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BACKGROUND: Infection and inflammation of the reproductive tract are significant causes of male factor infertility. Ascending infections
caused by sexually transmitted bacteria or urinary tract pathogens represent the most frequent aetiology of epididymo-orchitis, but viral,
haematogenous dissemination is also a contributory factor. Limitations in adequate diagnosis and therapy reflect an obvious need for fur-
ther understanding of human epididymal and testicular immunopathologies and their contribution to infertility. A major obstacle for advan-
cing our knowledge is the limited access to suitable tissue samples. Similarly, the key events in the inflammatory or autoimmune
pathologies affecting human male fertility are poorly amenable to close examination. Moreover, the disease processes generally have
occurred long before the patient attends the clinic for fertility assessment. In this regard, data obtained from experimental animal models
and respective comparative analyses have shown promise to overcome these restrictions in humans.

OBJECTIVE AND RATIONALE: This narrative review will focus on male fertility disturbances caused by infection and inflammation,
and the usefulness of the most frequently applied animal models to study these conditions.

SEARCH METHODS: An extensive search in Medline database was performed without restrictions until January 2018 using the following
search terms: ‘infection’ and/or ‘inflammation’ and ‘testis’ and/or ‘epididymis’, ‘infection’ and/or ‘inflammation’ and ‘male genital tract’,
‘male infertility’, ‘orchitis’, ‘epididymitis’, ‘experimental autoimmune’ and ‘orchitis’ or ‘epididymitis’ or ‘epididymo-orchitis’, antisperm anti-
bodies’, ‘vasectomy’. In addition to that, reference lists of primary and review articles were reviewed for additional publications independ-
ently by each author. Selected articles were verified by each two separate authors and discrepancies discussed within the team.

OUTCOMES: There is clear evidence that models mimicking testicular and/or epididymal inflammation and infection have been instruct-
ive in a better understanding of the mechanisms of disease initiation and progression. In this regard, rodent models of acute bacterial epidi-
dymitis best reflect the clinical situation in terms of mimicking the infection pathway, pathogens selected and the damage, such as fibrotic
transformation, observed. Similarly, animal models of acute testicular and epididymal inflammation using lipopolysaccharides show impair-
ment of reproduction, endocrine function and histological tissue architecture, also seen in men. Autoimmune responses can be studied in
models of experimental autoimmune orchitis (EAO) and vasectomy. In particular, the early stages of EAO development showing inflamma-
tory responses in the form of peritubular lymphocytic infiltrates, thickening of the lamina propria of affected tubules, production of auto-
antibodies against testicular antigens or secretion of pro-inflammatory mediators, replicate observations in testicular sperm extraction
samples of patients with ‘mixed atrophy’ of spermatogenesis. Vasectomy, in the form of sperm antibodies and chronic inflammation, can
also be studied in animal models, providing valuable insights into the human response.

WIDER IMPLICATIONS: This is the first comprehensive review of rodent models of both infectious and autoimmune disease of testis/
epididymis, and their clinical implications, i.e. their importance in understanding male infertility related to infectious and non-infectious/
autoimmune disease of the reproductive organs.

Key words: infection / inflammation / male infertility / orchitis / epididymitis or epididymo-orchitis / experimental autoimmune orchitis
or epididymo-orchitis / rodent or animal model / vasectomy

Introduction
Infection and inflammation of the male reproductive tract are signifi-
cant, and potentially curable, causes of male factor infertility (Rowe
et al., 2000; Weidner et al., 2013). The defined clinical entities com-
prise urethritis, prostatitis, seminal vesiculitis, epididymitis and orchitis
(Krieger, 1984; Weidner et al., 1999). In this regard, ascending, cana-
licular infections by sexually transmitted bacteria or common uro-
pathogens represent the most frequent cause of inflammatory
conditions within the male genital tract (Table I). Orchitis or
epididymo-orchitis may also evolve as a complication of systemic,
predominantly viral, infections due to haematogenous dissemination
of the pathogen (Mikuz and Damjanov, 1982; Dejucq and Jegou,
2001). Moreover, non-infectious, sterile causes of inflammation, such
as those caused by environmental threats and autoimmune reactions,
need to be considered (Chan and Schlegel, 2002a, 2002b; Schuppe
and Meinhardt, 2005) (Table I).

Principally, two different clinical situations can be distinguished
according to the acuity of the disease. In patients suffering acute,
symptomatic inflammatory conditions of reproductive organs,
fertility-related problems are initially of a secondary nature, but may
gain importance during follow-up. Conversely, male partners seeking
clinical consultation to conceive a child seldom have obvious clinical
symptoms. According to World Health Organization recommenda-
tions, diagnosis among these patients is consequently entirely based
on the combination of impaired semen quality with additional criteria
from the medical history, physical examination and the analysis of
urine and/or ejaculate (Rowe et al., 2000; Schuppe et al., 2017).
These criteria include a history of epididymitis or sexually transmitted
disease, thickened or tender epididymis, elevated numbers of
peroxidase-positive white blood cells in the ejaculate, culture with
significant growth of pathogenic bacteria and/or abnormal biochemis-
try of the seminal plasma with pathological levels of inflammatory
markers or elevated reactive oxygen species (Rowe et al., 2000). For
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these rather unspecific criteria the diagnostic term ‘male accessory
gland infection’ (MAGI) has been coined (Comhaire et al., 1980). Its
wide definition also encompasses epididymitis and lesions along the
excurrent ducts (Weidner et al., 1999; Dohle et al., 2005) and there-
fore organs that are not anatomically considered as accessory sex
glands. Moreover, the MAGI classification does not allow
compartment-specific differential diagnosis of infectious versus non-
infectious inflammatory disorders (Haidl et al., 2008; Weidner et al.,
2008). In particular, testicular inflammation is likely to be neglected as
an underlying cause of male infertility (Schuppe et al., 2008). In
asymptomatic patients, subacute or chronic inflammatory reactions in
the testis can be diagnosed only by invasive biopsy.

Available epidemiological studies mainly refer to MAGI and, thus,
focus on the excurrent ducts. Prevalence rates for male infertility attrib-
utable to infection range from 6 to 15% in reports from andrological
outpatient clinics (Comhaire et al., 1987; Hellwig, 2008; Tüttelmann and
Nieschlag, 2010; Olesen et al., 2017; Punab et al., 2017). There are,
however, striking geographical variations, with prevalence rates up to
30% in regions with limited access to medical care (Ekwere, 1995;
Ahmed et al., 2010; Eke et al., 2011). These observations have been
linked to sexually transmitted infections (STI) and inadequate treatment,
leading to secondary male and couple infertility (Bayasgalan et al., 2004;
Lunenfeld and Van Steirteghem, 2004; Mascarenhas et al., 2012).
However, despite obvious clinical evidence linking infectious epididymitis
and epididymo-orchitis to male infertility, consistent epidemiological data
are scarce (Ness et al., 1997; Ochsendorf, 2008).

Due to the inconsistent use of definitions and diagnostic shortcom-
ings, the overall impact of genital tract infection and inflammatory
conditions on male reproductive health and fertility is a matter of

controversy (Schuppe et al., 2017). Crucially, the course of the dis-
ease (acute versus chronic), the affected organ and, in case of infec-
tions, the type of pathogen has to be taken into account. Moreover,
fertility may be disturbed at different levels, comprising deterioration
of sperm function and integrity, dysfunction of the accessory glands,
obstruction of the epididymal duct, and impairment of spermatogenesis
and/or steroidogenesis. It is unambiguous that sequelae of testicular or
epididymal inflammation are of major concern even in ‘low-grade’
disease, whereas the impact of prostatitis and urethritis on semen para-
meters is considered to be limited (Wolff, 1995; Weidner et al., 1999;
Haidl et al., 2008; Schuppe et al., 2008). In this complex situation, the
topic of infection and inflammation is either underestimated or even
neglected in current concepts of male reproductive impairment and
respective guidelines on diagnosis and therapy (Barratt et al., 2017;
Tournaye et al., 2017a, 2017b; Jungwirth et al., 2018).

There is an obvious need for deeper insight into testicular and epi-
didymal immunopathologies and their contribution to couple infertility.
Advancement in the investigation of immunopathological mechanisms
involved in human testicular and epididymal inflammation is, however,
hindered by restricted access to tissue samples (Chakradhar, 2018).
Here, comparative analyses of experimental animal models can over-
come these limitations. Unravelling the complex mechanisms underlying
the pathogenesis of infection and inflammation in the male genital tract,
as well as dissecting their impact on fertility-related parameters, is a
pre-requisite for the development of innovative diagnostic tools and
evidence-based therapeutic strategies. As an example, there is increas-
ing support from experimental animal models for the view that the
mechanisms underlying infectious disease and inflammatory conditions
in the male genital tract are interrelated with autoimmune phenomena

.............................................................................................................................................................................................

Table I Classification of human epididymitis and orchitis according to etiological factors and pathomechanisms.

Etiology Main factors Patho-mechanism Clinical manifestation

Microorganisms Bacteria
Uropathogens (Escherichia coli, Entero-bacteriaceae spp. and others); sexually
transmitted infections (Chlamydia trachomatis, Neisseria gonorrhoeae and others)

Ascending, canalicular
infection

Epididymitis/Epididymo-
orchitis

Mycobacterium tuberculosis, M. leprae, Treponema pallidum, Brucella spp. Canalicular and/or
haematogenous
infection

Orchitis (predominantly
granulomatous),
Epididymitis

Viruses
mumps virus, Coxsackie virus types, Epstein-Barr, influenza, varicella, human
immunodeficiency viruses and others

Haematogenous
infection

Orchitis

Adenovirus, Enterovirus Epididymitis

Fungi
Candida albicans, Histoplasma capsulatum

Ascending, canalicular
infection

Epididymitis

Parasites
Trichomonas vaginalis

Epididymitis

Schistosoma spp., Filariasis

Chemical
noxae

Drugs (e.g. Amiodarone); heavy metals (e.g. mercury compounds) ? Epididymitis,
Orchitis

Physical factors Genital trauma, vasectomy Obstruction Chronic Epididymitis

Unknown Systemic disease Morbus Behcet, systemic lupus erythematosus, Schönlein-Henoch
purpura and other vasculitic disorders

Autoimmune
inflammation

Orchitis,
Epididymitis

‘Idiopathic’ Autoimmune
inflammation?

Idiopathic epididymitis
Idiopathic granulomatous
orchitis
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(Hedger, 2011a). Moreover, mouse bacterial epididymitis models point
to the importance of the magnitude of the host response to infection
in causing damage (Michel et al., 2016) prompting us to assess the
value of anti-inflammatory or immuno-modulatory therapy in addition
to standard antibiotic treatment.

Thus, immune-based male factor infertility should be considered in
a broader context, beyond the formation of antisperm autoanti-
bodies, as it is commonly defined. Although not established as clinical
entities in andrology, this concept includes the characterization of
autoimmune orchitis and epididymitis in man. Therefore, in this
review we aim to compare observations made in the clinic with data
from animal models to evaluate their suitability and limitations, not
only to enhance our principal understanding but also to advance clin-
ical diagnosis and treatment of immune-based male factor infertility.
Inflammation due to genital trauma or chemical noxae (Table I),
low-grade inflammation associated with systemic diseases, such as
metabolic syndrome and diabetes, as well as the immunopathology of
testicular neoplasia are beyond the scope of this review.

Methods
This narrative review summarizes different primary studies from which
conclusions were drawn to present a holistic interpretation contributed
by the reviewers’ own experience and existing concepts and models
from the literature. The outcome is of a qualitative rather than a quantita-
tive meaning and aims to critically evaluate and comprehend the existing
data towards a better understanding of the commonalities and diversities
that exist in the literature around this research topic. The authors per-
formed an extensive search in Medline database without restrictions until
January 2018. Relevant literature was identified by the following search
terms: ‘infection’ and/or ‘inflammation’ and ‘testis’ and/or ‘epididymis’,
‘infection’ and/or ‘inflammation’ and ‘male genital tract’, ‘male infertility’,
‘orchitis’, ‘epididymitis’, ‘experimental autoimmune’ and ‘orchitis’ or ‘epi-
didymitis’ or ‘epididymo-orchitis’, antisperm antibodies’, ‘vasectomy’. In
addition to that, reference lists of primary and review articles were
reviewed for additional publications independently by each author.
Selected articles were verified by each two separate authors and discrep-
ancies discussed within the team.

The primary focus of this study is to understand the relevance of models
of infectious and autoimmune epididymo-orchitis to the clinic. Other organs
of the male reproductive tract (e.g. prostate), influences of obesity, hormonal
imbalances or environmental threats other than pathogens were not covered.

The testicular and epididymal
immune environment
The immune system of the testis and epididymis differ in a number of
aspects. Firstly, although immune cells (macrophages close to the
wall of the seminiferous tubules) can be in close proximity to sperm-
atogonia, the basement membrane prevents direct physical contact
with developing germ cells, whilst leucocytes are observed in the epi-
didymal lumen next to spermatozoa without any barrier in between.
Moreover, little evidence exists for extended allograft survival, a hall-
mark of immune privilege (see below), in the epididymis in contrast
to the testis. In support, pro-inflammatory stimuli, such as those
caused by bacterial infection, are considerably greater in the epididy-
mis than in the testis (Hedger, 2011a). In rodent orchitis, neutrophils

are rather rarely found (in contrast to human), whilst they represent
the most frequent leucocyte subset in epididymitis in men and
rodents (Mikuz and Damjanov, 1982; Schuppe et al., 2008; Michel
et al., 2015). B cells are virtually absent from the normal human and
rodent testis and epididymis (Flickinger et al., 1997; Serre and
Robaire, 1999; Hedger, 2011a; Klein et al., 2016). Details about the
similarities and differences of the testicular and epididymal immune
system in rodents and men can be found in Fig. 1 and Table II.

The structure and immune privilege
of the testis
The male gonad is principally separated into two compartments, i.e. the
interstitial compartment, where steroidogenic Leydig cells produce
androgens, and the seminiferous epithelium, where spermatogenesis
occurs. The interstitial compartment also contains leucocytes, fibrocytes
as well as blood and lymph vessels. The seminiferous tubules consist of
a tubular structure that is framed by the myoid peritubular cells, whose
contractions move the immotile spermatozoa intraluminally towards
the rete testis and then the epididymis. In the seminiferous epithelium
the columnar somatic Sertoli cells form deep invaginations, in which the
developing germ cells are embedded to receive physical and nutrient
support. Spermatozoa develop from diploid spermatogonia, which mito-
tically divide until some differentiate and enter meiosis to give rise to
tetraploid primary spermatocytes. After meiosis, haploid spherical sper-
matids originate, which differentiate to elongated spermatids that are
finally released in the lumen as highly specialized spermatozoa.

With the principal organization of the testis similar in experimental
rodents and men, some differences are evident. Whilst in rodents
the peritubular cells consist of only one single layer, in men they are
multiconcentric and can harbour leucocytes and capillaries. In men,
connective tissue septae originating from the organ capsule (tunica
albuginea) separate the interstitial space, a means not evident in
rodents. In men, spermatogenesis is also much less ‘efficient’ than in
mouse or rat as defined by daily sperm production in relation to tes-
tis weight (Johnson et al., 2000).

Immune privileged sites are places in the body where foreign anti-
gens are tolerated without evoking detrimental inflammatory immune
responses. The testis was first identified as an immune-privileged
organ when histo-incompatible allo- and xenografts transplanted into
the testis were shown to survive indefinitely (Bobzien et al., 1983;
Head et al., 1983).

In the testis, the auto-antigenic germ cells, which arise in puberty
after the establishment of self-tolerance, are protected by multiple,
complementary mechanisms that include:

- The blood–testis barrier: The Sertoli cells that besides providing
structural and nutritional support to the germ cells, also control
access of immune cells and immune effector molecules via the
blood–testis barrier (BTB). The BTB consists of highly specialized
inter-Sertoli tight, gap and adherens junctions. With the formation
of the BTB, neoantigens on meiotic and haploid germ cells are
sequestered from the basal part of the seminiferous epithelium and
the testicular interstitium and thus direct access to the leucocytes,
which reside exclusively in the interstitium (Fig. 1). Of note, a
recent study proposes that antigens of male germ cells sequestered
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behind the BTB are phagocytosed in the apical part of Sertoli cells,
pass as cargo through the cells and egress basally, thus circumvent-
ing the BTB by intracellular transport. Egressed antigens then cause
and maintain systemic tolerance in a regulatory T (Treg) cell
dependent mechanism (Tung et al., 2017). Indeed, transient deple-
tion of Treg from normal mice led to spontaneous EAO and pro-
duction of antibodies that selectively target the egressed meiotic
germ cell Ag such as lactate dehydrogenase 3. This new finding
indicates that meiotic and postmeiotic sperm antigens are not
completely sequestered. This infers that the local regulation in the
testis, also operates to maintain systemic tolerance for the non-
sequestered sperm antigens. The presence of tolerogenic macro-
phages in testis is an example.

- The expression of immunoregulatory and immunosuppressive factors by
the testicular somatic cells, particularly Sertoli cells, peritubular cells,
Leydig cells and testicular macrophages, thereby creating an
immune privileged environment. As an example, Sertoli cells have

several immunosuppressive properties, such as the production of
galectin-1 and other immunoregulatory molecules (Kaur et al.,
2014; Gao et al., 2016). Under inflammatory conditions, Sertoli
cells release anti-inflammatory cytokines and molecules like activin
A, which may counterbalance excessive immune responses (Hedger
and Winnall, 2012). It is believed that peritubular cells are also
involved in the maintenance of the testicular immune environment
(Schuppe and Meinhardt, 2005), as they also express immune media-
tors, including activin A and Toll-like receptors (TLR) (de Winter
et al., 1993; Albrecht et al., 2005; Muller et al., 2005; Mayer et al.,
2016). Clearly, their role in testicular immunity and inflammatory
responses warrants further study.

- The phenotype of the intratesticular immune cells: examples are the
anti-inflammatory/immunoregulatory M2 phenotype of resident
testicular macrophages and the functionally tolerogenic characteris-
tics of testicular dendritic cells (Rival et al., 2007; Mossadegh-Keller
et al., 2017; Wang et al., 2017) (Table II). Amongst the leucocyte

Figure 1 Immune environment of the normal adult testis and epididymis. BC, basal cell; BM, basement membrane; BTB, blood–testis barrier; DC, den-
dritic cell; GC, germ cell; LC, Leydig cell; M, macrophage; MC, mast cell; NC, narrow and clear cell; PC, principal cell; PTC, peritubular cell; SC, Sertoli cell;
SMC, smooth muscle cell; TC, T cell; TM, testicular macrophage; IL, interleukin; MHC, major histocompatibility complex; IDO, indoleamine 2,3-dioxygenase.
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population, macrophages comprise the most abundant immune cells
in the testis in most mammals including men and rodents (Hedger,
1997; Bhushan and Meinhardt, 2017). The immunosuppressive pheno-
type of macrophages is indicated, amongst others, by the expression
of the M2 surface marker CD163 and production of the anti-
inflammatory cytokine interleukin (IL) 10 (Wang et al., 2017). Under
inflammatory conditions, the production of pro-inflammatory media-
tors, such as tumour necrosis factor (TNF), IL-1, IL-6, monocyte
chemotactic protein-1 (MCP-1) and nitric oxide (NO) is dampened,
whilst IL-10 secretion increases (O’Bryan et al., 2000; Bhushan et al.,
2011, 2015; Winnall et al., 2011b). The maturation state of dendritic
cells is regarded as a control point for the induction of peripheral tol-
erance or autoimmunity. Assessing the levels of antigen-presentation
molecules, such as major histocompatibility complex class II antigens
(MHC II), co-stimulatory molecules, such as CD80 and CD86, and
chemokines acting via the C–C chemokine receptor type 7 (CCR7)
indicates that testicular dendritic cells are tolerogenic under normal
conditions (Rival et al., 2007, 2008). In addition to testicular macro-
phages and dendritic cells, several immunoregulatory T cell subpopu-
lations, such as suppressor CD8+ cells, natural killer (NK) cells and
CD4+ Foxp3+ regulatory T cells (Treg) are also present in the normal
rat and human testis (Mukasa et al., 1995; Tompkins et al., 1998;
Schuppe et al., 2008; Jacobo et al., 2009; Duan et al., 2011; Klein
et al., 2016). In particular, Treg cells are thought to inhibit antigen spe-
cific T cell responses in the adult testis, at least in rodents (De
Cesaris et al., 1992; Fijak et al., 2011, 2015; Tung et al., 2017).

The structure and immune environment
of the epididymis
The epididymis is a tightly coiled single tubule that connects to the
testis via the efferent ducts. The epididymis comprises three distinct
regions: the caput (head), which receives the spermatozoa from the
efferent ducts, the corpus (body) and the cauda (tail), where sperm
are stored and pass to the vas deferens. The epididymal stroma is
also divided into distinct morphological segments by connective tissue
septa (Stammler et al., 2015). The epididymal duct is formed by a

pseudo-stratified epithelium surrounded by a peritubular layer of
smooth muscle cells that progressively increases in thickness from
the caput to cauda. In strong contrast to the BTB, the blood–epididy-
mis barrier between epididymal epithelial cells is permissive to the
passage of leucocytes. Consequently, intraepithelial macrophages and
T cells (‘halo cells’) and even intraluminal leucocytes, mainly macro-
phages, are a frequent observation (Nashan et al., 1989; Pollanen and
Cooper, 1994; Jahnukainen et al., 1995; Yakirevich et al., 2002;
Hedger, 2011a; Michel et al., 2015) (Fig. 1). Macrophages and den-
dritic cells are the main leucocyte population in the normal mouse
epididymis (Hedger, 2011a) (Table II). Dendritic cells show a regional
distribution pattern with cells most prominent in the basal part of the
epithelium and peritubular zone of the caput. Here, slim protrusions
pass through the epithelial cells and at least partly reach the lumen
(Da Silva et al., 2011) (Fig. 1). In the cauda, dendritic cells are much
less frequent, have a flat morphology and do not seem to project
extensions to the lumen. Numbers and morphology of the dendritic
cells in the caput epididymis indicate a possible role in the regulation
of systemic self-tolerance towards the neoantigens of spermatozoa
(Da Silva et al., 2011). Whether this indeed holds true and involves Treg
cells, as principally indicated by Wheeler et al. (2011) in a vasectomy
model, remains to be elucidated. Overall, it needs to be noted that the
relative contribution of the epididymis (beside the testis) to self-
tolerance requires additional studies to address many open questions,
such as the role of caput dendritic cells, the blood–epididymis barrier,
the role of intraluminal leucocytes and regional differences in immune
cell subpopulations to name only a few. All need to be addressed with
appropriate methods to answer this fundamental query.

Infectious epididymitis,
epididymo-orchitis and orchitis

Clinical features of bacterial epididymitis and
epididymo-orchitis
Epididymitis is a common condition in males presenting with acute
uni- or bilateral scrotal pain and swelling (Lorenzo et al., 2016).

............................... ...............................

.............................................................................................................................................................................................

Table II Presence of immune cells in the normal testis and epididymis of adult mouse and human.

Immune cells Common markers Testis Epididymis

Mousea Human Mouse Human

Macrophages
M1 classically activated
M2 alternatively activated

CD68, F4/80 (mouse), CD11b
CD86, MHC class II
CD163, CD206

+++ +++ + +

Dendritic cells CD11c, CD209, MHC class II, CD80, CD86 + (+) ++b ++

T cells CD3, CD4, CD8, Foxp3 + + + +

B cells CD19, CD 20, B220 (CD45R) + (+) +/− ?

Natural killer cells CD56, CD161 (NK1.1) + (+) ? ?

Mast cells Tryptase
Fc epsilon RI alpha, CD117 (c-kit), CD23, CD203c

(+) + + +

aConcerning the overall occurrence of immune cell subpopulations, comparable results exist for the rat; btubular wall.
(+) Very few.
+++ Abundant.
MHC, major histocompatibility complex.
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Incidence ranges from 250 to 650 per 100 000 males each year
(Nickel et al., 2005; Nicholson et al., 2010). The inflammation may
spread to the corresponding testis as ‘epididymo-orchitis’, especially
when adequate therapy is delayed. In patients with isolated epididy-
mitis without concomitant orchitis, hydrocele and scrotal wall indur-
ation, palpation is sufficient for diagnosis (Eickhoff et al., 1999; Smith
et al., 2013). Additional ultrasound is recommended in complicated
cases, for follow-up investigations, as well as to exclude testicular tor-
sion in young men (Mevorach et al., 1986; Banyra and Shulyak, 2012;
Pilatz et al., 2013). Chronic epididymitis is defined as 3 months or
longer history of symptoms of discomfort/pain in the epididymis
(Nickel et al., 2002).

In the majority of cases, epididymitis is of infectious origin, with
bacterial ascension from the urethra to the epididymis being of princi-
pal importance (Pilatz et al., 2015b) (Table I and Fig. 2). Notably, the
pathogen spectrum largely depends on the applied diagnostics and
the patient cohort investigated. Studies from military hospitals or ven-
ereal disease centres suggested dichotomous categories, with STIs in
patients < 35 years and classical pathogens causing urinary tract infec-
tions in older patients (Harnisch et al., 1977; Berger et al., 1987;
Osegbe, 1991). Recently, however, it was demonstrated in 251
patients presenting to the emergency department that, although STIs
are more common in younger patients, there is no strict age-specific
differential incidence (Pilatz et al., 2015b). In addition, geographic dif-
ferences can be encountered when comparing the aetiology between
industrial and developing countries (Osegbe, 1991; Hoosen et al.,
1993).

A pooled analysis of 14 studies (1978–1999), including 758
patients and considering STIs and common uropathogens, revealed a
pathogen detection rate of 69.8% (Michel et al., 2015). Using modern
microbiological methods (culture, PCR, 16S rDNA analysis), we
recently showed an improved detection rate of 88% in antibiotic-
naïve patients (Pilatz et al., 2015b). Comparable to other urinary tract
infections, such as prostatitis and cystitis, Escherichia coli is the

dominating pathogen (Fig. 2A). As antimicrobial pretreatment largely
decreases the microbiological detection rate (Fig. 2B), microbiological
diagnostics should be performed before starting antibiotic therapy
(Grant et al., 1987; Lee et al., 1989; Osegbe, 1991; Garthwaite et al.,
2007; Pilatz et al., 2015b). Since bacterial ascension is the major route
of infection, bacterial analysis in urine/urethra is of utmost import-
ance. Current international guidelines recommend diagnostics on
STIs as well as urine culture for classical uropathogens (Workowski
and Bolan, 2015; Bonkat et al., 2018).

Despite epididymitis occurring frequently in patients of reproduct-
ive age (Wolin, 1971; Berger et al., 1979; Kristensen and Scheibel,
1984; Weidner et al., 1990; Osegbe, 1991; Pilatz et al., 2015b), a sys-
tematic review identified only five studies investigating the impact of
acute epididymitis on semen parameters (Rusz et al., 2012).
Unfortunately, these early reports on a total of 211 patients (Dietz,
1960; Tozzo, 1968; Ludwig and Haselberger, 1977; Weidner et al.,
1990; Osegbe, 1991) are very heterogeneous regarding investigation
time points and methods of semen analysis (Rusz et al., 2012).
Nevertheless, the collective analysis indicates profound deterioration
of semen quality (sperm concentration, motility, morphology)
together with pronounced leukocytospermia in the acute phase of
the disease. After therapy, recovery was reported 3–6 months later.
Data are compromised by the fact that some studies used antimicro-
bial therapies inadequate for Chlamydia trachomatis. Nevertheless, out
of the 211 patients evaluated, 10% were reported with azoospermia
and a further 30% with oligozoospermia, indicating 40% with post-
inflammatory subfertility at least (Rusz et al., 2012).

Accordingly, it is a matter of major concern that the course of epi-
didymitis remains unpredictable despite adequate antimicrobial ther-
apy. After 3 months, ~20% of patients still have an epididymal
infiltrate on palpation or ultrasound (Weidner et al., 1990; Eickhoff
et al., 1999; Pilatz et al., 2015b). Moreover, given the fact that up to
60% of all cases involve the testis as well (Desai et al., 1986; Kaver
et al., 1990; Pilatz et al., 2013), a direct or indirect negative impact on

Figure 2 Pathogen spectrum in patients with acute epididymitis. (A) In patients without antimicrobial pretreatment (n = 157) bacterial pathogens
can be identified in 88% of cases. (B) In patients with antimicrobial pretreatment (n = 90) a pathogen detection is only possible in ~54% of cases.
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spermatogenesis can be hypothesized. Indeed, two studies report
testicular damage and subsequent infertility after acute unilateral epi-
didymitis (Dietz, 1960; Osegbe, 1991). Whereas the histopathology
of acute bacterial epididymo-orchitis is characterized by oedema and
massive infiltration of predominantly neutrophils into both the inter-
stitial compartment and seminiferous tubules (Mikuz and Damjanov,
1982; Schuppe and Bergmann, 2013) (Fig. 3A), testicular biopsy spe-
cimens obtained from two patients during follow-up confirmed the
development of severe hypospermatogenesis with seminiferous
tubules showing ‘aspermatogenesis’ (loss of the adluminal compart-
ment), thickened lamina propria, and interstitial fibrosis in both ipsi-
and contralateral testes (Osegbe, 1991) (Table III). Increased FSH
levels support the histopathological findings of testicular failure. On
the other hand, a recent study on 90 patients suffering unilateral epi-
didymitis showed no reduction in testicular volume after the acute
phase compared with the healthy contralateral side (Pilatz et al.,
2013). Thus, in addition to loss of testicular function, inflammatory
obstruction of the epididymal duct has to be considered as an under-
lying cause of persistent oligo- or azoospermia (Fig. 4A).

Animal models of bacterial
epididymo-orchitis
Taking biopsies from acute bacterial epididymitis is contraindicated to
avoid the risk of uncontrolled spread of the pathogens by the punc-
ture and irreversible damage (i.e. obstruction) of the organ. Hence,
human epididymitis samples, which may be used to study the detailed
assessment of morphological changes and inflammatory responses,
are rarely available. As surrogates the careful design and conduct of
appropriate animal studies is warranted. Of particular value are mod-
els that mimic the clinical situation, e.g. bacterial infection that is
allowed to ascend at least 2–3 days, which corresponds to the aver-
age time after infection when men usually report to the clinic with
symptoms. Ideally, an animal model should allow for assessment of
both acute and chronic impact on the epididymis and the testis and
involve a relevant causative pathogen. In this regard, E. coli (Lucchetta
et al., 1983; Nielsen, 1987; Hackett et al., 1988; Vieler et al., 1993;
Tanaka et al., 1995; Kaya et al., 2006; Demir et al., 2007; Bhushan
et al., 2008; Fei et al., 2012) and Chlamydia trachomatis (Moller and

Figure 3 Histopathology of human orchitis of different etiology and mouse experimental autoimmune orchitis. (A) Human testis: acute bacterial
orchitis (epididymo-orchitis) with massive infiltration of both the interstitium and seminiferous tubules (ST) with inflammatory cells, including numerous
neutrophils. The architecture of affected ST is largely disrupted, whereas adjacent ST show hypospermatogenesis; interstitial edema and enlarged ven-
ous blood vessel (BV) (Periodic acid–Schiff stain, objective ×10). (B) Sequelae of mumps orchitis with persistent focal inflammation in human testis:
Dense peritubular lymphocytic infiltrate involving the lamina propria as well as adjacent blood vessels (1), tubular atrophy resulting in complete hyaliniza-
tion (‘tubular shadows’; 2, 3), and interstitial fibrosis (3). The adjacent seminiferous tubules show hypospermatogenesis; note the ‘flattened’ epithelium
with a complete loss of the adluminal compartment in some tubules (4); (hematoxylin–eosin staining, objective ×10). (C) Higher magnification of area 1
in (B); note the characteristic meshwork pattern of the affected lamina propria; the germinal epithelium is largely disrupted, with only a few germ cells
remaining (hematoxylin–eosin stain, objective ×40). (D) Human testis: subacute granulomatous orchitis with residual structures of ST containing inflam-
matory cells (hematoxylin and eosin stain, objective ×40). (E) Characteristic histopathology of mouse experimental autoimmune orchitis (EAO) showing
destruction of testicular morphology with reduced size of ST, loss of germ cells and presence of dense peritubular and interstitial inflammatory infiltrates
(marked by asterisk; hematoxylin stain, objective ×20). (F) Mouse EAO, higher magnification (hematoxylin stain, objective ×40) of selected area in (E).
(A–D) From Schuppe and Bergmann (2013); reprinted with permission of Springer Nature (License number: 4282971349118).
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Mardh, 1980; Jantos et al., 1989, 1992) have been selected preferen-
tially as model microbes for rodent epididymitis studies, because they
represent the most frequently isolated bacterial pathogens in the

clinic. The number of bacteria, usually determined by colony forming
units (CFU), injected in epididymitis studies in animals ranges from
4 × 104 (Lang et al., 2013, 2014; Cao et al., 2014) to 2 × 107 (Fei

.................................................................................. ..........................................................

.................................................................................................................................................................................................

Table III Characteristics of pathological changes found in animal models of infectious, inflammatory and autoimmune
male factor infertility and their occurrence in respective human disorders.

Pathology Animal models Human disease

Bacterial
epididymitis /
epididymo-
orchitis

Systemic
viral
disease

LPS-induced
inflammation

EAO Vasectomy Bacterial
epididymitis /
epididymo-
orchitis

Systemic
infection
(i.e. viral
disease)

Testicular
inflammatory
lesions in
infertile males

Semen quality Impaired sperm
parameters/
azoospermia

+ nd nd + + + + +

Leukocytospermia nd nd nd nd – + – –

Detection of
pathogens

Epididymis
(caput)

+ nd – – – + + –

Testis (+) + – – – + + –

Epididymal
pathology/
immunopathology

Presence of
leucocytic
infiltrates

+ nd nd + + + nd nd

Accumulation of
collagen fibres/
fibrosis

+ nd nd nd + + nd nd

Granuloma
formation

+ nd nd + + (+) – –

Testicular
pathology

Disruption of
spermatogenesis/
germ cell death

+ + + + + + + +

Disruption of tight
junctions

– + nd + nd + + +

Thickened lamina
propria of
seminiferous
tubules

– + nd + nd + + +

Accumulation of
collagen fibres

nd nd nd + nd + + +

Disruption of
steroidogenesis

nd + + + nd (+) + –

Testicular
immunopathology

Presence of
lymphocytic
infiltrates

+ + – + (+) + + +

Increased number
of TH17+ T cells
and their
cytokines

nd nd nd + nd nd nd +

Increased
numbers of
macrophages/
dendritic cells

+ + + + nd + + (+)

Elevated levels of
pro-inflammatory
cytokines

+ + + + nd nd nd +

Formation of
immune
complexes

nd nd nd + + nd nd (+)

HMGB1 release + nd nd + nd nd nd +

Systemic
immunopathology

Autoantibodies
against haploid
germ cells

nd nd nd + + (+) – (+)

LPS, lipopolysaccharide; EAO, experimental autoimmune orchitis; nd, not determined; HMGB1, high mobility group protein B1; TH17, T-helper 17 cells.
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et al., 2012) in mice and from 105 (Vieler et al., 1993; Kaya et al.,
2006; Biswas et al., 2015) to 108 (Tanaka et al., 1995) CFU in rats.
The duration of infection in these studies varies from several hours
(Vieler et al., 1993; Tanaka et al., 1995; Kaya et al., 2006) to several
days (Kuzan et al., 1989; Bhushan et al., 2008; Turner et al., 2011; Fei
et al., 2012; Cao et al., 2014) or even months (Lucchetta et al., 1983;
Hackett et al., 1988; Pilatz et al., 2015a). While the bacteria were dir-
ectly injected into the epididymis (Kuzan et al., 1989; Fei et al., 2012;
Cao et al., 2014) or the testis (See et al., 1990), in some studies injec-
tion into the vas deferens was performed to model the route of
infection in men. In contrast to the situation in human, the latter
were often performed in combination with vasoligation proximal of
the injection site to ensure unidirectional distribution towards the
epididymis and avoid urinary tract involvement.

While the majority of epididymitis patients clinically present with
unilateral infection, the contralateral, uninfected side may not be con-
sidered normal or free of inflammatory signs (Ludwig et al., 2002).
Hence, it cannot serve as an entirely healthy control in experimental
models.

Intraductal E. coli epididymitis model
Taking all these aspects into consideration, we designed a rodent
model of bacterial epididymitis, in which uropathogenic E. coli (UPEC
strain CFT073) were bilaterally injected into the vas deferens of mice
(Lang et al., 2013, 2014; Stammler et al., 2015; Khosravi et al., 2016)
or rats (Bhushan et al., 2008; Lu et al., 2013; Biswas et al., 2015).
Tissues were analysed 3 or 7 days after the infection. In order to
delineate the spectrum of pathogens found in men, non-pathogenic
commensal E. coli strains (NPEC strain 470) were included. The result-
ing retrograde ascent of the bacteria induced an infection and inflamma-
tion of the epididymis initially in the cauda epididymis and in the
proximal epididymis several days later. After 3 days of infection, bac-
teria were confined to the ductal lumen of the cauda epididymis in
mice (Stammler et al., 2015). Later, at 7 days post-infection, pathogens
were reaching the caput epididymis and the testis (Biswas et al., 2015;

Michel et al., 2016). Similar observations have been made in rat models
of unilateral E. coli-induced epididymitis (Lucchetta et al., 1983; Tanaka
et al., 1995; Kaya et al., 2006; Demir et al., 2007; Pilatz et al., 2015a).

Initial histopathological changes were primarily observed in the
cauda epididymis, with accumulation of collagen fibres, flattening of
the epithelium and increase in luminal diameter, oedema, abscess
formation and leucocyte infiltration in the interstitium (Fig. 4B and
Table III). Furthermore, with the disruption of tight junctions and loss
of stereocilia, the integrity of the epithelium was compromised in
mice (Lang et al., 2013; Stammler et al., 2015). Following the prox-
imal progression of the infection and the disruption of segmental
boundaries, the tissue damage and fibrosis became severe, and colla-
gen deposits of collagen I and fibronectin were detected throughout
the cauda and in the more distal segments of the corpus (Stammler
et al., 2015; Michel et al., 2016) (Fig. 4B and Table III). Beside a longer
exposure to the pathogen, the cauda appeared to be principally
more sensitive to fibrotic transformation, as was indicated by in vitro
organ culture models (Michel et al., 2016).

Immune cell infiltration of the epididymis of rat occurred as early
as 24h post-infection (Tanaka et al., 1995) and by 3 days post-
infection, leucocytic infiltration of the interstitial space (Hackett et al.,
1988; Tanaka et al., 1995; Kaya et al., 2006; Lang et al., 2013), and in
some cases in the ductal lumen as well (Ludwig et al., 1997, 2002;
Kaya et al., 2006), was observed. Concomitantly, a surge in pro-
inflammatory cytokine levels was observed following E. coli-induced
epididymitis (Turner et al., 2011). In the mouse model, infection with
NPEC induced a rise in cytokine levels that was even higher than
with UPEC, but did not cause damage comparable to that observed
after UPEC infection (Lang et al., 2014). Blunting the immune
response by deletion of Myd88, an adaptor protein in TLR signalling,
reduced tissue damage substantially in UPEC-induced epididymitis in
mice. In conclusion, severe histopathological damage and epididymal
duct obstruction seem to depend on both the presence of certain E.
coli UPEC virulence factors and the magnitude of the inflammatory
response, whilst one factor alone results in less dramatic histological
alterations (Lang et al., 2014; Michel et al., 2016).

Figure 4 Histopathology of human ‘chronic’ epididymitis and a mouse epididymitis model. Seven days post infection with uropathogenic E. coli
(UPEC) fibrotic transformation, epithelial degeneration and ductal obstruction (yellow line) are visible in mice (B) comparable to the histopathology
observed in ‘chronic’ epididymitis in men (A) (azan staining; from Michel et al. (2016)). Reprinted with permissions from Wiley and Sons (license
number: 3973511270642).

425Inflammation-based male infertility



Chlamydia trachomatis epididymitis models
Two rodent models, in mouse (Kuzan et al., 1989) and in rat (Jantos
et al., 1992), have been designed to investigate the effects of C. tracho-
matis-induced epididymitis on the epididymis and testis. In the mouse,
injection of the pathogen into the epididymis resulted in initial swelling
of the tissue and detection of the bacteria both within epithelial cells
and the ductal lumen, as well as immune cell infiltration and flattening
of the epithelium. Intravasal injection of bacteria in the rat likewise
caused epididymal swelling, cellular infiltration, spermatic granulomas,
epithelial disruption and fibrosis in the epididymis. While the pathogens
could be recovered from the epididymis up to 90 days post infection,
chlamydial antigens were also found in the testes (Jantos et al., 1992).

Direct random injection of both C. trachomatis and E. coli elicits a
response comparably milder than in intraductally induced epididymi-
tis, although different time points and numbers of bacteria injected
made the exact comparison difficult (Kuzan et al., 1989; Greskovich
et al., 1993; Fei et al., 2012; Cao et al., 2014).

Linking animal models of local
bacterial infection to the clinic
Amongst all animal models related to infectious and/or inflammatory
diseases of the testis and epididymis, the acute bacterial epididymitis
models is the closest to the clinical situation (Table III and Fig. 5).
Relevant pathogens, canalicular infection pathways, time course, dam-
age observed and consequences for fertility can be readily mimicked
in vivo or even in epididymal organ culture models.

Both experimental animal and human data indicate that, in
chronic epididymitis, luminal ascent of bacteria is strictly gated
with infection-associated tissue damage mostly in the distal cauda seg-
ment (Stammler et al., 2015). Consistent with this concept, microbio-
logical screening of testicular tissue obtained from patients with
obstructive or non-obstructive azoospermia remained completely nega-
tive, despite down-stream detection of STI in some cases (Sripada et al.,
2010). On the other hand, the clinical course of epididymitis remains
unpredictable despite adequate antimicrobial therapy.

Long-term sequelae seem to be associated with infection by certain
microbial strains. As an example, epididymitis elicited by E. coli strains
expressing the virulence factor α-haemolysin (such as CFT073) did not
result in recovery of initial low sperm counts in mice. This is similar to
the clinical observation, that men infected with α-haemolysin-negative E.
coli strains recovered from initially low sperm counts after 3 months,
whilst this was not the case when α-haemolysin-positive E. coli pathovars
were found (Lang et al., 2013). This highlights the role of bacterial viru-
lence factors in the final outcome of genital tract infections.

In addition to the quantitative reduction of semen quality, recent inves-
tigations on the sperm proteome in patients following acute epididymitis
indicate several differentially expressed sperm proteins. Of those, many
have been described in other patient cohorts suffering subfertility, epi-
didymal dysfunction or inflammation of the urogenital tract (Pilatz et al.,
2014a). Beside a change in the composition of proteins also the glycome
of spermatozoa in E. coli-associated epididymitis was altered as documen-
ted by a substantial reduction of sialic acid residues bound to the surface
of spermatozoa in men and mice. Mechanistically, α-haemolysin as a
pore-forming toxin allowed Ca2+ to enter the cell, thereby eliciting the

acrosome reaction liberating stored sialidases. Premature acrosome reac-
tion incapacitates spermatozoa for normal fertilization in both rodents
and men (Khosravi et al., 2016). The value of animal models though is
emphasized by the fact that hyposialylation was also observed on the epi-
didymal epithelial cells in UPEC epididymitis in mice, an examination not
possible under clinical circumstances where surgical intervention in acute
epididymitis is rarely indicated (Pilatz et al., 2015b). Of note, removal of
sialic acid residues from host cells represents a means for bacteria to
manipulate the host’s innate immune response. Animal data point to an
anti-viral rather than anti-bacterial response, which could lead to subse-
quent sterile autoimmunity and ongoing tissue damage once pathogens
are removed following antimicrobial therapy. Moreover, sialidase/neur-
aminidase inhibitors are currently being tested in clinical trials or already
in use to treat influenza and sepsis beside other inflammatory diseases
(McLaughlin et al., 2015), marking their possible use as adjuvant therapy
in epididymitis to preserve fertility.

Similarly, Myd88−/− mice that are characterized by a strongly
dampened pro-inflammatory innate immune reaction against invading
gram-negative bacteria such as E. coli show substantially less histo-
pathological alteration and no indication of obstructions of the epi-
didymal duct 7 days post-infection in contrast to wildtype. These
data from mouse models point to a possible value of an adjuvant
immuno-modulatory therapy in cases, where epididymitis has been
associated with certain bacterial strains, such as UPEC, known to eli-
cit permanent impairment to fertility (Michel et al., 2016).

The need to consider adjuvant anti-inflammatory treatment is stressed
by the fact that in a rat model of E. coli-associated epididymitis damage
was evident in the testis that was not prevented by initial fluoroquinolone
therapy. Long-term studies up to 6 months after intraductal infection fol-
lowed by fluoroquinolone treatment documented progressive disruption
of testicular architecture (Pilatz et al., 2015a). Although cytokine levels
were not measured at 6 months, the principal sensitivity of spermatogen-
esis to elevated cytokine levels may warrant early anti-inflammatory inter-
vention to maintain fertility. In light of similarities between the pathology
seen in bacterial epididymo-orchitis in rodent models and men, evaluating
the putative use of adjuvant neuraminidase inhibitor or anti-inflammatory
treatment appears to be needed to predict any suitability for the clinic.

A disadvantage of the acute bacterial epididymo-orchitis model repre-
sents the ligation of the vas deferens, put in place to prevent a retrograde
dissemination of pathogens to the urethra and bladder causing cystitis and
possibly sepsis as a co-morbidity. Using vasectomy, it was shown that
fibrosis and hypospermatogenesis became evident simply by ligation,
albeit only after 12 months (Wheeler et al., 2011). Our data indicate that
milder damage of the epididymis, including fibrosis and some interstitial
leucocytic infiltration, occurs as early as 7 days post-ligation (and sham
injection). This requires a careful differentiation of the pathology and inclu-
sion of further control groups to assess what damage is elicited by the
ligation of the vas alone and what is derived from the infection.

Human orchitis and epididymo-
orchitis associated with systemic
infection
Orchitis may evolve as a complication of systemic, predominantly vir-
al, infections due to haematogenous dissemination of the pathogen
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(Mikuz and Damjanov, 1982; Dejucq and Jegou, 2001). Whereas the
prevalence of bacterial epididymo-orchitis may be estimated from
reports on acute epididymitis, consistent epidemiological data con-
cerning the incidence of de novo inflammatory conditions primarily
affecting the testis in the general male population are not available
(Schuppe et al., 2008, 2017). Despite convincing clinical and patho-
logical evidence that this type of orchitis can lead to disruption of
spermatogenesis and steroidogenesis, data on fertility-related seque-
lae are scarce (Table III).

The classical example of viral orchitis is associated with mumps
and typically develops 3–10 days after the onset of parotitis (Beard

et al., 1977; Weidner and Krause, 1998). Orchitis is the most com-
mon complication of mumps in pubertal and post-pubertal males,
with a prevalence of 5–37% and bilateral disease reported in 16–65%
of cases (Wesselhoeft, 1920; Beard et al., 1977; Nickel and Plumb,
1986). Although local mumps outbreaks have been reported in inad-
equately vaccinated populations, orchitis is now relatively rare in
post-pubertal men in countries with modern public health practices
(Tae et al., 2012; Patel et al., 2017; Willocks et al., 2017).

Studies report that ~50% of the affected testes undergo some
degree of atrophy, but are rather heterogeneous with regard to
patient cohorts, definition of ‘atrophy’, and follow-up periods (Pilatz
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function; formation of anti-sperm
antibodies; ductal obstruction
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loss of epithelial integrity
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Figure 5 Lessons learned from animal models of testicular and epididymal infection and inflammation. BC, basal cell; BM, basement membrane;
BTB, blood–testis barrier; DC, dendritic cell; ECM, extracellular matrix; GC, germ cell; IL, interleukin; LC, Leydig cell; M, macrophage; MC, mast
cell; MCP, monocyte chemotactic protein; N, neutrophils; NC, narrow and clear cell; NO, nitric oxide; PC, principal cell; PTC, peritubular cell; SC,
Sertoli cell; SMC, smooth muscle cell; TC, T cell; TM, testicular macrophage; TNF, tumor necrosis factor; Treg, regulatory T cell.
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et al., 2016). The analysis of testicular biopsies 1 year after mumps
orchitis revealed total atrophy of seminiferous tubules in 38% and
partial atrophy in 16% of affected testes, even when patients were
treated with interferon-α2B during the acute phase of the disease
(Yeniyol et al., 2000). Hence, patients suffering mumps orchitis are at
risk of developing spermatogenic failure, although data from the pre-
vaccination era indicate that the frequency of persistent azoospermia
might be as low as 5% (Werner, 1950).

Histopathologically, viral orchitis is characterized by multifocal peri-
vascular as well as peri- and intratubular infiltrates with neutrophils,
lymphocytes, plasma cells and macrophages. Affected seminiferous
tubules show degeneration of the germinal epithelium sparing few
spermatogonia and the Sertoli cells; concomitant thickening of the
lamina propria may result in complete hyalinization and fibrosis of the
tubules (Mikuz and Damjanov, 1982) (Fig. 3B and C). This pattern of
tubular damage has also been described as ‘mixed atrophy’ (Sigg and
Hedinger, 1981; Bergmann, 2006). Notably, persistent chronic inflam-
matory reactions following acute orchitis are characterized by focal
or multifocal peritubular lymphocytic infiltrates (Mikuz and Damjanov,
1982; Schuppe and Bergmann, 2013) (Fig. 3C and Table III). Leydig
cells in the interstitial compartment show little evidence of damage in
most viral orchitis patients.

Less commonly, a range of viral infections other than mumps may
be complicated by inflammatory lesions in the testis. These include
Coxsackie virus types, Epstein-Barr, influenza and HIV (Dejucq and
Jegou, 2001). In early autopsy studies, inflammatory infiltrates were
observed in testes of patients with late-stage HIV infection (Chabon
et al., 1987). Though clinically overt orchitis is not evolving, persist-
ence of viral DNA in testicular tissue and impairment of semen qual-
ity under effective retroviral therapy have recently been reported
(van Leeuwen et al., 2008; Pilatz et al., 2014b; Jenabian et al., 2016).
In a case series of men who died of a coronavirus infection causing
severe acute respiratory syndrome, both, disruption of spermato-
genesis and testicular inflammation were observed in the testes
(Xu et al., 2006). Most recently, persistence of Zika virus (ZIKV)
in the male genital tract has been reported (Paz-Bailey et al.,
2017). However, there are no published data on clinical manifesta-
tions of orchitis or epididymo-orchitis available (Epelboin et al.,
2017).

A predominantly granulomatous, chronic orchitis occurs as a mani-
festation of tuberculosis, syphilis, lepromatous leprosy, or brucellosis
(Mikuz and Damjanov, 1982; Schuppe et al., 2008; Schuppe and
Bergmann, 2013) (Fig. 3D). In pre-pubertal boys, epididymo-orchitis
may complicate bacterial infections, such as pneumonia, by haema-
togenous dissemination of the pathogen (Greenfield, 1986).

Models mimicking systemic
infection and inflammation
Systemic inflammation due to infection or even non-infectious ill-
nesses has an inhibitory effect on spermatogenesis and steroidogen-
esis (Woolf et al., 1985; Andrade-Rocha, 2013). Typically, these
responses have been attributed to the detrimental effects of fever,
leading to an increase in intratesticular temperature, or vascular dis-
turbances. However, studies from animal models suggest that inflam-
mation itself also has a direct effect on testicular function and fertility

(see below). Reports on the effect of low-grade inflammation asso-
ciated with systemic diseases, such as metabolic syndrome and dia-
betes, as well as immuno-editing associated with testicular neoplasia
have recently been summarized elsewhere and are not reflected in
this review (Loveland et al., 2017; Maresch et al., 2017).

Animal models of systemic viral disease
There have been a small number of studies in animals of the effects
of viral infections on testis function. Crucially, it is necessary to distin-
guish between systemic viral infections (for example, influenza and
mononucleosis) that can indirectly interfere with male reproduction,
and viral infections of the male tract itself (mumps, HIV, ZIKV). The
detrimental effects of systemic viral infections may be principally
exerted through elevated inflammatory responses, fever, vascular dis-
turbances, immune cell activation and blood-borne inflammatory
mediators, including cytokines and the anti-viral interferons, which
can have inhibitory effects on spermatogenesis and steroidogenesis
(Fig. 5 and Table III) (Hedger, 2011a; Satie et al., 2011). Animal models
of viral infections of the male tract itself include mumps virus, cyto-
megalovirus and herpes simplex virus infections in mice (Tebourbi et al.,
2001; Malolina et al., 2016; Wu et al., 2016), Sendai virus infection in
rats (Melaine et al., 2003), Myxoma virus infection in rabbits (Fountain
et al., 1997) and simian immunodeficiency virus infection in monkeys
(Shehu-Xhilaga et al., 2005; Houzet et al., 2014; Winnall et al., 2015). In
these various studies, infection was frequently associated with leucocytic
infiltration (T cells, macrophages), an increase in local production of
interferons and pro-inflammatory mediators, disruption of the semin-
iferous epithelium and primary Leydig cell failure with reduced testos-
terone levels. Similar to observations in corresponding mouse models
(Wu et al., 2016), deterioration of testicular androgen production has
been observed in severe cases of bilateral mumps orchitis (Fig. 5 and
Table III) (Adamopoulos et al., 1978).

Most recently, Govero et al. (2016) delineated ZIKV infection of
the testis and epididymis in mice using a mouse-adapted African
strain. The infection of germ cells and Sertoli cells caused deterior-
ation of spermatogenesis resulting in complete germ cell loss,
reflected by decreased levels of serum inhibin B. Testicular damage
seems to be mediated by both the infection itself and the host’s
adaptive immune response, while leucocytes entered the seminifer-
ous epithelium only in the most severe cases (Govero et al., 2016).
Of note, the prostate or seminal vesicles were unaffected and
innate immune responses were found in Leydig, Sertoli and epididy-
mal epithelial cells, but not in peritubular cells and spermatogonia,
exposing these cells as particularly vulnerable for ZIKV infection and
as possible repositories for ZIKV (Ma et al., 2017). Although Zika
viral load in semen, impaired semen quality and sexual transmission
have been reported (D’Ortenzio et al., 2016; Epelboin et al., 2017;
Joguet et al., 2017; Paz-Bailey et al., 2017), it remains to be eluci-
dated how murine testicular disease translates to the clinic
(Meinhardt, 2017).

In general, studies using these specific infections, however, are
complicated by the high degree of species specificity among the
viruses and their hosts. Critically, different viruses target different cell
types, and even the affected cells, their susceptibility to infective trop-
ism and the pattern and intensity of production of cytokines and
interferons by specific testicular cells vary significantly from species to
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species (Le Goffic et al., 2002; Dejucq-Rainsford and Jegou, 2004;
Roulet et al., 2006; Le Tortorec et al., 2008; Wu et al., 2016).
Consequently, viral infections within the male reproductive tract have
widely variable effects on male reproductive function in different
models. In general, the pathology is associated with the distinct local
effects of the infection itself, and it is difficult to distinguish more uni-
versal effects that may be attributable to inflammation alone. Leydig
cells in the interstitial compartment show little evidence of damage in
most viral orchitis patients, whilst this is the case in mumps virus
infected mouse (Wu et al., 2016). Moreover, different tropism of
viruses for human and mouse make the use of either mouse-adapted
forms of viruses (e.g. ZIKV) or a replacement by a different virus (e.g.
Sendai for rat) necessary as surrogates. This limits somewhat the util-
ity of studies using specific viruses as models for human disease, with
the result that animal models involving inflammation without infection
are generally more amenable to the study of the role of inflammation
in human disease.

Lipopolysaccharide-induced inflammation
models
Lipopolysaccharide (LPS) is a component of the cell wall of gram nega-
tive bacteria, such as E. coli, and stimulates inflammation and innate
immunity by activation of TLR 4 (Beutler, 2000). For many years, LPS
has been used to investigate the effects of systemic inflammation, with-
out the complication of infection, in numerous animal models.
Intraperitoneal or intravenous injection of LPS in various animal spe-
cies, particularly rats and mice, exerts predominantly inhibitory effects
on Leydig cell steroidogenesis at the testicular and at the hypothal-
amic–pituitary level, and may also involve peripheral responses to
inflammation, such as corticosteroid production (O’Bryan et al., 2000;
Gow et al., 2001; Diemer et al., 2003). Moreover, it is increasingly evi-
dent that inflammation has direct effects on the somatic (Leydig and
Sertoli) cells in the testis and epididymis (epithelial and stromal cells),
and their ability to support spermatogenesis and sperm maturation
(Hedger, 2011b). Notably, LPS does not induce fever in rats or mice,
and the effects of LPS on spermatogenesis in the rat do not replicate
the well-characterized effects of either elevated temperature or vascu-
lar disturbance on spermatogenesis and steroidogenesis. This has led
to the proposition that elevation of cytokines and other inflammatory
and antimicrobial mediators may be a major cause of disruption in
these animal models, and hence possibly also in human patients.
Crucial to this proposition is the observation that the somatic cells of
the testis and epididymis themselves express pattern recognition
receptors, including TLR4 and viral sensors such as TLR3, and produce
inflammatory mediators and interferons in response to stimulation by
their ligands (Dejucq et al., 1998; Rodrigues et al., 2008; Winnall et al.,
2011a). In fact, evidence suggests that these inflammatory signalling
pathways are involved in regulation of normal physiological process in
the testis, in addition to mediating defence against infection (Hedger,
2011b). Nonetheless, excessive activation of inflammation and produc-
tion of inflammatory cytokines, eicosanoids and reactive oxygen spe-
cies by the somatic cells, as well as by the circulating and resident
peripheral leucocytes, disrupts testicular and epididymal function,
because they also have direct inhibitory effects on the activity of the
somatic cells and spermatogenic cells in these tissues (Hedger, 2011a).

Non-infectious inflammation
and autoimmune disease of the
testis and epididymis

Non-infectious inflammation of the human
testis and epididymis
Autoimmune disorders of the human testis and epididymis have
been documented (Chan and Schlegel, 2002a; Silva et al., 2014).
Patients suffering autoimmune polyendocrinopathy syndrome 1 due
to inactivating mutations of the AIRE gene develop testicular failure
and sperm autoantibodies in association with multi-organ auto-
immune disease in 30% of cases (Kisand and Peterson, 2011).
Moreover, systemic autoimmune disorders, such as lupus erythe-
matosus and different forms of systemic vasculitis including Behcet’s
disease, may involve blood vessels of the testis, epididymis, and
excurrent ducts, thus resulting in deleterious local inflammatory dis-
ease (Nistal and Paniagua, 1997; Silva et al., 2014). Granulomatous
orchitis mimicking testicular cancer may occur as a chronic, painless
disease in elderly men (Mikuz and Damjanov, 1982). The aetiology
of this rare inflammatory disorder is unknown, but germ cell-
specific autoimmunity has been discussed as an underlying mechan-
ism. Moreover, manifestation of sarcoidosis as a sterile granulomatous
disease was shown in the testis and epididymis (Hedinger, 1991). ‘Post-
traumatic’, chronic inflammatory reactions have been observed after her-
niotomy in both ipsi- and contralateral testes and interpreted as auto-
immune orchitis (Hofmann and von Zezschwitz, 1977; Suominen, 1995).
An elevated risk of testicular pain, interpreted as ‘orchitis/epididymitis’,
has also been reported after hernia repair and vasectomy (Hawn et al.,
2006; Goldacre et al., 2007; Horovitz et al., 2012). Notably, pre-existent
testicular disorders of either intrinsic or unknown origin may be accom-
panied by inflammation (Table III, Table IV). In testes from adult men who
have undergone orchiectomy due to cryptorchidism, focal inflammatory
infiltrates containing mainly T cells and related tubular damage in 44% of
the specimens have been found (Nistal et al., 2002). Finally, both acute
and chronic inflammatory conditions of the testis and/or epididymis
caused by drugs or other chemical compounds have to be considered
(Schuppe et al., 2008; Hedger, 2011a; Pilatz et al., 2015b) (Table I).
Human autoimmune orchitis or epididymitis, however, have been under-
estimated as clinical entities and are not established in clinical andrology.
From a rheumatologist’s point of view, Silva et al. (2014) proposed a con-
cept of autoimmune orchitis primarily based on the detection of
membrane-bound antisperm antibodies (ASA) in semen. This phenom-
enon, however, is not necessarily reflecting breakdown of the testicular
immune privilege, but rather related to immunopathological changes in
the epididymis (see below; Fig. 5). Although hampered by the very limited
access to biopsy material, delineating human autoimmune orchitis requires
tissue-based analyses.

Considering non-infectious inflammation of the human testis, it
should be mentioned, that seminoma is almost invariably associated
with extensive inflammatory infiltrates, suggesting immune activation
induced by the neoplastic process (Hvarness et al., 2013; Klein et al.,
2016). Lymphocytic infiltrates are also observed around seminiferous
tubules containing testicular germ cell (TGC) neoplasia in situ (cells or in
the contralateral testis accompanying unilateral neoplasia (Jahnukainen
et al., 1995; Bols et al., 2000; Klein et al., 2016).
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Inflammatory lesions of unknown origin
in testes of infertile men
In early studies dealing with testicular biopsies obtained from infertile
men, inflammatory infiltrates have been reported in 4.8–16.6% of
cases (Hofmann and Kuvert, 1979; Suominen and Soderstrom, 1982;
Jahnukainen et al., 1995). A systematic re-examination of tissue speci-
mens obtained from asymptomatic patients with impaired fertility, i.e.
non-obstructive azoospermia, showed immune cell infiltrates in the
interstitial compartment in ~30% of cases (Schuppe et al., 2001)
(Table IV). The infiltrates, graded as sparse to dense, mainly com-
prised lymphocytes and showed a peritubular localization distributed
in a focal or multifocal pattern. In addition, the degree of lymphocytic
infiltration was correlated with characteristic signs of tubular damage,
such as partial or complete loss of germinal epithelium, thickening of
the lamina propria and complete tubular fibrosis (Schuppe and
Bergmann, 2013) (Fig. 3B and C). Despite the patchy distribution of the
lesions, testicular inflammatory reactions are associated with significantly
reduced testicular volume and score counts for spermatogenesis, when
inflammation represents the primary disorder (Table III). Serum FSH
levels are not markedly increased in these cases compared to patients
with testicular obstruction and preserved spermatogenesis. In patients
with other testicular disorders, the occurrence of peritubular lympho-
cytic infiltrates is closely correlated with the degree of tubular damage,
i.e. impairment of spermatogenesis. With regard to the high overall
prevalence of inflammatory lesions, induction of deleterious immune
responses in the testis is probably not restricted to infectious agents,
but a wide spectrum of etiological factors should be considered
(Schuppe and Meinhardt, 2005) (Table I).

Formation of ASA and male infertility
Among men referred for infertility treatment, 4–6% are diagnosed
with membrane-bound ASA (Alexander and Anderson, 1979;
Mazumdar and Levine, 1998; Chamley and Clarke, 2007; Tüttelmann
and Nieschlag, 2010). However, the association of ASA formation
with male genital tract infection/inflammation remains a matter of
ongoing debate. One prospective study investigated ASA in patients
suffering epididymitis, during acute disease as well as after 3 years,

and showed increased serum ASA titres in 7/26 patients (Ingerslev
et al., 1986). On the other hand, in patients with primary infertility,
significantly increased levels of ASA in blood and semen were asso-
ciated with a history of epididymitis/orchitis (Tchiokadze and
Galdava, 2015). In contrast, there is little evidence for a close rela-
tionship between the detection of ASA in semen and MAGI (Marconi
et al., 2009; Francavilla and Barbonetti, 2017).

Although ASA development could be suspected as a sequela of
testicular inflammatory reactions, such as Mumps orchitis, available
studies did not reveal a significantly increased prevalence of positive
ASA titres in these patients after more than 1 year after diagnosis,
except in idiopathic granulomatous orchitis (Shulman et al., 1992;
Kalaydjiev et al., 2002).

Animal models of autoimmune-
based testicular inflammation

Experimental autoimmune orchitis
Experimental autoimmune orchitis (EAO) serves as a model of
autoimmune-based chronic testicular inflammation leading to germ
cell apoptosis and to severe damage of spermatogenesis and eventual
infertility (Table III) (Tung et al., 1987b; Suescun et al., 1994; Tung,
1995; Tung and Teuscher, 1995; Naito et al., 2012b). The disease
has been induced in many species, including guinea pigs and rabbits,
whilst rats and mice have received the most attention (Freund et al.,
1953; Andrada et al., 1969; Tung et al., 1970; Tung and Woodroffe,
1978; Pelletier et al., 1981; Doncel et al., 1989; Zhou et al., 1989;
Itoh et al., 1991b). Classical EAO in rodents is induced by active
immunization with syngeneic testicular homogenate (TH) in incom-
plete or complete Freund’s adjuvant (CFA) followed by injection of
inactivated Bordetella pertussis (Bp) bacteria or Bp toxin (Sato et al.,
1981; Kohno et al., 1983; Doncel et al., 1989) (Supplementary
Table SI). The inflammation first appears in the seminiferous tubules
and rete testis, and affects the cauda epididymis and vas deferens as
well (Kohno et al., 1983). Macrophages, lymphocytes, eosinophils
and neutrophils invade the testis and form clusters around the semin-
iferous tubules (and also inside the seminiferous tubules in mice),

.............................................................................................................................................................................................

Table IV Testicular inflammatory reactions in infertile men: correlations between clinical findings, degree of damage of
the seminiferous epithelium and the prevalence of peritubular lymphocytic infiltrates.

Testicular disorders Obstruction Unknown
etiology

Congenital/early
acquired disorder

Sertoli-cell-only
syndrome#

Inflammatory
reaction+

n = 17 n = 106 n = 77 n = 27 n = 33

Total testicular volume (ml) 40.7 ± 5.0 35.4 ± 8.4 31.8 ± 7.8 26.8 ± 7.0 33.3 ± 8.2

Serum FSH (IU/l) 4.0 ± 2.3 6.7 ± 3.4 7.0 ± 4.8 13.5 ± 5.7 4.3 ± 5.2

Mean Johnsen score§ 8.6 ± 0.3 7.2 ± 1.6 6.2 ± 1.9 2.3 ± 0.8 6.3 ± 2.2

Prevalence of peritubular lymphocytic infiltrates (%)$ 11.8 19.8 31.2 51.6 84.9

*Retrospective analysis of testicular biopsies obtained from 260 asymptomatic men undergoing diagnostic work-up for infertility; data are mean values ± SD; modified from
Schuppe et al. (2001).
§Modified according to de Kretser and Holstein (1976).
$Focal or multifocal; with or without perivascular infiltrates (cell density ranging from scattered to extensive).
#Heterogeneous subgroup, comprising both congenital and acquired forms.
+Considered as ‘primary’ pathology in the testis, in contrast to concomitant (‘secondary’) inflammatory reactions in the other subgroups.
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produce elevated levels of pro-inflammatory mediators and lead to
spermatogenic disruption and, eventually, loss of the adluminal com-
partment of the seminiferous epithelium (aspermatogenesis) (Fig. 3
and Table III). Moreover, impairment of adherens and gap junction
proteins in the seminiferous tubules contributes to germ cell slough-
ing (Table III) (Perez et al., 2011, 2012, 2014). Germ cell apoptosis in
EAO is mediated by the involvement of Fas/FasL, TNF/TNF recep-
tor 1, IL-6/IL-6 receptor and the Bax/Bcl-2 (BCL2-associated X/B-
cell lymphoma 2) system (Theas et al., 2003, 2006; Rival et al.,
2006b).

Later stages of the disease are characterized by disruption of the
BTB, extensive necrosis and fibrosis of seminiferous tubules (Doncel
et al., 1989; Lustig et al., 1993; Tung and Teuscher, 1995; Perez
et al., 2012; Nicolas et al., 2017a) (Fig. 3E and F). In severe forms of
the disease, granuloma formation has been observed (Fig. 3 and
Table III).

Another model of EAO can be elicited by subcutaneous immuniza-
tion with syngeneic viable TGC without adjuvants in susceptible A/J
and C3H/He mouse strains (Sakamoto et al., 1985; Itoh et al.,
1991a) (Supplementary Table SI). In classical EAO, an autoimmune
response is generated against antigens of haploid germ cells, sperm-
atogonia, Sertoli cells, Leydig cells and the basal lamina of the semin-
iferous tubules, causing complete loss of germ cells (Sato et al., 1981;
Lustig et al., 1982; Adekunle et al., 1987; Tung et al., 1987b; Yule
et al., 1988; Teuscher et al., 1994; Fijak et al., 2005) while in TGC-
elicited EAO autoimmunity is induced only against antigens of haploid
germ cells (Itoh et al., 1994; Qu et al., 2010; Hirai et al., 2013;
Terayama et al., 2016). In contrast to classically induced EAO, in
TGC-elicited orchitis the seminiferous tubules are not depleted of all
germ cells and the inflammation does not affect the epididymis and
vas deferens (Tung et al., 1987b; Naito et al., 2012a).

The differences in the development, course and severity of EAO
between classical and TGC-induced disease models point to a signifi-
cant influence of microbial components present in adjuvants and B.
pertussis on inflammatory responses in the testis and epididymis. The
use of CFA and Bp bacteria, in combination with TH, to induce EAO
evokes more severe autoimmune reactions compared to the TGC-
induced disease (Musha et al., 2013) (Supplementary Table SI).
Adjuvants are generally employed to enhance the inflammatory
response during induction of organ-specific autoimmunity, e.g. auto-
immune encephalomyelitis (EAE), uveitis or arthritis (Billiau and
Matthys, 2001). New data indicate that the effects are specific, as the
susceptibility to the induction of EAE and EAO in mice is associated
with a locus controlling Bordetella pertussis-induced histamine sensi-
tization (Bphs) identified as histamine receptor H1, an autoimmune
disease-associated locus (Sudweeks et al., 1993; Ma et al., 2002).
Furthermore, a locus Orch3 located on chromosome 11 and control-
ling dominant resistance to autoimmune orchitis was identified as
kinesin family member 1C (del Rio et al., 2012). Notably, immuno-
genetically autoimmune orchitis, epididymitis and vasitis seem to be
distinct lesions (Roper et al., 1998).

Spontaneous experimental orchitis
In addition, unique EAO models can be produced by experimental
manipulation of systemic immune regulation, as in day 3 thymectomy

(Taguchi and Nishizuka, 1987; Tung et al., 1987a), mice with dele-
tions of the tolerance-regulating gene Aire (Anderson et al., 2002)
and mice with Treg cell depletion (Tung et al., 2017). Several reports
have shown spontaneous occurrence of orchitis in mink (Tung et al.,
1981), dog (Fritz et al., 1976) and brown Norway rat (Furbeth et al.,
1989). Notably, rats that are transgenic for human-β2-microglobulin
and HLA subtype B27, a genetic locus strongly associated with anky-
losing spondylitis, spontaneously develop epididymo-orchitis. In fact
epididymo-orchitis is preceding arthritis in this model (Taurog et al.,
2012). EAO can be also transferred to naïve recipients by adoptive
transfer of lymphocytes from lymph nodes or spleens of EAO mice
(Mahi-Brown et al., 1987; Itoh et al., 1992).

Several studies have uncovered the potential aetiology of spontan-
eous EAO, and provided insight into the nature of systemic tolerance
for the relevant pathogenic antigens (Tung and Lu, 1991; Samy et al.,
2006). Because some meiotic germ cell antigens can egress the nor-
mal seminiferous tubule, and they are protected by Treg in normal
mice, the concept of complete antigen sequestration is no longer
valid (Tung et al., 2017). Finally, other studies have revealed the influ-
ence of non-immune mechanisms on EAO development. For
example, abnormal hypothalamic–pituitary axis function predisposes
the mink to EAO (Tung et al., 1981). Defects in hypothalamic func-
tion may affect Sertoli cell barrier integrity (Xia et al., 2009) and
orchitis in the mink can be rescued by treatment with hCG to stimu-
late Leydig cell function (Tung et al., 1984). Similarly, defective Sertoli
cell barrier properties and spontaneous EAO have been reported in
mice with Sertoli cell-specific deletion of the androgen receptor
(Meng et al., 2011).

Immunopathology of EAO
As shown by adoptive transfer experiments, CD4+ T cells play a cru-
cial role in the induction of EAO (Mahi-Brown et al., 1987). Analysis
of testicular inflammatory infiltrates revealed increased numbers of
several T cell subsets, macrophages, dendritic cells (DC) and mast
cells in EAO in the rat (Fig. 3 and Table III). During the onset of rat
EAO, a dramatic increase in CD4+ and CD8+ T effector cell num-
bers producing pro-inflammatory cytokines (TNF, interferon-γ,
IL-17), which are commonly associated with inflammatory and auto-
immune responses, was observed (Table III). In contrast, in the
chronic phase of the disease, the CD8+ T cell subset was predomin-
ant, suggesting its involvement in the progression of the inflammatory
process (Guazzone et al., 2009). Interestingly, in our mouse model of
EAO, highly elevated numbers of CD4+ T cells, while reduced num-
bers of CD8+ T cells were detected, confirmed by a higher ratio of
CD4+/CD8+ T cells in the testis. Moreover, a new population of
double positive CD4+CD8+ T cells was identified in mouse EAO
testis, previously identified in different organs with autoimmune disor-
ders (Nicolas et al., 2017a). Although, the increased accumulation of
various immunoregulatory T cell subtypes, such as CD4+CD25
+Foxp3+, CD4+Foxp3+ and CD8+Foxp3+ T cells, has been
reported in chronically inflamed rat testes, these cells were not able
to suppress inflammatory responses generated by the effector T cells
during the onset of EAO (Guazzone et al., 2009; Fijak et al., 2011).
Interestingly, supplementation of the reduced testosterone levels in
EAO animals caused an expansion of Treg cells leading to increased
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representation of these cells within the CD4+ T cell subset, while
simultaneously inhibiting the synthesis of pro-inflammatory mediators
MCP-1, TNF and anti-inflammatory IL-10 (Fijak et al., 2011). Further
studies confirmed a direct influence of testosterone on the expansion
of Treg cells mediated by interaction of the androgen receptor with
the transcription factor Foxp3, which is the master regulator of Treg

cell function (Fijak et al., 2011, 2015; Walecki et al., 2015).
Mast cells are crucial effector cells, not only for the development

of allergic and parasitic diseases but also in the development of auto-
immunity (Benoist and Mathis, 2002). In the rat model of EAO, mast
cell numbers were significantly upregulated, widely distributed
throughout the interstitium and partially degranulated (Fig. 5) (Iosub
et al., 2006). Mast cell tryptase activates proteinase-activated recep-
tor-2 (PAR-2), which is expressed on macrophages, peritubular cells
and spermatids in normal testis. In orchitis the expression of PAR-2 was
increased. In vitro activation of PAR-2 on peritubular cells by tryptase led
to expression of inflammatory mediators, MCP-1, cyclooxygenase-2 and
transforming growth factor-β2 (Iosub et al., 2006). These data suggest
that PAR-2 activation elicited on peritubular cells by mast cell tryptase
contributes to acute testicular inflammation.

Along with T cells and mast cells, antigen presenting cells (APC),
such as macrophages and dendritic cells, possess a decisive function
during the development of EAO (Table III). The presentation of self-
antigens by APC to T and B cells is crucial in the initiation and main-
tenance of tolerance or autoimmunity. In the rat model of EAO, the
number of testicular macrophages and dendritic cells was significantly
increased during the course of the disease (Fig. 5 and Table III) (Rival
et al., 2008, 2006a; Guazzone et al., 2011). Macrophages in EAO tes-
tes were intricately involved in the production of the inflammatory
mediators TNF, IL-6, MCP-1 and NO (Guazzone et al., 2003;
Suescun et al., 2003; Rival et al., 2006b; Jarazo-Dietrich et al., 2012).
Our analysis of purified DC from EAO rat testes demonstrated sig-
nificantly upregulated expression of the chemokine receptor CCR7,
which is responsible for the migration of DC to the draining lymph
nodes (Rival et al., 2007). Moreover, the expression of IL-10 and IL-
12p35 transcripts was detectable only in DC from inflamed testes,
pointing to a mature immunogenic state before imminent migration
to the lymph nodes. Interestingly, the expression levels of co-
stimulatory molecules (CD80, CD86) and MHC II were similar in
EAO and control testis (Rival et al., 2007). Further analysis of den-
dritic cells in testicular draining lymph nodes from EAO rats showed
similar findings suggesting that the DC in draining lymph nodes from
rats with orchitis are mature, present antigens to T cells and stimu-
late an autoimmune response against testicular antigens, thus causing
immunological disturbances of the testis (Guazzone et al., 2011). A
pathogenic role of macrophages and DC in EAO development was
additionally confirmed by in vivo depletion of these cells in rats with
EAO, using clodronate-containing liposomes, leading to significantly
decreased disease incidence and severity (Rival et al., 2008). The
involvement of TLR2 and TLR4 in mediating EAO was also indicated
by the reduced disease susceptibility in transgenic Tlr2−/− or Tlr4−/−
mice (Liu et al., 2015).

Chemokines, chemokine receptors and adhesion molecules are
implicated in the recruitment, trafficking and activation of leucocytes
to the site of inflammation in EAO. Upregulation of cell adhesion
molecules (CD31, CD44, CD106), in conjunction with increased

levels of chemokines (MCP-1, macrophage inflammatory proteins 1α
and 1β) and chemokine receptors (CCR2, CCR5), contribute to the
formation of a chemotactic gradient within the testis, causing the
leucocyte infiltration that is characteristic of EAO histopathology (Figs
3 and 5, Table III) (Guazzone et al., 2012, 2003, 2005). Besides cyto-
kines and chemokines, other pro-inflammatory molecules, such as high
mobility group box protein 1 (HMGB1), are involved in the regulation
of inflammatory reactions in rat and human testis (Table III). Elevated
levels of HMGB1 have been reported in the late phase of rat EAO.
Moreover, HMGB1 was translocated from the nuclei to the cytoplasm
and extracellular space in testicular cells in EAO. Blockade of HMGB1
release by ethyl pyruvate in EAO rats animals reduced disease progres-
sion and spermatogenic damage (Aslani et al., 2015). Furthermore,
involvement of galectin-1, activins and inhibin in the development of
testicular immunopathology is also documented (Suescun et al., 2001;
Perez et al., 2015; Lei et al., 2017; Nicolas et al., 2017a, 2017b).

Linking autoimmune orchitis
models to human disease
The histopathology of post-infectious or non-infectious human orchi-
tis, as well as focal inflammatory lesions encountered in testicular
biopsies from infertile patients with post-infectious testicular failure
or ‘mixed atrophy’ of spermatogenesis of unknown origin, intri-
guingly resemble those developing in rodent EAO (Suominen and
Soderstrom, 1982; Schuppe et al., 2008) (Fig. 3B, C and E, F; Tables III
and IV). The predominantly peritubular localization of lymphocytes and
characteristic morphological changes of the seminiferous tubules such
as ‘aspermatogenesis’ support the concept that concomitant activation
of autoreactive T cells is involved in inflammatory disorders of the
human testis (Table III and Fig. 3). In early clinical experiments,
delayed-type hypersensitivity reactions to sonicates prepared from
human spermatozoa could be elicited in patients with mumps orchi-
tis (Andrada et al., 1977). Moreover, immunization with testis hom-
ogenate in CFA performed before orchidectomy for treatment of
prostate carcinoma led to testicular lesions characteristic of EAO in
two of four patients tested (Mancini et al., 1965). Testicular biopsies
revealed focal interstitial infiltrates with mononuclear cells, thicken-
ing of the lamina propria, and depopulation of the seminiferous epi-
thelium. Comparable to rodent models, progressive tubular atrophy
eventually results in a Sertoli cell-only syndrome and/or complete
hyalinization of seminiferous tubules (Schuppe et al., 2008; Naito
et al., 2012b; Aslani et al., 2015).

In line with data from EAO models, the infiltrating immune cells in
focal inflammatory lesions in testes of infertile men are predominantly
activated CD4+ and CD8+ T cells, which are accompanied by
increased numbers of non-resident CD68+ macrophages and mast
cells (el-Demiry et al., 1987; Duan et al., 2011; Schuppe and
Bergmann, 2013; Klein et al., 2016) (Fig. 5). For non-resident CD68+
macrophages and mast cells, a shift from the interstitium to the sem-
iniferous tubules was also reported for other testicular pathologies
such as ‘mixed atrophy’ and has been associated with tissue remodel-
ling and fibrotic changes (Meineke et al., 2000; Frungieri et al., 2002a;
Nicolas et al., 2017a). Similar to rat EAO, increased numbers of mast
cells expressing tryptase and PAR-2 were found in human testicular
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fibrosis (Meineke et al., 2000; Frungieri et al., 2002b). Moreover,
there is circumstantial evidence that DC are involved in inflammatory
disorders of the human testis (Wang and Duan, 2016).

Identification of similar putative auto-antigens involved in the auto-
immune attack in rat and human inflamed testes underlines the essential
significance of results obtained from animal models. Autoantibodies
against heat shock protein (Hsp) 60 and Hsp70, disulphide isomerase
ER-60, alpha-1-anti-trypsin, heterogeneous nuclear ribonucleoprotein
H1, sperm outer dense fibre major protein 2, and phosphoglycerate
kinase 1 were identified in sera from EAO rats (Fijak et al., 2005).
Significantly, elevated titres of autoantibodies against disulphide isomer-
ase ER-60 could also be detected in sera from infertile azoospermic
patients with histologically confirmed low-grade testicular inflammation
(Fijak et al., 2014). Accordingly, determination of ER-60 autoantibody
titres in serum could be a novel non-invasive marker. As focal inflamma-
tory lesions of unknown aetiology, usually diagnosed using testicular
biopsies, are much more frequent than isolated orchitis, non-invasive
methods for diagnosis of early inflammatory events in the testis are
needed. In this regard, markers such as ER-60 autoantibody titres ori-
ginally found in EAO and later confirmed to be potentially valuable for
the diagnosis of asymptomatic testicular inflammation resulting in male
fertility disturbances in men as well, are currently being tested on a
broader scale for the diagnosis of asymptomatic testicular inflammation
causing male fertility disturbances. Moreover, the development of reli-
able assays for quantitative determination of serum autoantibodies
directed to cell membrane and internal antigens of spermatozoa as reli-
able markers of an autoimmune state is critical. Participation of
autoantibodies in the development of EAO in mice was supported
by the formation of immune complexes of IgG and complement C3
localized outside of the seminiferous tubules and in the thickened
tubular basement membrane (Kohno et al., 1983; Yule et al., 1988).
Persistence of immunoglobulin and complement deposits in con-
junction with a thickened basement membrane have also been
described in testis samples from infertile men with spermatogenic
disturbances (Jadot-Van De Casseye et al., 1980; Salomon et al.,
1982; Lehmann et al., 1987).

The EAO models offer an adequate in vivo system to study the
complexity of interactions of testicular cell types (germ cells, somatic
cells, immune cells) in context of the endocrine environment, which
can heavily influence the immune response (Figs 3, 4 and Table III).
Particularly the early stages of EAO development closely reflect the
lesions seen in focal inflammatory infiltrates that are frequently
observed in testicular biopsies of patients with ‘mixed atrophy’ of
spermatogenesis. This is also the stage where experimental therapies,
such as new biologicals modulating cytokine action, can be explored.
The development of EAO in rodents, with progressively later stages
of tubular atrophy, strong immune cell infiltration, hyalinization and
loss of germ cells leading to Sertoli cell-only syndrome mirrors only a
minority of cases found in men. Although the structure of the
immune system in mice and human is similar, some discrepancies in
both innate and adaptive immunity response are observed (reviewed
in (Mestas and Hughes, 2004). Therefore, it is important to consider
the possibility that the pathological reactions occurring in a mouse
testis may not reflect precisely the mechanisms playing a role in a
human testis.

Disadvantages of the rodent EAO model in relation to the com-
mon forms of human focal orchitis include its deteriorating

progressive nature, an observation rarely made in men. Moreover,
the rodent model is elicited using germ cell antigens in the form of
testicular homogenates together with adjuvants to break tolerance or
isolated native germ cells, whilst in human the cause of the focal
inflammatory damage is completely unknown. In fact, in men it is
even unclear if the damage observed is possibly a consequence of
autoimmunity at all or rather a reflection of a different primary cause
with only secondary involvement of the immune system. Therefore, a
caution in the interpretation of data obtained from rodent models
should be warranted.

Immunopathological sequelae
of vasectomy
Induction of autoantibodies against spermatozoa is a frequent compli-
cation of vasectomy in man and animals (Bigazzi, 1981; Adams and
Wald, 2009; Lustig et al., 2014). Vasectomy in men produces auto-
antibodies to sperm antigens at a prevalence of 60–70% at 5–6
months after vasectomy (Adams and Wald, 2009). Whether the
autoimmunity to sperm antigens can also trigger epididymal pathology
remains unknown as epididymal biopsy is not indicated, but this issue
may gain relevance in cases of re-fertilization by vasovasostomy
(Francavilla and Barbonetti, 2017). Furthermore, a possible auto-
immune basis for focal orchitis seen in some vasectomized men and,
more frequently, in patients with azoospermia due to other causes
(Table IV) has not been delineated in detail. In this context, animal
models of EAO have been used to provide insights into the mechan-
isms of initiation, progression and timing of autoimmune reactions of
the testis, and its genetic control (Wheeler et al., 2011). A recent
study focused on the first 10 weeks post-vasectomy, using unilateral
vasectomized inbred mice (Wheeler et al., 2011; Rival et al., 2013).
Epithelial cell apoptosis and necrosis occurred in the cauda epididy-
mis within 24 h, followed in 80% of these mice by sperm leakage and
granuloma formation. Most epididymal granulomata in this mouse
model were microscopic in size and as such may evade detection by
palpation in vasectomized men. Nevertheless, an increased epididy-
mal size after vasectomy is well known (Cho et al., 2011) and an epi-
didymal head diameter >10.25 mm suggests obstruction (Pezzella
et al., 2014). Nonetheless, timing of detection of the autoimmune
response is relevant, as all the sequelae in vasectomized mice are
preventable by surgical resection of the testis and epididymis on the
ipsilateral (vasectomized) side within the first 3 weeks after surgery
(Wheeler et al., 2011). The finding raises the question of whether a
short immunosuppression regime around the time of vasectomy may
reduce this early response and reduce the development of harmful
late responses to vasectomy.

It was long assumed that the first contact of the immune system
with neoantigens on meiotic and postmeiotic cells in the male occurs
in the epididymis, as evidenced by the presence of intraluminal leuco-
cytes next to spermatozoa and possibly extensions of DC reaching
the lumen, at least in the caput epididymis (Da Silva et al., 2011).
Hence, mechanisms must be in place to prevent autoimmunity. A
shift in our understanding of the mechanism of local testicular
immune privilege and systemic tolerance to meiotic and postmeiotic
germ cell antigens was recently derived by two studies (Wheeler
et al., 2011; Tung et al., 2017). Obviously, a differentiation between
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antigens that are sequestered or non-sequestered from the immune
system by the BTB exist. The physical barrier of the BTB can be by-
passed by antigens from meiotic or postmeiotic germ cells, such as
lactate dehydrogenase 3 (LDH3), via phagocytosis of residual bodies,
subsequent cargo transfer to the basis of Sertoli cells and egress to
the interstitial space, where they get in contact with local immune
cells and can be further transported as processed peptides to drain-
ing lymph nodes (non-sequestered antigens). In contrast, other anti-
gens of meiotic and postmeiotic germ cells, such as zonadhesin (Zan),
do not egress the seminiferous tubules (Tung et al., 2017). To support
this conclusion, it was found that mice with Treg cell depletion alone
spontaneously produced antibodies against LDH3 but not against Zan.
On the other hand, following vasectomy, where all sperm antigens are
released from the injured epididymal ducts, the mice produced anti-
bodies to Zan but not to LDH3 (Wheeler et al., 2011). This indicates,
that the immune protection for meiotic and postmeiotic germ cell anti-
gens hinges on the following mechanism: systemic tolerance continu-
ously maintained by egressed (non-sequestered) antigens finally
reaching peripheral lymphoid organs to stimulate antigen-specific toler-
ance involving Treg cells, and local mechanisms including the BTB that
protect sequestered antigens such as Zan and control damage to germ
cells in orchitis (Wheeler et al., 2011; Tung et al., 2017).

Treg cells strongly influence the autoimmune responses to meiotic
and postmeiotic germ cell antigens in vasectomized mice. In this
regard, unilateral vasectomy, which strongly exposes spermatozoal
neoantigens to the local immune system, rendered mice unresponsive
to later induction of EAO using standard injection of testicular homo-
genates, as it promotes tolerance by induction of testis antigen specific
Treg cells within 7 days (Rival et al., 2013). It is therefore not surprising
that Treg cell depletion concomitant to unilateral vasectomy resulted in
the development of autoimmune orchitis. Of note, the autoantibodies
elicited in this model were directed only to a restricted number of mei-
otic and postmeiotic germ cell neoantigens, with Zan located in the
sperm acrosome as a prominent target (Wheeler et al., 2011).
Obviously, Treg cell responses only manifest when sperm granuloma
are formed in vasectomy. Then the sequestered sperm antigens egress
the damaged epididymal epithelium and can stimulate a Treg cell
response that causes the initial tolerance state.

The results also raise a much broader clinical question, i.e. whether
the state of persistent tolerance to germ cell neoantigens in vasecto-
mized mice can be extrapolated to the response to the molecules
known as cancer/testis antigens that are expressed as human cancer
antigens (Simpson et al., 2005). In this regard, it is relevant to exam-
ine if the post-vasectomy tolerogenic response could interfere with:
immune surveillance against nascent tumour development in some
cancers in vasectomized men; the strength of tumour immunity that
may impact clinical outcome; and/or the immunogenicity of male
germ cell neoantigens as a tumour vaccine. The need for further
study is underlined by the observed higher rate of tumour develop-
ment in long-term vasectomized mice (Anderson et al., 1983). Early
reports on an increased tumour incidence among vasectomized
men (Mettlin et al., 1990; Rosenberg et al., 1990; Eisenberg et al.,
2015), however, have not been confirmed, in contrast to an increased
overall risk of cancer, including testicular tumours, in infertile patients
(Eisenberg et al., 2015). Interestingly, in a database analysis comparing
23 988 males with previous vasectomy to a reference cohort of
146 040 males, the incidence of immune-related diseases was not

significantly different between both groups after a mean follow-up
of 13 years (Goldacre et al., 2007). In addition, for cancer vaccine
development, the sequestered sperm antigens should be more
efficacious than the non-sequestered, and tolerogenic sperm
antigens.

Despite the early tolerance response, 70–90% of the vasectomized
mice have low titres of antisperm antibodies 6–7 months later, con-
sistent with clinical observations (Rival et al., 2013).

It is critical to emphasize that the most serious observable seque-
lae of vasectomy in mice, by far, is the severe interstitial fibrosis in
the epididymis, and the severe degree of hypospermatogenesis at 12
months post-vasectomy (Wheeler et al., 2011; Rival et al., 2013). In
contrast to the acute bacterial epididymitis model mentioned above
(Michel et al., 2016), these changes are not an immunological sequel.
They are caused by the vasoligation per se as they are confined to the
ipsilateral epididymis and testis of the unilaterally vasectomized mice
(Rival et al., 2013). The severity of fibrosis suggests that the change is
irreversible in mice. A critical investigation on these changes in vasec-
tomized men with epididymal complaints or desire for re-fertilization
surgery by vasovasostomy may be informative.

This advancement of understanding at the testicular level points to
much needed research on the possible involvement of the epididy-
mis, where solid evidence is mostly lacking.

Conclusions and future
perspectives
In summary, infection and inflammation both represent relevant
entities in male factor infertility (Fig. 5). In this regard, bacterial epidi-
dymitis and epididymo-orchitis represent the most frequent aetiology
of diseases related to the epididymis and are reasonably well
reflected by the corresponding animal rodent models in terms of pos-
sible application of pathovars relevant for human epididymitis, course
of disease, and histopathology observed. Generally, beside many
striking parallels caution in extrapolating rodent data to the human
are derived from obvious differences in innate and adaptive immune
responses between human and rodents, particularly those directed
against pathogenic microorganisms. In human blood defence, it seems
that strategies against pathogens dominate, while in mouse tolerance
against pathogens is more pronounced (Zschaler et al., 2014). In the
human neutrophils are particularly abundant in the blood (50–70%),
whereas in the mouse there is a preponderance of lymphocytes
(75–90%). Further differences have been reported for TLRs, cyto-
kines and their receptors as well as T cell subsets, to name only a
few examples (Zschaler et al., 2014). Such differences need to be
considered when using rodents as surrogates for human. New huma-
nized mouse models may overcome some of these obstacles. As an
example, the human lymphocyte compartment has at least been par-
tially reconstituted in mice by transferring human hematopoietic cells.
Moreover, organoids from human foetal liver (from which leucocyte pro-
genitors arise) or thymus have been transplanted to mice enabling the
study of human pathogen infection and immune control (Ramer et al.,
2011). Although not applied yet in testicular or epididymal research,
humanized mouse models can serve as tools to examine immune control
and combat of infection together with new clinical treatment regimens,
such as biological, as possible means to preserve fertility in men.
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In sterile inflammatory damage of the testis, which is mostly focal
and patchy in nature in men, EAO elicited in mouse and rat is the
most prominent model. Although similar in the early phase of EAO
(30–50 days post induction), its progressively deteriorating nature dif-
fers after longer observation periods (>80 days) substantially from
most biopsy observations. Currently, inflammatory lesions in the tes-
tis of asymptomatic infertile men are only detected with biopsy
assessment (Table III). Evidence suggests that more frequently ‘silent’,
low-grade human autoimmune orchitis—so far ill-defined as ‘idio-
pathic’ male infertility—would be found if better non-invasive diag-
nostic methods of the disease were available. The putative use of
detection of ER-60 as an autoantigen has been derived from animal
experiments and was confirmed by a pilot study using a small cohort of
well characterized patients (Fijak et al., 2005, 2014). However, final con-
firmation of use as a non-invasive diagnostic, sparing biopsies, is still
pending. Together with a lack of information in the literature, biopsy
assessment—at least currently—thus, remains the method of choice for
the detection of inflammation-associated damage in the human testis.

Although clinical and basic science research has provided a great
amount of information many important aspects still need to be eluci-
dated. The many questions raised in this review will hopefully guide
future combined clinical and basic science research to better address
the diagnosis and treatment of immunological and infection-related
infertility in men.
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