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Electronic and optical responses 
of quasi-one-dimensional 
phosphorene nanoribbons to strain 
and electric field
Longlong Zhang & Yuying Hao

Electronic and optical responses of zigzag- and armchair-edge quasi-one-dimensional phosphorene 
nanoribbons (Q1D-PNRs) to strain and external field are comparatively studied based on the tight-
binding calculations. The results show that: (i) Zigzag-edge Q1D-PNR has the metallic ground state; 
applying global strains can not open the gap at the Fermi level but applying the electric field can 
achieve it; the direct/indirect character of the field-induced gap is determined by the electron-hole 
symmetry; an electric-field-enhanced optical absorption of low-energy photons is also predicted. (ii) 
Armchair-edge Q1D-PNR turns out an insulator with the large direct band gap; the inter-plane strain 
modulates this gap non monotonically while the in-plane one modulates it monotonically; in addition, 
the gap responses to electric fields also show strong direction dependence, i. e., increasing the inter-
plane electric field will monotonically enlarge the gap but the electric field along the width direction 
modulates the gap non monotonically with three characteristic response regions.

Black phosphorus (BP) is the most stable allotrope of phosphorus and its bulk type was early discovered a cen-
tury years ago1. In recent years, few-layer2,3 and single-layer BP4,5 were successfully exfoliated from the bulk 
ones and again inspired peoples’s great enthusiasm to investigate their electronic6,7 and optical properties8. The 
single-layer BP is the typical two-dimensional (2D) material consisting of single nonmetal atom, which is simi-
lar to graphene and thus usually called phosphorene3,4. Unlike graphene, phospherene is a semiconductor with 
direct band gap and has highly anisotropic character on the electrical conductivity9, thermal conductivity10,11, and 
optical response8. These excellent characters make phosphorene a promising candidate for application as thin film 
electronics, infrared optoelectronics and novel devices with anisotropic properties2,8,9,12–14.

The gap size of pristine phosphorene is about 1.8 eV and can be modulated mechanically or electronically. One 
of the widely used approach is the proper utilization of strain15–17. For example, it was reported that under the 
compressive in-plane strain phosphorene would become the indirect-gap insulators3, while under the inter-plane 
compressive strain an insulator-metal (I-M) was expected15. On the other hand, phosphorene exhibits excellent 
response ability to static external electric field. Several experimental/theoretical work suggested BP’s most per-
spective application as field-effect transistors (FETs)7,18–20.

Similar to graphene, phosphorene can be cut or tailored into derived nanostructures. The electronic prop-
erties of the phosphorene nanoribbons (PNRs) are strongly dependent on their edge shapes. Depending on the 
cutting orientation and the way of termination, one can get zigzag-, armchair- and cliff-edge PNRs. Recently, 
few-nanometer-wide PNRs were successfully derived using a top-down method21. Another group further 
reported the realization of BP atomic chains via electron beam ring inside a transmission electron microscope22. 
These experimental work suggest the perspective to develop BP-based quasi-one-dimensional (Q1D) molecular 
devices. But by now, the detailed information of Q1D-PNRs’ electronic/optical response to strain/electric-field 
is still not clear enough, which is however essentially important for determining the Q1D-PNRs’ application 
perspectives.

To clarify the above concern, we respectively carry out the tight-binding (TB) calculations23–26 on the zigzag 
and armchair-edge Q1D-PNR, which are shown in Fig. 1. The zigzag-edge Q1D-PNR in Fig. 1(a) is named for 
4z-Q1D-PNR since it consists of four zigzag phosphorus chains, while the armchair-edge Q1D-PNR in Fig. 1(b) 
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is named for 5a-Q1D-PNR because its each unit cell consists of five inter-plane P-P couples. For both the two, the 
electronic/optical responses to strain/electric field are theoretically studied in the rest of this paper.

TB Model
TB model calculations have been proved successful to describe the ground-state electronic/optical properties of 
BP layers and ribbons by comparing to the ab initial results23–26. In refs23,24. Rudenko et al. proposed the TB model 
for layered BP which consists of 10 in-plane hopping integrals and 4 inter-plane ones. In this work, we simplify 
that into a simple one with only 6 hopping integrals which are depicted in Fig. 2. With further taking into account 
the electron-electron (e-e) interactions27, the final resulting TB Hamiltonian reads as:
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The summation i j,∑< > runs over the considered hopping integrals. Operator †ci  (ci) is to create (annihilate) a 
pz orbital electron with spin s at site i; ti,j represents the hopping integral between sites i and j. The value of ti,j 
depends on the relative angle and distance between site i and j17. For the fully relaxed puckered structure, ti,j is 
determined by reproducing the first-principle calculations. We set the hopping integral between the 
nearest-neighboring (NN) sites as t1 = −1.22eV. Meanwhile, the other parameters are set for: t2 = −2.5t1, 
t3 = 0.17t1, t4 = 0.01t1, t5 = 0.05t1, t6 = 0.02t1

23–26. Obviously, it can be a reasonable approximation to further set 
t4 = t5 = t6 = 0 because they are much smaller than t1, t2 and t3. Indeed, we numerically checked that no qualitative 
difference was induced by this approximation. U denotes the on-site e-e interaction while the inter-site ones are 
modeled in κ= + .V U r/ 1 0 6117i j i j, ,

2 , where κ = 1.5 reads as a dielectric parameter and ri,j the distance between 
the sites i and j. Referring to Fig. 1, we set the structural parameters as follows: the distance between the in-plane 

Figure 1.  Top and side views of (a) 4z-Q1D-PNR and (b) 5a-Q1D-PNR. The orange and blue balls represent 
the upper-plane phosphorus atoms and the lower-plane ones. Unit cells are pointed out in the dashed blanks. 
Phosphorus atoms on the edges are all H-passivated.

Figure 2.  Schematic representation of the hopping integrals involved in the present TB model.
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NN sites a1, and that between the inter-plane NN sites a2, are equally set as a a 2 16Å1 2= = . 26; the angular 
parameters are set as β = 104°, α = 98°. E-e interactions are treated by the Hartree-Fock (HF) approximations.

Results
4z-Q1D-PNR.  By applying a Fourier transformation, the real-representation Hamiltonian in Eq. (1) is trans-
formed into the block-diagonalized one in the momentum-representation, which reads as ˆ† = ∑ c H ck s k s k s k s, , , ,x x x x

. 
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 is the average charge density at site m′. The off-diagonal matrix elements 
include two types, the effective in-plane hopping integrals Xm,n and the inter-plane ones Ym,n. Xm,n are written in
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with (m, n) denoting the site couples of (1, 2), (3, 4), (5, 6) and (7, 8). Ym,n are derived as
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where (m, n) represents the site couples of (2, 3), (4, 5) and (6, 7). We calculate the local density of state (LDOS) 
at site i in the momentum representation by
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where Eλ is the energy of the λ-th HF level and Ψλ,s(kx,i) denotes the wavefunction of wavevector-kx, spin-s and 
energy-Eλ.

Figure 3 presents the ground-state dispersion relations and LDOS of 4z-Q1D-PNR. As shown, the molecular 
orbital of the pz electrons are unfolded into eight band branches, among which the ones above (below) the Fermi 
level (EF = 0.24t1) are numbered as Jc(Jv) = 1.2, 



 . The electronic state turns out metallic meanwhile the adhe-
sively paired bands are formed around the Fermi level. This band structure is characteristic for zigzag-edge PNRs 
and have been repeatedly revealed25,28,29. By observing the LDOS spectra, one can learn that the electronic state 
corresponding to the adhesively paired bands are mainly distributed along the ribbon edges, so to say, they are the 
so-called edge states. The point is that for a zigzag-edge Q1D-PNR, even its ribbon width is extremely narrow, the 
edge state should still be formed. In the following, we will reveal that the key factor to determine the formation of 
the paired edge state is the magnitude of the inter-plane hopping integrals.

Then we proceed to discuss the electronic/optical responses of 4z-Q1D-PNR to strains. The optical response 
is examined by calculating the polarized optical conductivities whose real part is derived as
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state and |0〉 is the true electron vaccum. Following the way of defining the current operator in ref.30, Jx and Jy are respec-
tively derived as
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Because PNRs demonstrate superior flexibility and can withstand high tensile strain up to 40%31, in this 
work, we adjust t2 and t3 in the large scales. Figure 4 presents 4z-Q1D-PNR’s electronic/optical responses to 
the inter-plane strain, which is simulated by adjusting the magnitude of |t2/t1|. Dispersion relations for three 
typical valuse |t2/t1| = 0.5, 2.5 and 4.0 (respectively correspond to the tensile, none, and compressive inter-plane 
strain) are demonstrated. Comparing them three, it is found that the formation of the adhesively paired bands 
strongly depends on the magnitude of |t2/t1|. A larger |t2/t1| tends to separate the paired bands from the bulked 
ones and thus eventually leads to the edge state. On the other hand, the optical response to the inter-plane strain 
is significant [see Fig. 4(b)]. When |t2/t1| = 0, 4z-Q1D-PNR can not absorb the x-direction polarized photons, 
but it is easy to absorb the y-direction polarized photons at the low-energy regime. With increasing |t2/t1|, the 
absorption of x-polarized photons becomes allowed and the corresponding spectrum becomes narrower and 
higher. When |t2/t1| = 4.0, namely, under the strong compressive strain, the optical absorption has already become 
sharply peaked.

Obviously, the optical selection rules between the x and y direction is quite distinct. This can be explained by 
a similar mechanism which we revealed in the previous work30. 4z-Q1D-PNR exhibits the C2x symmetry and 
there are the relations C2x· ·= = −   Candx x x y y2 . On the other hand, the spatial wave functions of the 
bands alternatively exhibit symmetrical and antisymmetrical parity. In order to ensure the inner product among 
the initial and the final state on Jx(y) is nonzero, the transitions between the same-parity bands should be only 
allowed for the x-polarized photons but forbidden for the y-polarized ones and vice versa. The paired bands near 
the Fermi level are of opposite parity and therefore we only observe the Drude-like absorptions for the y-direction 
polarized photons.

Figure 5 shows the in-plane strain’s effects on the electronic/optical properties of 4z-Q1D-PNR. The in-plane 
strain will significantly change the angle α, therefore it primely influences the magnitude of t3/t1. In this work, 
we examine t3/t1 in the range from 0 to 0.75 with the nominal value being t3/t1 = 0.17. For the limiting case 
t3/t1 = 0, the valence and conduction bands show exact electron-hole (e-h) symmetry, indicating the magnitude 
of t3/t1 is the key factor to determine the e-h asymmetry of PNRs. This conclusion agrees with the experience in 
graphene nanoribbons that a finite next-nearest-neighbor (NNN) hopping integral will break the e-h asymme-
try32. Furthermore, with increasing t3/t1, the bands tend to show the strong dispersive character, implying the 
effective mass of electrons/holes will be significantly modulated by the in-plane strains. On the other hand, for 
the optical properties [Fig. 5(b)], it seems that although the e-h asymmetry is enhanced by increasing t3/t1, the 
optical conductivity spectra are almost not affected. We have checked that the energy difference between the 
band branches at all the k points are almost unchanged for any t3/t1, meanwhile the optical selection rules are also 
maintained against varying t3/t1.

Figure 3.  Dispersion relations E(kx) and the local density of state ρi(E) of 4z-Q1D-PNR. The Fermi level 
EF = 0.24t1 is illustrated by the horizontal dashed red line.
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We notice that for both applying the in-plane and inter-plane strains, the adhesively paired bands do not split 
to form a gap. This is due to a global strain itself can not break the original symmetry. But applying an external 
electric field can achieve this goal. For example, Ezawa theoretically revealed the metal-insulator (M-I) tran-
sitions induced by applying the y-direction electric field25. In this paper, we demonstrate that same effects can 
be also achieved by applying the z-direction electric field. If only considering the unscreened electric field, the 
field induced electronic potential difference between the two planes can be simply estimated as eEzz, where Ez 
represents the field strength and z = a2cosβ is the vertical distance between the two planes. The results show that 
increasing the z-direction electric field will indeed trigger the M-I transitions [see Fig. 6(a)] with the transition 
threshold about eEzz ≈ 0.2t1. The mechanism of the M-I transition is as follows: z-direction electric field causes 
the on-site energy difference between the two planes, which induces the charge redistribution and therefore 
breaks the original symmetrical properties of bands Jc = 1 and Jv = 1. These two bands will repel each other due 
to the so-called field-induced anticrossing effect33–35 meanwhile the on-site energy difference provides the split-
ting energy to separate them. It is worth noting that the electric-field-induced gap here is indirect. We find that 
whether this gap is direct or indirect is dependent on that whether the e-h symmetry of the original zPNR is 
breaking or not. For example when t3/t1 = 0, the e-h symmetry is completely satisfied. In this case, applying the 
electric field will result in the directly gapped state (Fig. 7). Besides, we also find an interesting phenomenon of 
the optical response to electric field: the absorption of the low-lying (resonant to the gap size) x-polarized pho-
tons becomes allowed due to the existence of the electric field. Further increasing the field strength will continu-
ously enhance this absorption. Meanwhile, as the gap is enlarged with increasing the field strength, the low-lying 
absorption peak behaves a blue shift [see Fig. 6(b)].

We briefly discuss the Coulomb interaction’s effects on the electronic structure of 4z-Q1D-PNR. It is found 
that increasing Coulomb interaction results in the long-range charge-order-waves (CDWs) along two zigzag 
edges, while charges almost keep averagely distributed over the inner phosphorus atoms. Even though CDWs 

Figure 4.  (a) Dispersion relations of 4z-Q1D-PNR with varying |t2/t1|; (b) the x-polarized optical conductivity 
spectra σx and the y-polarized ones σy as functions of |t2/t1|. The interband transitions contributing to the 
absorptions peaks are pointed out by the red (for x-polarization) and blue (for y-polarization) arrows.
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are formed along the edge, it fails to open a gap at the Fermi level. Coulomb interaction’s effect is only to enlarge 
the gap between bands Jc = 2 and 3 and that between Jv = 2 and 3, but has weak influences on that between Jv = 1 
and Jc = 1.

5a-Q1D-PNR.  Generally, armchair-edge PNRs are insulators and thus their electronic properties are qualita-
tively distinct to those of zigzag-edge ones. In this section, we theoretically investigate 5a-Q1D-PNR’s electronic/
optical responses to strain and electric field.

The kx-block Hamiltonian of 5a-Q1D-PNR in the momentum-representation is:
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Figure 5.  Same as Fig. 4, but for the case of varying t3/t1.
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Figure 6.  Same as Fig. 4, but for the case of varying the z-direction electric fields. The growth of the low-lying 
x-polarized absorption peak with increasing Ez is illustrated by the blue dashed curve in (b).

Figure 7.  (a) When t3/t1 = 0 and eEzz = 0.6t1, the electronic band structure shows the e-h symmetry and thus 
the electric-field-induced band gap is direct. (b) The electric-field induced absorptions of the x- and y-polarized 
photons with energy resonating to the gap.



www.nature.com/scientificreports/

8Scientific REporTs |  (2018) 8:6089  | DOI:10.1038/s41598-018-24521-w

D U V1
2

( 1)
(12)m m m s

m
m, , ∑ρ ρ=



 −



 + − .−

′
′

The off-diagonal matrix elements corresponding to the in-plane NN effective-hopping-integrals are defined as

α α
= −






−







−





−







X t ik a os V ik a pexp c
2

exp cos
2

,
(13)m n x x m n s, 1 1 1 , ,

where

p
N

c c ik a1 exp cos
2

,
(14)

m n s
k

k n s k m s x, , , , , , 1
x

x x∑ α
=



 ′





′
′ ′

†

and (m, n) represents the site-couples of (1, 3), (5, 3), (5, 7), (9, 7), (4, 2), (4, 6), (8, 6) and (8, 10) =X X( )m n n m, ,
⁎ . 

The in-plane NNN effective hopping integrals are defined as

= − −Q t Vq , (15)m n m n s, 3 , ,

where

∑=
′

′ ′q
N

c c1 ,
(16)

m n s
k

k n s k m s, , , , , ,
x

x x

†

where (m, n) represents the site-couples of (1, 5), (2, 6), (3, 7), (4, 8), (5, 9) and (6, 10). The inter-plane effective 
hopping integrals are defined as

β β= − − − −Y t ik a V ik a yexp( cos ) exp( cos ) , (17)m n x x m n s, 2 2 2 , ,

where

∑ β= ′ .
′

′ ′y
N

c c ik a1 exp( cos )
(18)
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k n s k m s x, , , , , , 2
x
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and (m, n) = (2, 1), (3, 4), (6, 5), (7, 8) and (10, 9).
Figure 8 presents the dispersion relations and LDOS of 5a-Q1D-PNR. As shown, 5a-Q1D-PNR has the direct 

band gap at k = 0. The gap size is about Δg = 1.7t1 ≈ 2.1eV. The scaling rule of armchair-edge PNRs’s band-gap 
with changing the ribbon width has been previously revealed26,36. The gap is monotonically reduced with increas-
ing the ribbon width by Δg ~1/d2 (d the ribbon width). It seems that the band-gap scaling rule of aPNRs does not 
follow the so-called 3n-rule which was found in aGNRs (ribbons with width 3n + 2 are nearly metallic)37,38. In 
addition, two flat bands are formed in the 5a-Q1D-PNR’s band structure. Notice that the flat bands are not formed 
in the gap region but embedded in the bulked valance and conduction bands, therefore, they do not significantly 
contribute to additional effects on the electronic properties unless it is doped at a proper concentration. This band 
structure somehow seems similar to that of polyphenanthrene (PPN)39, which is the narrowest armchair-edge 
graphene nanoribbon. There was a famous story that PPN turned out a BCS-type superconductivity with the 
Curie temperature about 10 K by doping alkali40. We notice that a DFT calculation has predicted that similar 
superconductivity mechanism seems also realizable in aPNRs when it was doped by electrons41.

We proceed to study 5a-Q1D-PNR’s electronic/optical responses to strain and electric field. The real part of 
optical conductivities are calculated using Eq. (8), where the current operators along the x and y directions are 
now respectively defined as:

Figure 8.  Same as Fig. 3, but for the case of 5a-Q1D-PNR. The Fermi level sits at EF = 0.
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with (m, n) denoting the site-couples (1, 3), (4, 2), (5, 3), (4, 6), (5, 7), (8, 6), (9, 7) and (8, 10); (p, q) for the 
site-couples of (2, 1), (6, 5), (10, 9), (3, 4) and (7, 8);
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with (m, n) representing for the site-couples of (1, 3), (4, 6), (5, 6) and (8, 10); (p, q) for (3, 5), (2, 4), (7, 9) and (6, 
8); (j, l) for (1, 5), (2, 6), (5, 9), (6, 10), (3, 7) and (4, 8).

Figure 9 demonstrates the electronic/optical responses to the inter-plane strain. Fundamentally, we conclude 
that the tensile strains (e. g. |t2/t1| = 0.5) tend to reduce the gap and the band width, while the compressive ones 
(e. g. |t2/t1| = 2.5) tend to enlarge them. Such a trend can be read out from the optical conductivity spectra σx and 
σy, where the absorption peaks show significant blue shift with increasing |t2/t1|. Furthermore, we find that the 

Figure 9.  Same as Fig. 4, but for the case of 5a-Q1D-PNR. The interband transitions contributing to the main 
absorption peaks are pointed out by red arrows.
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positions of the two flat bands in the band structure can be modulated by adjusting |t2/t1|. For example, when 
|t2/t1| = 0.5, the flat bands almost coincide to Fermi level. In such case, the flat bands may induce some novel 
phenomena caused from the Van Hove singularity near the Fermi level, e. g. ferromagnetism42, fractional Hall 
effect43, and superconductivity44. So to say, we predict that beside the way of electronic doping, a tensile strain 
may also possibly induce a superconductivity in armchair-edge Q1D-PNR.

On the other hand, by comparing the x-polarized optical conductivity spectra in Figs 4(b) and 9(b), it can be 
concluded that the selection rule of PNRs shows strong edge-dependence. This phenomenon can be understood 
by referring to the scenario in GNRs45–47. Lin et al. addressed that the selection rule of zGNRs satisfied ΔJ = |Jc−
Jv| = odd while the armchair-edge ones were governed by the rule of ΔJ = 033,45,47. By checking the dipole moment 
of interband transitions of 4z-Q1D-PNR and 5a-Q1D-PNR contributing to their main absorption peaks [red 
arrows in Figs 4(b) and 9(b)], we find the edge-dependent selection rules revealed by Lin also work for PNRs.

Figure 10 demonstrates the effects of adjusting t3/t1 in 5a-Q1D-PNR. Same to 4z-Q1D-PNR, a finite t3/t1 will 
lead to the e-h asymmetry. In addition, the band gap is significantly decreased with increasing t3/t1. Unlike the 
case of varying |t2/t1|, increasing t3/t1 will parallelly move the two flat bands in one direction. Meanwhile, the 
Jc = 1 band becomes more dispersive while the J   v = 1 band becomes more flat with increasing t3/t1. These bands’ 
transitions can be identified from the optical conductivity spectra shown in Fig. 10(b). Increasing t3/t1 until the 
low-energy flat band approaches to the Jv = 1 band, one satellite absorption peak is separated from the contin-
uum spectra of σx. We have checked that this satellite peak corresponds to the transitions from the flat band to 
the Jc = 1 band. On the other hand, because the band gap is continuously decreased with increasing t3/t1, one can 
observe a resultant red shift of the lowest-energy absorption peak in the σy spectra.

The gap size as functions of |t2/t1| and t3/t1 are summarized in Fig. 11. As shown, adjusting |t2/t1| will mod-
ulate the gap non monotonically. As the nominal value is |t2/t1| = 2.5, fundamentally, we say that a compressive 
inter-plane strain tends to enlarge the gap while a tensile inter-plane strain tends to reduce the gap. The smallest 
gap reaches about 0.5t1 at |t2/t1| = 1.5. On the other hand, for adjusting t3/t1, it is found that increasing t3/t1 leads 
to the monotonic reduction of the band gap. The gap almost closes when t3/t1 = 1.5t1. In a word, the electronic 
response of 5a-Q1D-PNR to strains shows strong direction dependence.

Figure 10.  Same as Fig. 5, but for the case of 5a-Q1D-PNR. The lowest-lying absorption peaks and the 
corresponding interband transitions are illustrated by red (x-polarization) and blue (y-polarization) arrows.
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At last, we discuss the modulation of 5a-Q1D-PNR’s band gap by applying the external electric field. The cases 
of applying the y- and z-direction electric fields are respectively considered. The effect of applying the y-direction 
(along the width direction) electric field is to form the electronic potential difference between between the ribbon 
edges as = αV eE a4 siny y 0 2

, while the z-direction field results in the potential difference between the two planes 
as Vz = eEza1cosβ. Modulations of the gap by applying electric fields also show strong direction dependence. The 

Figure 11.  Gap values Eg of 5a-Q1D-PNR as functions of |t2/t1| (triangle labelled line) and (t3/t1) (square 
labelled line). The nominal parameters are |t2/t1| = 2.5 and t3/t1 = 0.17.

Figure 12.  (a–g) Dispersion relations of 5a-Q1D-PNR as functions of the electric field Ey. The relating 
electronic potential are respectively set for eE a4 sin 0y 0 2

=α , 1.5t1, 2.6t1, 4.0t1, 5.6t1, 7.0t1 and 8.0t1. (a′–g′) 
Dispersion relations as functions of Ez by setting the electronic potential eEza1cosβ = 0 1.5t1, 2.6t1, 4.0t1, 5.6t1, 
7.0t1 and 8.0t1, respectively.
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dispersion-relations for |Vy| = 0, 1.5t1, 2.6t1, 4.0t1, 5.6t1, 7.0t1 and 8.0t1 are respectively shown in Fig. 12(a–g). The 
electronic response is nonlinear and turns out three variation regions with increasing |Vy|: (i) Firstly, the band gap 
decreases with increasing the field strength [see Fig. 12(a,b)]. (ii) The band gap almost closes at about |Vy| = 3.6t1 
[see Fig. 12(c)], but interestingly, it opens again with further increasing |Vy| [Fig. 12(d)] and closes again at 
|Vy| = 5.6t1 [see Fig. 12(e)]. This variation was also previously predicted for 8a-Q1D-PNR by Sisakht26 and it was 
addressed that such a novel trend was a character of extremely narrow aPNRs. The last achieved metallic state 
exhibits two Dirac-like points. These two points are pushed toward k = ±π with increasing |Vy|. (iii) After the two 
Dirac-like points reached k = ±π, further increasing Vy reversely increase the band gap [see Fig. 12(f,g)]. In con-
trast, when increasing the y-direction electric field strength [|Vy| = 0, 1.5t1, 2.6t1, 4.0t1, 5.6t1, 7.0t1, 8.0t1 are respec-
tively shown in Fig. 12(a′–g′)], the gap size monotonically keeps increasing.

Discussions and Conclusions
In summary, based on the TB calculations, we comparatively studied the electronic and optical responses of 
4z-Q1D-PNR and 5a-Q1D-PNR to strain and electric field. The results suggested that zigzag- and armchair-edge 
phosphorene nanoribbons had distinct response behavior and therefore they could be used as different functional 
devices.

Zigzag-edge Q1D-PNR exhibited the metallic ground state. The inter-plane strain played the central role to 
form adhesively paired bands near the Fermi level. Adjusting the magnitude of inter-plane strain would signif-
icantly influence the optical conductivity spectrum and induce the shift of the absorption peaks; on the con-
trary, the optical response to in-plane strain is relatively weak, but the bands’ dispersive character is sensitive to 
inter-plane strains so that the effective mass of electrons/holes could be significantly affected. On the other hand, 
for armchair-edge Q1D-PNR, which was an insulator with the direct band gap, we found that applying the com-
pressive inter-plane strain would enlarge the gap, while the compressive in-plane strain would decrease the gap. 
No matter zigzag- or armchair-edge ones, it seemed that the topology of the electronic state was preserved against 
any strains, so to say, one should not expect a strain induced M-I or I-M transition in a Q1D-PNR.

To break the symmetry preserved topology of the electronic state, one could consider applying an electric 
field. We addressed that for zigzag-edge Q1D-PNR, applying the electric field either along the y or z direction 
would induce the M-I transition when the strength of the field reaches a threshold. Furthermore, it was showed 
that the key factor to determine the direct/indirect character of the field-induced gap was the e-h asymmetry, 
which could be controlled by adjusting the in-plane strains. On the contrary, for armchair-edge Q1D-PNR, we 
showed that both the y- and z-direction external electric field could modulate the gap size, but they behaved quite 
distinct modulating rules: increasing the y-direction electric field led to the non monotonic response of the gap 
with three variation regions, while increasing the z-direction electric field monotonically enlarged the gap. Our 
theoretical work provides a fundamental understanding of the electronic and optical properties of zigazag- and 
armchair-edge Q1D-PNRs in presence of strains and electric fields. We believe these results should be meaningful 
for engineering BP based quasi-one-dimensional molecular devices in the future.

References
	 1.	 Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344 (1914).
	 2.	 Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014).
	 3.	 Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014).
	 4.	 Reich, E. S. Phosphorene excites materials scientists. Nature 506, 19 (2014).
	 5.	 Lu, W. et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Research 7, 853 (2014).
	 6.	 Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 

(2015).
	 7.	 Koening, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. 

Appl. Phys. Lett. 104, 103106 (2014).
	 8.	 Xia, F., Wamh, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. 

Nat. Commun. 5, 4458 (2014).
	 9.	 Qiao, J., Kong, X. H., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black 

phosphorus. Nat. Commun. 5, 4475 (2014).
	10.	 Jain, A. & McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 

(2015).
	11.	 Qin, G. et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phy. Chem. Chem. Phy. 17, 4854 

(2015).
	12.	 Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347 

(2014).
	13.	 Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and 

low dark current. Nat. Photon. 9, 247 (2015).
	14.	 Guo, Q. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano. Lett. 16, 4648 (2016).
	15.	 Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Letts. 112, 176801 

(2014).
	16.	 Peng, X., Wei, Q. & Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional 

phosphorene. Phys. Rev. B 90, 085402 (2014).
	17.	 Quereda, J. et al. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16, 

2931 (2016).
	18.	 Liu, Q., Zhang, X., Abdalla, L. B., Fazzio, A. & Zunger, A. Switching a normal insulator into a topological insulator via electric field 

with application to phosphorene. Nano Lett. 15, 1222 (2015).
	19.	 Wang, T. et al. Tunable bandgap of monolayer black phosphorus by using vertical electric field: A DFT study. J. Kore. Phys. Soc. 66, 

1031 (2015).
	20.	 Cao, T., Li, X., Liu, L. & Zhao, J. Electric field and strain tunable electronic structures in monolayer Black Phosphorus. Comp. Mater. 

Sci. 112, 297 (2016).
	21.	 Das, P. M. et al. Controlled sculpture of black phosphorus nanoribbons. ACS Nano 10, 5687 (2016).
	22.	 Xiao, Z. et al. Deriving phosphorus atomic chains from few-layer black phosphorus. Nano Res. 10, 5687 (2017).



www.nature.com/scientificreports/

13Scientific REporTs |  (2018) 8:6089  | DOI:10.1038/s41598-018-24521-w

	23.	 Rudenko, A. N. & Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus. 
Phys. Rev. B 89, 201408 (2014).

	24.	 Rudenko, A. N., Yuan, S. & Katsnelson, M. I. Toward a realistic description of multilayer black phosphorus: From GW approximation 
to large-scale tight-binding simulations. Phys. Rev. B 93, 199906 (2015).

	25.	 Ezawa, M. Topological origin of quasi-flat edge band in phosphorene. New J. Phys. 16, 115004 (2014).
	26.	 Sisakht, E. T., Zare, M. H. & Fazileh, F. Scaling laws of band gaps of phosphorene nanoribbons: A tight-binding calculation. Phys. 

Rev. B 91, 085409 (2015).
	27.	 Cakir, D., Sahin, H. & Peeters, F. M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. 

Rev. B 90, 205421 (2014).
	28.	 Peng, X., Copple, A. & Wei, Q. Edge effects on the electronic properties of phosphorene nanoribbons. J. Appl. Phys. 116, 144301 

(2014).
	29.	 Guo, H., Liu, N., Dai, J., Wu, X. & Zeng, X. C. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. 

Phys. Chem. C 118(25), 14051 (2014).
	30.	 Zhang, L. L. & Yamamoto, S. Photoinduced directional and bidirectional phase transitions in bistable linear polycyclic aromatic 

compounds. J. Phys. Soc. Jpn. 83, 064708 (2014).
	31.	 Hu, T., Han, Y. & Dong, J. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic 

strains. Nanotechnology 25, 455703 (2014).
	32.	 Kretinin, A. et al. Quantum capacitance measurements of electron-hole asymmetry and next-nearest-neighbor hopping in 

graphene. Phys. Rev. B 88, 165427 (2013).
	33.	 Chung, H. C., Chang, C. P., Lin, C. Y. & Lin, M. F. Electronic and optical properties of graphene nanoribbons in external fields. Phys. 

Chem. Chem. Phys. 18, 7573 (2016).
	34.	 Ho, Y. H., Tsai, S. J., Lin, M. F. & Su, W. P. Unusual Landau levels in biased bilayer Bernal graphene. Phys. Rev. B 87, 075417 (2013).
	35.	 Lin, Y. P., Wang, J., Lu, J. M., Lin, C. Y. & Lin, M. F. Energy spectra of ABC-stacked trilayer graphene in magnetic and electric fields. 

RSC Adv. 4, 56552 (2014).
	36.	 Tran, V. & Yang, L. Scaling laws for the band gap and optical response of phosphorene nanoribbons. Phys. Rev. B 89, 245407 (2014).
	37.	 Kimouche, A. et al. Electronic and optical properties of graphene nanoribbons in external fields. Nat. Commun. 6, 10177 (2015).
	38.	 Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phy. Rev. Lett. 97, 216803 (2006).
	39.	 Tanaka, K., Koike, T., Ohzeki, K. & Yamabe, T. Electronic structures of polyacenacene and polyphenanthrophen anthrene. Design of 

one-dimensional graphite. Synth. Met. 11, 61 (1985).
	40.	 Wang, X. et al. Superconductivity at 5 K in alkali-metal-doped phenanthrene. Nat. Commun. 2, 507 (2011).
	41.	 Shao, D. F., Lu, W. J., Lv, H. Y. & Sun, Y. P. Electron-doped phosphorene: a potential monolayer superconductor Europhys. Letts. 108, 

67004 (2014).
	42.	 Ugeda, M. M., Brihuega, I., Guinea, F. & Gomez-Rodriguez, J. M. Missing atom as a source of carbon magnetism. Rhys. Rev. Letts. 

104, 096804 (2010).
	43.	 Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Rhys. Rev. Letts. 106, 236803 (2011).
	44.	 Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. 

Phys. 8, 158 (2012).
	45.	 Lin, M. F. & Shyu, F. L. Optical properties of graphene nanoribbons. J. Phys. Soc. Jpn. 69, 3529 (2000).
	46.	 Hsu, H. & Reichi, L. E. Selection rule for the optical absorption of graphene nanoribbons. Phys. Rev. B 76, 045418 (2000).
	47.	 Chung, H. C., Lee, M. H., Chang, C. P. & Lin, M. F. Exploration of edge-dependent optical selection rules for graphene nanoribbons. 

Opt. Express 19, 23350 (2011).

Acknowledgements
This work was supported by National Natural Science Foundation of China (61274056), Key Research and 
Development (International Cooperation) Program of Shanxi (201603D421042), and Platform and Base Special 
Project of Shanxi (201605D131038).

Author Contributions
L.L. Zhang carried out the calculations and wrote the manuscript. Y.Y. Hao discussed the calculation results and 
participated writing the manuscript. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field

	TB Model

	Results

	4z-Q1D-PNR. 
	5a-Q1D-PNR. 

	Discussions and Conclusions

	Acknowledgements

	Figure 1 Top and side views of (a) 4z-Q1D-PNR and (b) 5a-Q1D-PNR.
	Figure 2 Schematic representation of the hopping integrals involved in the present TB model.
	Figure 3 Dispersion relations E(kx) and the local density of state ρi(E) of 4z-Q1D-PNR.
	Figure 4 (a) Dispersion relations of 4z-Q1D-PNR with varying |t2/t1| (b) the x-polarized optical conductivity spectra σx and the y-polarized ones σy as functions of |t2/t1|.
	Figure 5 Same as Fig.
	Figure 6 Same as Fig.
	Figure 7 (a) When t3/t1 = 0 and eEzz = 0.
	Figure 8 Same as Fig.
	Figure 9 Same as Fig.
	Figure 10 Same as Fig.
	Figure 11 Gap values Eg of 5a-Q1D-PNR as functions of |t2/t1| (triangle labelled line) and (t3/t1) (square labelled line).
	Figure 12 (a–g) Dispersion relations of 5a-Q1D-PNR as functions of the electric field Ey.




