. AI Duet runs on similar models as
we’ve discussed earlier, using RNNs and LSTMs to learn the rules
and styles of its input, and then using those rules to generate
its own musical output. However, this time, AI Duet takes
input from a human, improvising musician—in real time—and
together they improvise their own joint musical performance.
Simply put, when you play a series of notes, the computer will
respond to those notes, sometimes mimicking, mirroring, or
expanding on the input you’ve given it. This is much more
impressive than Magenta’s initial attempts at music composition,
in that it incorporates real time social interaction. The music
generated by these social performances range from an awkward
situation between two mediocre or completely inexperienced
improvisers, to fairly convincing collaborative experiments.
These experiments, whether or not they are aesthetically pretty
or pleasing musically, have some semblance of feeling. This is
because the musical event as a whole, in this case, is partially
rooted in interoceptive processes—albeit only the embodied
interoceptive processes of the human collaborator. The computer
program itself is still only processing the exteroceptive content of
the musical structure. If two of these music AIs interact together,
themusic produced quickly becomes nonsensical in the sameway
that the conversation between two chatbots quickly deteriorates.

3.1.2. Cybraphon
Designed in 2009 by the FOUND artist collective together with
Simon Kirby from the University of Edinburgh, Cybraphon is
a “moody, autonomous robot band in a box” and is housed at
the National Museum of Scotland (National Museums Scotland,
2009). The instrument is quite literally a wardrobe, filled with
musical objects, lights, an “emotion meter,” and a computer
which controls when each of these objects will sound, light up,
or move (Taubman, 2014). Unlike the previous AIs discussed,
Cybraphon is not entirely generative from the ground up. Rather,
it performs by choosing from a repertoire of precomposed bits
of music, and selects the music that corresponds to its current
“emotional” state. This “emotional state” is not a product of
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solving the problem of giving a robot a homeostatic body,
but rather from being thoroughly entrenched in social media.
Cybraphon is a bit of a diva—it Googles itself every fifteen
seconds and observes its current popularity over news sites,
twitter, and facebook. The more online activity, and the more
positive the online activity, Cybraphon will “cheer up” and
might play one of its happy tunes. If no online interaction is
happening, it will sit in a state of perpetual indifference, refusing
to make music at all10. Cybraphon has something like extended
interoceptive processing, loosely embodied by activity of the
online community. Although similar to AI Duet’s reliance on
human interoceptive processes in the creation of a musical event,
Cybraphon does not rely on any one person or group of persons’
interoceptive processes, but rather translates social media activity
into loosely embodied “emotional” states based on the online
activity’s deviation from normal levels. This nearly resembles
the sort of embodied process in which interoceptive emotions
are proposed to be rooted. However, the instrument lacks a
predictive component that might enable it to probabilistically
seek a homeostatic set point for these extended interoceptive
states.

3.2. What’s Missing
Crucially, the prediction and regulation of interoceptive states
relies to some extent on bodily action. In fact, the very language
of seeking a homeostatic set point to bring about an interoceptive
and emotional state implies that an embodied music-making
AI must be able to take action in the world to affect its own
internal states. Magenta AI:Duet, while minimally interactive,
does not have a body to take action in the world or interoceptive
processes to respond to the rhythmic and melodic content that
is co-generated by the AI and human performer. It relies on the
actions of the human duet partner. Cybraphon does take some
action in the world through the small repertoire of mechanical
actions it can make in response to its extended interoceptive
state, which itself depends on engagement of others in the
world. However, Cybraphon’s own actions have no effect on its
interoceptive states, and it cannot interact with other individuals
during its music making. The ability to act on interoceptive
processes, and interact with other individuals, may be one more
ingredient missing for successful music generation by music-
making machines.

4. ACTION AND INTERACTION

4.1. Movement in Music Generating Robots
Human music-making is, itself, “inseparable” from
movement (Keller and Rieger, 2009). Even passive music
listening is strongly rooted in motor processes in the brain
(Grahn and Brett, 2007; Gordon et al., 2018). Anticipation of
melodic, harmonic, and rhythmic content of a musical work
engages canonical emotion, reward, and motor networks in
the brain (Salimpoor et al., 2015; Vuust et al., 2022). Rhythmic
components of music are acutely associated with predictive and
motor processes (Koelsch et al., 2019; Proksch et al., 2020). In

10Listen to Cybraphon at: https://www.youtube.com/watch?v=wDyabLAzKuo.

particular, there is a human urge to move to a musical beat that
may be strongly related to the balance of sensory prediction
and prediction error elicited by rhythmic syncopation found
in musical groove, and higher levels of musical groove are
rated as more pleasurable (Janata et al., 2012; Witek et al., 2014).
Joint movement to musical rhythm can result in the co-
activation of motor networks related to the perception of
self and other (Overy and Molnar-Szakacs, 2009; Friston
and Frith, 2015), engaging the endogenous opioid system
and mirroring mechanisms which support social bonding
(Tarr et al., 2014). There has been increasing recognition of
music as an inherently enactive and interactive process, mutually
co-constituted in the actions of musicians predicting both
musical (exteroceptive) and bodily sensations (interoceptive and
proprioceptive states) (Cross, 2014; Dell’Anna et al., 2021).
Joint musical interaction is further aided by visual
(exteroceptive) information regarding the movement,
intention, and interest of each musician in addition to internal
representations of movements of the other interacting musicians
(Novembre et al., 2012, 2014). We next provide an example of
an embodied and interactive music-making AI—an improvising,
marimba-playing robot.

4.2. Shimon
Created by the Robotic Musicianship Group at Georgeia
Tech Center for Musical Technology, Shimon is trained on
an extensive repertoire of classical, jazz, and popular music.
Similar to Magenta AI:Duet, Shimon is a music-making
AI that engages in musical improvisation alongside human
performers. However, Shimon is physically embodied in a
marimba playing robot with four arms that can play melodic,
rhythmic, and multiphonic music (Weinberg et al., 2009).
Further, this robot features an expressive “face” that can move
along with a musical beat and facilitate interaction with ensemble
musicians11. Similar embodied robotic music machines have
been designed to play traditional instruments, such as piano,
violin, and flute as well as new forms of musical instruments
afforded by the different physical configurations a musical robot
can take compared to humans (Bretan and Weinberg, 2016).
These robots create “a sense of embodiment” that afford
“richer musical interactions” between human musicians and
robotic music-making AIs (Bretan and Weinberg, 2016).
For instance, Shimon nods along to the musical beat—
mimicking the human propensity to move to a beat—and
direct its attention by turning its head toward the musician
playing the most interesting (i.e., salient) musical line when
interacting in a musical ensemble (Weinberg et al., 2009).
The actions taken by the robots may not refer to any
interoceptive or emotional state internal to the robot, but
may be robustly simulating such states through their actions so
as to facilitate self-other merging and social emotions among
their human co-performers.

11Learn more about Shimon and listen to some of its music at: https://www.

shimonrobot.com/.
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5. DISCUSSION AND CONCLUSION

5.1. Additional Considerations:

Musico-Historical and Social Context
There are other aesthetic properties that an even more embodied,
embedded, environmentally interactive form of AImight succeed
at producing. Music can be judged not only by how it makes us
feel and how pleasant it sounds, but on the basis of properties
like innovativeness, subversiveness, homage to other works,
etc. For an AI to master these properties, it would have to
have an awareness of musico-historical context, beyond mere
probability distributions over the notes, rhythms, and features of
a particular song or musical style. Jerrold Levinson enumerates
musico-historical context as some personal components (a
composer’s own style, repertoire, oeuvre, and influences), and
some general components (the history of musical development,
prevalent musical styles, and influences at time of composition,
and activities of contemporary composers) (Levinson, 1980). A
musical AI might need to be socially embedded within a musico-
historical context to have mastery of these complex—and even
some more simple—aesthetic properties. A composer does not
rely on her own feelings alone, and imagine if Cybraphon could
not only monitor social media reactions, but also processed the
nature of positive and negative critiques and tracked exactly
which aspects of its compositions some listeners find annoying
or sublime. But a more robust system wherein an A.I. composer
is educated by an artistic community could develop the ability to
create beyond its teachers or its training data, and play off the
works of others in a way that adds aesthetic depth12.

All this might require engaging and participating in a musical
community rather than simply processing data.

5.1.1. Spawn
One such system has been created byHolly Herndon. The singing
AI called “Spawn” was trained on her own voice, the voices of
hermusical collaborators (Friedlander, 2019), and even the voices
of her audience (Herndon, 2019). Herndon says that as opposed
to AIs such as Bachbot that make music in one particular style,
her goal was to create an AI that can “understand the logic of a
sound sample” and thus be more adaptable (Friedlander, 2019).
A strong emphasis of the project is the “raising” of an AI by a
“community.” Herndon is careful to be transparent about the

12An important consideration, though beyond the scope of this article to discuss

in detail, is that designers have seemingly assumed that machine learning

is the correct approach to music-making AIs—indeed, all the AIs discussed

here rely primarily or exclusively on machine learning. However, for activities

that significantly involve complex mutual prediction (this is true of musical

collaboration as well as solo musical improvisation and even to some extent non-

improvisational solo performance), “learning” in this sense may not be the correct

computational approach and inference, relying on state estimation and Bayesian

filtering, may be a more appropriate paradigm that has been as-yet under-explored

(we thank an anonymous reviewer for bringing up this point).

limitations of the technology and estimates the contribution of
the AI in each musical composition at about twenty percent.

5.2. The Future of Music Machines
To conclude, while music-making AI is thriving on the progress
we have made in generative music machines, something is

yet missing. Music-making AIs are unable to reach success
by relying on brute-force rule memorization and future state
simulation in the same manner as competitive strategy game
AIs. Successful compositions by music-making AIs thus far,
while appearing autonomously generative, have required a
significant amount of human intervention. Even with this
intervention, these compositions seem to be lacking feeling,
emotion, and a focused narrative structure. We demonstrated
that human music production and perception is not merely
“in the head,” but rather involves influence from homeostatic,
interoceptive processes in which human emotion processing is
grounded. This interoceptive processing is importantly lacking in
computer programs creating musical compositions. Two music-
machines, AI Duet and Cybraphon appear to be minimally
incorporating a form of interoceptive processing, however the
former is reliant upon input from a human collaborator, and
the latter is not generative. Current music-making robots,
such as Shimon, may be more adept at mimicking actions
which, when made by a human, are rooted in emotional and
interoceptive processes—enabling rich musical interactions as
a member of a musical ensemble. Spawn is an example of a
budding musical AI which is raised by and embedded in a
community, learning, and evolving through interactions with
humans rather than from pre-composed datasets of music.
A successful music-making AI will need to build on current
generative successes, and incorporatemore thoroughly embodied
interoceptive processing of a sort that would ground the
machine’s musical output to its own internal, perhaps even
conscious, states. Essentially, they must be able to ask themselves,
“Am I Blue?.”
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