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Abstract

Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride
channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent
dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To
address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM),
allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach,
GABAA mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively
provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels
associated with GABAA receptors. Indeed through an original algorithm, chloride currents elicited by application of
appropriate agonists of the GABAA receptor can be derived from the quantitative phase signal recorded with DHM. Finally,
chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular
sampling by DHM.
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Introduction

Regulated and selective transport of ions mediated by ion

channels underlies various fundamental cellular processes. Ionic

channels represent an important group of therapeutic targets

which are modulated by a range of currently prescribed drugs. In

particular, chloride channels are involved in several physiological

functions such as cell volume regulation, transmembrane fluid

transport, muscular activity and neuroexcitability (for review see

[1]). Their dysfunction is observed in over a dozen human

pathological conditions, including several that affect the nervous

system such as epilepsy and certain psychiatric diseases (for review,

see [2], [3]). The development of drugs targeted to these chloride

conductances represents an important field for developing novel

pharmaceutical agents (for review, see [4]). In general, electro-

physiology (patch clamp) remains the most accurate technique for

analyzing and quantifying the effectiveness of a drug on an ionic

conductance. Thus, this approach has been widely used for

chloride currents mediated by neuronal GABAA receptors

associated with chloride conductance during an inhibitory synaptic

transmission. Nevertheless, despite an exceptional fidelity and

precision, patch clamp are not suitable for multiple compound

screening since this approach is technically demanding, with very

low throughput capacity and labor-intensive. Recently, the

development of automated electrophysiology has substantially

improved the throughput. However, the capability of currently

available automated system is not yet compatible with primary

screening of large random compounds sets.

Another possibility is the use of fluorescent dyes whose

fluorescence intensity is related to the intracellular concentration

of ions, an approach widely used for visualizing calcium (for

review, [5]). However, this technique has not achieved a general
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applicability because of several methodological drawbacks, notably

for chloride, including sensitivity and specificity, limitations

inherent to the loading protocol as well as to photobleaching. In

addition, the quantitative determination of chloride fluxes with

non-electrophysiological methods amenable to screening ap-

proaches has been challenging, in particular because the

transmembrane ratio of chloride is low (10:1) and the equilibrium

potential of chloride is generally close to the resting membrane

potential of cells, two factors that result in transmembrane fluxes of

limited amplitude, raising therefore issues of sensitivity.

Recently, significant progress has been made in Quantitative

Phase Microscopy (QPM) techniques [6], [7], [8], [9] that enable

to obtain full-field quantitative phase imaging of transparent living

cells, allowing to visualize cell structure and dynamics. In contrast

to the non-invasive phase contrast (PhC), initially proposed by F.

Zernike and by Nomarski’s differential interference contrast (DIC),

which provides qualitative information about cell structure, QPM,

provides a quantitative measurement of the phase shift induced by

a transparent specimen on the transmitted wavefront. The phase

shift, or the optical path difference (OPD) containing considerable

information about the cell morphology as well as intracellular

content related to the refractive index properties, can be regarded

as a powerful endogenous contrast agent.

The QPM that we have developed, called digital holographic

microcopy (DHM), has the ability to explore cell dynamics by

providing, from a single recorded hologram, quantitative phase

images of living cells with a nanometric axial sensitivity [10].

Practically, an original numerical processing of holograms allows

not only to calculate the phase shift but also to reconstruct the

whole wavefront diffracted by the specimen [11] and consequently

to compensate for aberration [12] and experimental noise (time

drift, vibration, defocusing, etc.) thus ensuring a high phase

stability making possible to explore biological processes across a

wide range of time scales, from milliseconds to hours. Thus, DHM

appeared to us as a promising method to monitor ion channel

activity because of the capacity of DHM to monitor subtle changes

of the intracellular refractive index and cell volume resulting from

transmembrane water fluxes associated with the activity of specific

ion conductances. We have recently demontsrated this application

of DHM to the pharmacological study of glutamatergic ionotropic

receptors [13].

In this study, we set out to quantitatively measure from the

DHM phase signal the dynamics of chloride currents in response

to the modulation of chloride conductances in a well-established

biological model used for drug-discovery by High Throughput

Screening (HTS). To this aim we have used HEK293 cells, a cell

line widely used for pharmacological studies, transfected to express

the neuronal ligand-gated channel GABAA. The ionic nature of

the measured currents was validated by pharmacological analysis

as well as by comparing the reversal potential determined by

DHM with that measured electrophysiologically with conventional

I/V relationships achieved by patch-clamp. Furthermore, the

replacement of chloride (Cl2) by thiocyanate (SCN2) in the

extracellular medium amplified the GABA-induced optical signal,

permitting the pharmacological characterization the GABAA

receptor activity simultaneously in large numbers of unpatched

cells. Finally, an original mathematical analysis of the phase

response determined by DHM, quantitatively predicts the chloride

trans-membrane current, thus providing the possibility to quan-

titatively measure currents without electrode.

Results

For all experiments, the transfected HEK cells (HEKGABA)

cultures had a cell density such that HEKGABA were in contact

with neighbouring cells (at least 60% of confluency). Their

morphologies were identical to those of the non-transfected HEKs

(HEKnorm) namely polygonal (figure 1A). In terms of electrical

properties, HEKGABA had a resting potential of 230.860.8 mV

(range: 220 to 245 mV; n = 63) and an input resistance of

233613 MV (Range: 150 to 500 MV). There were no significant

differences in terms of electrical properties between HEKGABA and

HEKnorm (Vm: 234.661.7 mV; p.0.05; Rinp: 214636; p.0.05;

n = 10).

GABA triggers a phase shift in the optical signal on
HEKGABA

At 2100 mV, bath perfusion of GABA (3 mM, 30 s) on

HEKGABA led to a transient increase of phase signal

(DQ= 5.4661.38u; n = 22), while a similar application of GABA

had no effect on HEKnorm (DQ= 0.3360.55u; n = 6; p,0.005)

(figure 1A). In the presence of a GABAA receptor antagonist,

picrotoxin (30 mM), the phase response evoked by GABA

application was significantly reduced (282617%, p,0.05,

n = 10) (figure 1B), while the specific agonist, muscimol (1 mM;

30 s, n = 6) mimicked the effect of GABA (figure 2A2). These 1st

set of results indicate that the optical signal obtained after

application of GABA was associated with the activation of GABAA

receptors expressed in HEKGABA. Finally, the amplitude of the

phase shift depended both on the concentration of GABA

(EC50 = 3.4 mm) and the length of application (T 1/2 = 19.4 s)

(figures 1C & 1D).

Determination of the reversal potential of Cl2 from the
amplitude of the phase shift evoked by GABA application

Through the patch pipette, we have clamped the membrane at

various holding potentials. For a given cell, at 2100 mV, the

application of GABA resulted in a transient increase of phase

signal (DQ= 4.8562.99u; n = 7) as described above (figure 2A1). In

contrast, at +40 mV, GABA triggered a transient strong decrease

of phase signal (DQ= 212.4263.39; n = 7) (figure 2A1). In

reporting the maximal amplitude of the phase shift as a function

of the membrane potential, we obtained a relationship which we

called ‘‘Phase/Voltage’’ (Q/V), in analogy with the ‘‘current/

voltage’’ relationship (I/V) (figure 2A1). In doing so, we were able

to detect an outward rectification and also to determine the

reversal potential of the ion involved, here Cl2 (ECl), in this case

226 mV (figure 2A1; table 1). This value was close not only to the

theoretical value of ECl (ECl(Th) = 233 mV) calculated with the

Nernst equation using values taken from our experimental

conditions (table 1), but also to that obtained by classical

electrophysiology with the I/V curve (226 mV; figure 2A1;

table 1). At this stage, it is important to not that the large changes

in voltage used in this study (from 2100 mV to +40 mV), in

absence of GABA, were not able to trigger a detectable optical

signal by themselves (not shown), reinforcing the fact that the

optical signal is only triggered by application of GABA.

To confirm that changes in phase signal were associated with

the flow of Cl2, we modified the concentration of this anion in the

patch pipette ([Cl2]intrapip.) from 44 mM to 139 mM. According-

ly, the values of the reversal potential for Cl2 obtained with the Q/

V and I/V relationships were shifted to less negative values

(respectively 27 mV and 22 mV; n = 6) and were similar to the

value of ECl(Th) calculated under these new conditions (24 mV)

(figure 2B1; table 2).

Optical Signature of Cl-Current Recorded by DHM
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Finally, with the specific GABAA receptor agonist, muscimol

(1 mM, 30 s), we obtained similar results, the Q/V relationship

determining a reversal potential of 228 mV with a [Cl2]intrapip. of

44 mM (n = 7) (figure 2A2; table 1) while with a [Cl2]intrapip. of

139 mM (n = 7), the reversal potential was around 26 mV

(figure 2; table 2B2), thus confirming that the Cl2 flow was due

to the opening of the conductance of GABAA receptors.

These results clearly show that the electrochemical properties of

a given ionic conductance (here the conductance for Cl2) can be

determined by DHM with the same precision as that achieved

with classical electrophysiological approaches.

Ionic co-transporters NKCC and KCC are not significantly
involved in the genesis of GABAA-induced optical signal

It has been established that an alteration in chloride homeostasis

linked to a transient but strong activation of GABAA receptors

results in an activation of ionic co-transporters KCC and NKCC

[14], two membrane proteins co-transporting ions (especially Cl2)

and water molecules (for review, see [15], [16]), in order to restore

a normal chloride homeostasis on both sides of the plasma

membrane. To determine the possible involvement of these ionic

co-transporters in the genesis of the GABAA-induced optical

signal, furosemide, a broad spectrum blocker of KCC and NKCC

has been used. In presence of this blocker (100 mM), the optical

signal induced by application of GABA (3 mM, 30 s) was not

significantly modified regardless the membrane potential

(2100 mV and +40 mV) (figure 1E), suggesting that these two

proteins do not contribute to the optical response mediated by the

opening GABA-activated chloride conductance.

Figure 1. Phase shift is associated with activation of GABAA receptors expressed in HEKGABA. A: (Top) Phase image of patched HEKGABA

(left) and HEKnorm (right) recorded by DHM. The full (HEKGABA) or the dotted (HEKnorm) ovals correspond to the region of interest where the phase
signal is recorded (scale bar: 5 mm,). (Middle) Application of GABA (3 mM, 30 s; bar) during a pulse of voltage (from 240 mV to 2100 mV; 2.5 min)
triggered a strong transient increase of the phase signal only in HEKGABA. The Bar chart shows the difference between HEKGABA (n = 15) and HEKnorm

(n = 10) in response to application of GABA at 2100 mV (*** p,0.005, unpaired t-test). B: In presence of picrotoxin (Picrot., 30 mM), application of
GABA (3 mM, 30 s; bar) reduces the phase shift (dotted line) (* p,0.05; versus control, paired t-test) (n = 10), when compared to control conditions
(Ctr; full line). The Bar chart shows the difference between Picrotoxin and Control condition (n = 13) in response to application of GABA (*** p,0.05,
paired t-test). C: (Left) Example of traces of phase shift obtained after the successive application of GABA (from 30 nM to 3 mM, 30 s; arrow head) to
the same HEKGABA at 2100 mV. With the increase in GABA concentration, the phase shift increased until it reached a plateau. (Right) The graph
reports this effect for 6 cells at a holding potential of 2100 mV. Fitting the data to the logistic equation yielded an EC50 of 3.4 mM. D: (Left) Example
of traces of phase shift obtained after the successive application of GABA (3 mM, 30 s; arrow head) to the same HEKGABA at 2100 mV. With the
increase in application time of GABA, the phase shift increased until it reached a plateau. (Right) The graph reports this effect for 9 cells at holding
potential of 2100 mV. The curve was obtained using a logistic fit with a T 1/2 of 19.4 s. E: (Left) In presence of furosemide (Furo., 100 mM), the phase
signal associated to the application of GABA (3 mM, 30 s; arrow head) is not modified (thick line) both, at 2100 mV (top) or +40 mV (bottom) when
compared to control condition (Ctr, thin line). (Right) The Bar chart shows the absence of difference between furosemide and control condition at
+40 mV (n = 5) and 2100 mV (n = 4) in response to application of GABA (p.0.05, paired t-test).
doi:10.1371/journal.pone.0051041.g001

Optical Signature of Cl-Current Recorded by DHM
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Simultaneous measurement of multiple optical
recordings of Cl2 flux in unpatched HEKGABA cells

The next step consisted in detecting optical signals from

unpatched cells in order to explore the possibility of performing

simultaneous multiple recordings. As shown in figure 3A, the

optical responses triggered by GABA (3 mM, 30 s) from unpatched

HEKGABA were heterogeneous resulting either in an increase

(25% of recorded cells; n = 47) or a decrease (19%; n = 38) or no

detectable changes (56%; n = 105). This result is consistent with

the fact that the resting potential of HEK cells (mean

Figure 2. Determination of the value of the reversal potential for Cl from the phase shift evoked by GABA or muscimol application.
A1: (left) Example of 3 simultaneous traces of current (dotted line) and phase shift (thick line) recorded with 44 mM of [Cl2]intrapip on the same
HEKGABA. At 2100 mV, application of GABA (3 mM, 30 s) triggered an inward current concomitantly to an increase in the phase signal. Conversely, at
+40 mV, same applications of GABA triggered an outward current accompanied by a decrease of the phase signal. Note that for 240 mV (close to the
resting potential for Cl), the current and the phase shift were very small. (Right) The Q/V curve (full square and thick line) and the I/V curve (empty
circle and thin line) obtained with GABA (n = 7) indicated an ECl of 226 mV and 226 mV respectively (see also Table 1). A2: With an application of the
GABAA agonist muscimol (1 mM, 30 s, M), the data were similar to those obtained with GABA. With Muscimol, the ECl was 228 mV with the Q/V curve
and 225 mV with the I/V curve (n = 7; see also Table 1). B1 and B2: (left) In the presence of 139 mM of [Cl2]intrapip., traces of current and phase shift
obtained after application of GABA (3 mM, 30 s; G) (B1) or Muscimol (1 mM, 30 s, M) (B2) were similar, except for 240 mV, where a larger current and
phase shift were detected compared with 40 mM of [Cl2]intrapip. In this condition, the value of ECl was shifted to a more positive value. (Right) The Q/V
curve (full square and thick line) and the I/V curve (empty circle and thin line) obtained with GABA (n = 6) indicated ECl of 27 mV and 22 mV, while
with muscimol (n = 7), ECl were 26 mV (Q/V curve) and 28 mV (I/V curve) (see also Table 2).
doi:10.1371/journal.pone.0051041.g002

Table 1. Determination of Ecl with a [Cl2]intrapip of 44 mM.

[Cl-]intrapip. 44 mM Theo. Ecl: 233 mV

GABA (n = 7) Muscimol (n = 7)

Equation R2 ECl (mV) Equation R2 ECl (mV)

Phase y = 20.001462–0.2329625.0273 0.9787 226 Phase y = 20.001562–0.45516211.368 0.9738 228

Current y = 4E20562+0.01176+0.2759 0.9767 226 Current y = 0.000162+0.02926+0.6643 0.9936 225

doi:10.1371/journal.pone.0051041.t001

Optical Signature of Cl-Current Recorded by DHM
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value = 231 mV, n = 63) is very close to the reversal potential of

Cl2 (around-33 mV; table 1), thus explaining that over 50% of the

cells exhibited a modest or no detectable phase signal.

To overcome this problem, we altered the Cl2 reversal potential

by replacing in equimolar amounts most of the extracellular Cl2

with SCN2 (modified ACSF, see Material and Methods and File

SI). In such modified ACSF, application of GABA (3 mM, 30 s),

results in a strong positive phase shift simultaneously in almost all

HEKGABA cells (up to 85–90% of recorded cells; figure 3B1)

corresponding mainly to a Cl2 efflux (see File S1 and figure S1).

The value of the peak amplitude was significantly higher in

modified ACSF (4.44+/20.59u; n = 174; p,0.005) than in normal

ACSF (0.74+/20.29u; n = 188).

An interesting point is that the EC50 for GABA applied on

unpatched HEKGABA perfused with modified ACSF is around

1.4 mM (figure 3C), a value slightly inferior to that determined for

patched HEKGABA cells clamped at 2100 mV in normal ACSF

(3.4 mM; figure 1) but in excellent agreement with the literature

[17]. A control application (vehicle solution) had no effect on

phase shift (20.11+/20.39u; n = 80; figure 3D) demonstrating

that the optical effect observed was linked to GABA. Moreover,

the pharmacological characteristics of optical responses linked to

Table 2. Determination of Ecl with a [Cl2]intrapip of 139 mM.

[Cl-]intrapip. 139 mM Theo. Ecl: 24 mV

GABA (n = 6) Muscimol (n = 7)

Equation R2 ECl (mV) Equation R2 ECl (mV)

Phase y = 20.001362–0.3022622.1095 0.9761 27 Phase y = 20.002262–0.5315624.3734 0.9738 26

Current y = 0.000162+0.02696+0.058 0.9958 22 Current y = 0.000162+0.02356+0.1798 0.9936 28

Values are means 6 SEM. For all conditions, equations, R2 and Ecl were obtained by using a quadratic polynomial fit (ORIGIN).
doi:10.1371/journal.pone.0051041.t002

Figure 3. Non invasive multi recording of Cl2 flux from several cells. A: (top): Phase images of 6 clustered HEKGABA cells visualized in DHM
(scale bar: 10 mm). (below): Traces of phase signal (grey line) recorded from corresponding cells showed above. Application of GABA (3 mM, 30 s, bars)
triggers an increase in the phase signal for cell nu4 while for cell nu2 a decrease in the optical signal is observed. Note that for cells nu 1, 3, 5 and 6,
there are no detectable optical signals. (Bottom) Trace of averaged phase signal (AVG; black line) from the 6 HEKGABA (above). The averaged pick
amplitude is less than 0.5u. B1: (Left) Phase image of 16 clustered HEKGABA cells visualized in DHM (scale bar: 10 mm). (Right) 2 sets of traces (grey
line = individual trace; black line = averaged trace) obtained after application of GABA (3 mM, 30 s, bars) successively in normal (NaCl) and modified
(NaSCN) ACSF. B2: The Bar chart shows the significant difference between a application of GABA (3 mM, 30 s) in normal (NaCl; n = 188) and Modified
(NaSCN; n = 174) ASCF (*** p,0.005, unpaired t-test). C: The dose-response curve shown was the best fit of the data to the logistic equation
described in the Methods section. Fitting the data to the logistic equation yielded an EC50 of 1.4 mM. D: The Bar chart shows the phase shift response
obtained from a large sample of unpatched HEKGABA cells after different types of drugs application: GABA (3 mM, 30 s; n = 178), control (0 mM, 30 s;
n = 64), muscimol (1 mM, 30 s; n = 144), Picrotoxin (30 mM)+GABA (3 mM, 30 s) (n = 124) and Diazepam (10 mM)+GABA (3 mM, 30 s) (n = 112). Results
are presented in % versus the GABA condition (*** p,0.05, unpaired t-test).
doi:10.1371/journal.pone.0051041.g003

Optical Signature of Cl-Current Recorded by DHM
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GABA application (in modified ACSF) were in accordance with

those established for GABAA receptors in the literature. Indeed,

application of muscimol (1 mM; 30 s) mimicked the effect of

GABA (3.31u+/20.61; n = 144; p = 0.62) while, the phase

response evoked by GABA application was totally blocked

(0.24+/20.43u, p,0.005, n = 124) in the presence of picrotoxin

(30 mM; figure 3D). Finally, in the presence of diazepam (10 mM),

a benzodiazepine known to potentiate the action of GABA on

GABAA receptors, the optical response associated with GABA

application was significantly increased (6.75+/20.82u; n = 112;

p,0.005; figure 3D) confirming that the effect of GABA is

associated with the activation of GABAA receptors.

Taken together these data clearly demonstrate that DHM is a

non invasive method (no dye and no electrode) able to characterize

pharmacologically the activity of a ligand-gated channel (here the

GABAA receptor) simultaneously on a large sample of individual

cells. These characteristics could be of great interest for HTS for

GABAA receptor/chloride channel modulators.

The GABAA receptor-mediated current (IGABA) can be
derived from the phase signal

Our experimental recordings showed that, while the two types

of signals (electrical and optical) provide the same information on

GABAA receptor properties, their kinetics are strikingly different

(figures 2A1 & 4 A1). Thus, at 2100 mV, the rise time (trise) or

decay time (tdecay) of the phase shift (trise: 85.069.3 s; tdecay:

243620.2 s, n = 8) was significantly longer than for the IGABA

(trise: 23.962.3 s; p,0.005; tdecay: 47.864.7 s; p,0.005). Simi-

larly, at +40 mV, the kinetic constants were also significantly

longer for the phase shift (trise: 92.5615.3 s; tdecay: 220619.0 s)

than for IGABA (trise: 29.361.6 s; p,0.05; tdecay: 57.261.3 s;

p,0.005; n = 6). These measures of kinetics suggest nevertheless a

strong relationship between the current and phase signal generated

by GABA, where the current is a parameter representing a

number of charges per unit of time and the phase signal would be

a mirror of the accumulation of these same charges during the

total opening time of the conductance.

As shown in File S2, this relationship between the current (here

IGABA) and the DHM phase signal (Qt) is explicitly given by

equation 2:

IGABA(t)~
V0

e�GABA

d

dt

Q0

Q(t)

� �1=s{r

ð2Þ

where e�GABA represents the effective volume variations per

number of net charges transported through the membrane, which

takes into account of any volume variations, including the non-

electrogenic ones.

In order to quantitatively derive IGABA from the rapid phase

response, several parameters from equation 3 must be known.

Practically, V0 (initial volume of HEK cells) as well as the

parameters r (a parameter related to the cell deformation) and s (a

parameter taking into account transport of substances, including

proteins, across cell membranes) have been measured by the

decoupling procedure [10], [18]. Consequently, a single param-

eter remains to be determined, namely e�GABA, to calculate the

current. Practically, as far as the rapid phase is considered, the

decoupling procedure has permitted to demonstrate that s value is

not statistically different from 1 when HEK cells are considered,

indicating that the intracellular refractive index presents a

variation mainly resulting from a dilution or a concentration of

the intracellular content by ions and water fluxes (see File S2). As

far as HEK cells are considered the typical values of the parameter

r are concerned, they are within the range 0.5–0.8, reflecting the

fact that the cell deformation associated with the volume change is

not isotropic (r = 0.33) but preferentially along the z-axis.

Practically, figure 4 shows examples of currents derived from the

phase signal at three different holding potentials (2100, 240 and

+40 mV) as calculated with equation 2. For these calculations, the

parameter e�GABA in equation 2, was computed by performing a

least squares fit, in order to minimize the sum of the square of the

deviations between the measured current from the phase derived

current (Ipred.) (figure 4). It must be stressed that the adjustment of

this single parameter e�GABA allows obtaining an Ipred. in good

agreement with the measured current. Typical values for the

parameters e�GABA lie within the range of 90–110 mm3/nC for

HEK cells. With these values of e�GABA, Ipred. is also in good

agreement with the recorded current IGABA when a modified

ACSF is considered(Figure 4B1).

Finally, in order to fully take dvantage of the possibility afforded

by DHM to optically measure transmembrane currents, we have

determined the phase-derived currents corresponding to the mean

current over a population of unpatched HEKGABA within the

same culture. In modified ACSF condition, equation 2, with

parameter e�GABA set at values in the range indicated above,

provides an Ipred. from unpatched HEKGABA cells in good

agreement with the recorded IGABA from patched cells

(figure 4B2). More importantly, we were able to optically measure

the potentiation of IGABA by diazepam from unpatched cells. The

validity of this optical measure is confirmed by the recording of

IGABA potentiation in patched cells (figure 4B2). This stresses the

capability of DHM to quantitatively determine characteristic

currents of a large cell sample in a non-invasive way (without the

use of electrodes or fluorescent dyes), thus making this approach

amenable to HTS procedures.

Discussion

The results reported in this article show that DHM is a simple,

reliable and non invasive optical technique for the determination

of the pharmacological properties of a chloride conductance

simultaneously in a large cell population. Indeed, the optical signal

detected with DHM -the quantitative phase response- is an

intrinsic one, linked to a physiological process. The illumination

system used for DHM is rather conventional (laser diode) and of

low power (,200 mW/cm2) [8], [10]. Moreover, with an

appropriate analysis of the phase response it is possible to

quantitatively obtain the chloride current which generates it, in

a strictly non-invasive manner without using recording any

electrodes.

The potential offered by DHM to detect and analyse

pharmacologically a chloride conductance in a cell population

were confirmed by data obtained for GABAA receptors expressed

by HEKGABA. Practically, the results show that the DHM optical

phase responses are specifically linked to the activation of GABAA

receptors expressed by HEKGABA (no optical response on

HEKnorm), with pharmacological characteristics in agreement

with those already described in the literature [19]. The ionic

species underlying the GABA current could be determined by

constructing a phase/current plot indicating a reversal potential

close to the theoretically-determined equilibrium potential of

chloride. It is known that this ligand-gated chloride channel is also

permeable to other anions including HCO3
2 [20]. However, one

should note that the permeability of HCO3
2 through GABAA

receptors is 5 to 10 times lower than that of Cl2. Moreover, it is

important to note that the optical (and electrical) signals recorded

from patched HEKGABA cells have been obtained without
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HCO3
2 in both bath medium and the intrapipette solution.

Consequently, even if we cannot totally rule out the participation

of another anion in the GABA-induced optical signal, our results

suggest that, in our recording condition, that the optical (and

electrical) signals were essentially associated with chloride fluxes.

This is particularly interesting, since no reliable optical imaging

techniques are available to specifically study Cl2 dynamics. To the

best of our knowledge this is the first example of an optical

technique providing without dye, precise information on specific

Cl2 fluxes in a quantitative manner.

Another important point concerns the ‘‘route’’ taken by the

water molecules accompanying the chloride fluxes. Of course, one

route is a passive diffusion through the plasma membrane, a

process known to have a slow kinetics. Another possible ‘‘route’’ is

a direct water flux through the chloride pore of GABAA receptor.

However, it has been shown that chloride conductances are

generally poorly permeable to water molecules [20]. Furthermore,

the fact that a constant e�GABA value in equation 2 allows to derive

an adequate current response - the early phase of current increase

when GABA is applied as well as the delayed phase of the current

recovery when GABA is no longer present - is compatible with a

low water permeability of chloride conductances. This transport of

water during GABA stimulation could be potentially modulated by

membrane proteins involved in the transporting of Cl- (and water

molecules) such as KCC and NKCC (For review, see [16]).

However, our results have clearly shown that there is no

contribution of these two ionic co-transporters to the genesis of

optical signal.

These results are in accordance with the literature indicating

that theses two co-transporters are weakly expressed in native

HEK cells [21], [22]. Other proteins transporting Cl2, including

the HCO3
2/Cl2 exchanger [23], voltage-dependent chloride

conductances (CIC family) and/or VRAC (Volume Regulatory

Anion Channel) [24] could also contribute to the fluxes of Cl2 and

Figure 4. The GABAA gated current can be determined from the phase signal by a simple mathematical relation. A1: Simultaneous
traces of current (thin line) and phase signal (thick line) obtained after application of GABA (3 mM; 30 s; dot) for 2 different membrane potentials (top:
+40 mV; below: 2100 mV). Each trace of current and phase signal corresponds to an average of 6 individual current or phase shift from 6 HEKGABA

cells. A2: Expansion of traces visualized in A (parts defined by rectangles). For each level of membrane potential, the peak of phase shift (indicated by
the arrow head) was reached when the IGABA was terminated. According to equation 2 the phase signal can predict the current (Pred. Curr.: dashed
line) superimposed to the recorded current. B1: Simultaneous traces of current (dotted line) and phase signal (thick line) obtained after application of
GABA (3 mM; 30 s; bars) in modified ACSF (NaSCN). Each trace of current and phase signal corresponds to an average of 8 individual current or phase
shift from 8 patched HEKGABA and clamped at resting potential (between 225 and 235 mV). According to equation 2 the phase signal can predict
the current (Pred. Curr.: dashed line) superimposed to the recorded current. B2: Averaged traces of recorded currents from patched HEKGABA after
application of GABA alone (3 mM; 30 s; n = 8; left) and GABA+diazepam (10 mM; n = 6; right) in modified ACSF. Note the potentiation of inward current
in presence of Diazepam. B3: Traces of predicted obtained after derivation by equation 2 of the phase signal from unpatched cells after application of
GABA alone (3 mM; 30 s; n = 178; left) and GABA+diazepam (10 mM; n = 112; right) in modified ACSF. In this case also, we retrieved the same
magnitude of potentiation with the co-application of GABA and diazepam.
doi:10.1371/journal.pone.0051041.g004
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water triggered by GABA application.. Considering that, in patch

clamp recordings, pH was clamped in both compartments (extra-

and intracellular medium) it is very likely that the proteins involved

in the regulation of pH like HCO3
2/Cl2 exchanger are only

weakly activated. Concerning a possible involvement of voltage-

dependent chloride conductances, large changes in voltage

performed in our study (from 2100 to +40 mV) without

application of GABA did not trigger any detectable phase signal

(data not shown), suggesting only marginal, if any, involvement of

these chloride conductances in the GABA-induced optical

responses. In addition, these type of Chloride channels are weakly

expressed in HEK cells [25]. Finally, while one cannot formally

exclude a contribution of the VRAC (Volume Regulatory Anion

Channel) in the optical signal genesis triggered by GABA, their

involvement is very unlikely. Indeed, if VRAC activation were to

occur during cell swelling resulting from a massive influx of Cl2

(and water molecules), then one would expect a VRAC-dependent

signal at different membrane resting potentials during an

application of GABA, both when membrane is clamped at

+40 mV and at 2100 mV. However this can be excluded since a

cell shrinkage occurs at 2100 mV as a result of Cl2 efflux. More

importantly, the GABA-induced optical responses, performed on

unpatched cell in the NaSCN condition and used to derive

currents, correspond to an increase of phase signal i.e. a cell

shrinkage, for which a relevant participation of VRAC is very

unlikely.

The most important aspect of this imaging technique is the

possibility of simultaneous multi-cellular recording which may be

very valuable for a possible HTS application, since, in contrast to

classical electrophysiological approaches, multiple responses ob-

tained simultaneously from a population of cells can be averaged

following the application of pharmacological agents, without

disadvantages linked to labelling techniques (loading of dye or

contrast agent and/or bleaching). Practically, obtaining such a

simultaneous and non-invasive multi-cellular recording, results

was achieved through a drastic change of the transmembrane Cl2

gradient (substitution of the quasi totality of extracellular Cl2 by

SCN2 in equimolar manner), which allows to obtain values of

resting potential (between 220 to 240 mV) that are well

separated from the theoretical Cl2 reversal potential (in this new

condition, = ECl+30 mV). Within this framework, other ap-

proaches changing the transmembrane gradient of Cl2 could also

be considered such as for example the co-transfection of the

GABAA receptor and KCC2, since KCC2 can change the

gradient of Cl2concentration without affecting the membrane

potential [26]. However the conditions used in the experiments

reported here are considerably simpler to achieve.

Finally, a simple mathematical expression, with a single

unknown parameter ‘‘e’’, specific for the conductance under

study, (here ‘‘e�GABA’’ for GABAA receptor), relating the phase shift

to the measured current has been derived and successfully applied

to provide a quantitative determination of the ionic current from

the DHM optical signal. Practically, the fact that the cell volume is

stable before the GABA application i.e DVr(t~0)~0 and since a

constant value of e�GABA allows to properly calculate the current

IGABA from the phase signal, it follows that DVr(t) does not

significantly contribute to the rapid phase response. Thus the

parameter e�GABA%eGABA represents the volume variation associ-

ated with the net charge movement transported across the pore of

GABAA receptor and can thus inform about the membrane

permeability to water.

In conclusion, this study describes a novel application of DHM

to analyse at the single-cell level non-invasively and without the

use of dyes, the optical signature of a specific ionotropic receptor

activity as well as its modulation by specific pharmacological

agents. In this case the activity of the GABAA receptor selectively

permeable to Cl2 and its modulation by diazepam, a drug widely

used for the management of anxiety disorders in particular are

reported. In addition appropriate mathematical treatment of the

optical signal affords the possibility to quantitatively determine the

dynamics of the current triggered by the GABAA receptor activity,

making this technique amenable to use for pharmacological

screenings of modulators developed for the management of human

pathologies involving dysfunctions of chloride channels.

Materials and Methods

Cell preparations
HEK 293 cells stably expressing configurations of rat GABAA

receptors (HEKGABA) were generously given by Hoffmann-

LaRoche (Basel, Switzerland). Briefly, cDNAs encoding rat

GABAA a1, b2 and c2s subunits [27], [28]were subcloned into

the expression vectors pIRESpuro2, pIRESneo2 and pIREShy-

gro2 vectors (Clontech, Mountain View, CA), respectively. The

pIRES/GABAA a1, b2, c2s, constructs were sequenced to

confirm their nucleotide sequence and then cotransfected into

HEK 293 cells at a ratio of 1:1:2 (plasmid mass ratio) using the

lipofectamine 2000 kit according to the manufacturer’s instruc-

tions (Invitrogen, Carlsbad, CA, USA). Transfected cells were

grown in minimal essential medium (Invitrogen) supplemented

with 10% fetal calf serum (Invitrogen), 20 mM HEPES (Invitro-

gen) and 100 U/ml penicillin/100 mg/ml streptomycin (Invitro-

gen) for 48 hours and then, the cells were transferred to the

selection medium containing 0.3 mg/ml puromycin (Clontech,

Mountain View, CA, USA), 300 mg/ml hygromycin B (Roche

Diagnostics, Mannheim, Germany) and 200 mg/ml G418 (In-

vitrogen) for the generation of stable cell lines. Cell colonies were

isolated and expression of the GABAA a1b2c2s receptor was

determined by [3H]flumazenil binding.

For all experiments, HEKGABA and HEKnorm (untransfected)

were transferred to a recording chamber and perfused containing

in an artificial cerebrospinal fluid (ACSF) containing (in mM):

NaCl 140, KCl 3, D-glucose, 5 HEPES 10, CaCl2 3, and MgCl2 2

(pH 7.4; Osm: 290–295 mOsm; Room temperature). For optical

multi-recording of GABAA receptor activation, we have substitut-

ed in ACSF the NaCl by NaSCN (called modified ACSF) in

equimolar manner in order to have less than 5 mOsm between the

2 extracellular solutions. Finally, for some experiments, picrotoxin

(30 mM, Tocris) was added to the ACSF. GABA (3 mM, Tocris),

Muscimol (1 mM, Tocris) and Diazepam (10 mM, Sigma) were

dissolved in ACSF and applied by bath perfusion (for 0 s to 300 s).

Electrophysiology recording
Whole-cell recordings were made, and signals were amplified by

using Multiclamp 700B amplifiers (Axon Instruments, Union City,

CA) and digitized by means of an ITC-1600 interface (Instrutech,

Great Neck, NY) to a PC computer running Igor Pro (Wave-

metrics, Portland, OR). All currents (sampling interval, 5 kHz)

were low-pass filtered (2 kHz). They were recorded with pipettes

containing (in mM): potassium-gluconate 95, KCl 40, Hepes 10,

MgCl2 2 (pH 7.3; Osm: 280–290 mOsm). For some experiments,

95 mM potassium-gluconate was substituted with 95 mM KCl to

reach a final concentration of [Cl2]intrapip. to 139 mM. The

pipettes were pulled with a DMZ universal puller.

Imaging
Digital Holographic Microscopy (DHM) is a full-field interfer-

ometric imaging technique that allows to derive from the
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quantitative phase signal, minute changes in cell refractive index

and volume associated with a variety of biological processes

without dye or contrast agent (for review, see [29]), in particular

when transmembrane water movements are involved [10]. Indeed,

changes in ionic permeability are accompanied by a rapid

movement of water through the plasma membrane, in particular

when involving Cl2 [13]. Briefly, as shown by Marquet et al. [8],

for each pixel of the DHM images, the phase shift induced by the

observed cell is given by the following equation:

Q~
2p

l
nc{nmð Þh, ð1Þ

where l is the wavelength of the lightsource, h the cell thickness,

nc the mean intracellular refractive index (along the path length

corresponding to the thickness h), and nm the refractive index of

the perfusion solution. Consequently, the phase signal depends on

two distinct cell parameters: h which provides information

concerning cell morphology and volume, and nc whose value is

related to the amount of non-aqueous material present in the cell

and is essentially determined by the protein content [30]. DHM

can therefore quantitatively detect small variations of the phase,

which mainly depend on the refractive index of the cell nc and cell

morphology and volume derived from h. However, the value of

the phase is mainly dictated by the intracellular refractive index

rather than by cell morphology [10]. In turn, this refractive index

is dependent on the protein content of the cell [30], [10].

Accordingly, entry of water will dilute the intracellular protein

content resulting in a decrease in the phase while an exit of water

will concentrate the protein content leading to an increase in the

phase.

The basic design of our imaging system has been described in

[10], [31], [13]. Briefly, holograms are acquired with a DHMT

1000 (Lyncée Tech SA, PSE-EPFL). A laser diode produces the

coherent light (l= 683 nm) which is divided by a beam splitter

into a reference wave and an object wave. The object wave

diffracted by the specimen is collected by a microscope objective

and interferes with a reference beam to produce the hologram

recorded by the CCD camera. Frequency of hologram acquisition

is 0.2 Hz. Reconstruction of the original image from the hologram

is numerically achieved by a computer. The reconstruction

algorithm provides simultaneous amplitude and quantitative phase

images of the cells (Koala software). It is important to note that an

extensive quality control of the DHM technique has been

published in Rappaz et al. [18].

Pratically, before to start a phase recording we waited for a

minimum of 10 min in order to obtain a stable baseline. GABA

was added after a minimum of 1 min of stable baseline recording

for both the optical and the electrical signals.

Offline analysis
The electrophysiological and optical recordings were analysed

by using MATLAB 7.6 (Mathworks Software, Natick, MA) and all

curves have been fitted by using ORIGIN 7.5 (Microcal Software,

Northampton, MA). GABA concentration-response (or time

application-response) profiles were fitted to the following logistic

equation: Q/Qmax = 1/[1+(EC50/[GABA])n], where Q and Qmax

represented the normalized GABA induced phase shift at a given

concentration (or time application) and the maximum phase shift

induced by a saturating [GABA], EC50 was the half-maximal

effective GABA concentration (or time application), and n was the

slope factor. For both, optical and electrical response of GABA

application, rise time (trise) and decay time (tdecay) correspond to

0–100% peak amplitude.

All data are presented as means 6 SEM. Student’s t-test (paired

or unpaired) to determine statistical significance (p,0.05).

Supporting Information

Figure S1 Phase shift changes during application of
modified ACSF. A: 2 representative simultaneous traces of

current (thin line) and phase shift (thick line) recorded with 44 mM

of [Cl2]intrapip (Left; A1) or 139 mM of [Cl2]intrapip (Right; A2)

after perfusion of a modified ACSF. In both cases, perfusion of

such modified ACSF triggered a transient outward current

concomitant to a weak transient decrease of phase signal.

However, the followed increase of phase signal is speeded up

and higher with 139 mM of [Cl2]intrapip (A2) corresponding to a

stronger inward current. B1: 4 representative simultaneous traces

of current (thin line) and phase shift (thick line) recorded with

44 mM of [Cl2]intrapip after perfusion of a modified ACSF and

application of GABA (3 mM, 30 s, arrow head) at different time

(from 30 s to 60 min). We see the speed up of the phase increase

for different time intervals between the beginning of the modified

ACSF perfusion and GABA application. B2: The graph reports

the amplitude of the GABA-induced phase signal (QGABA) for

unpatched cells (empty triangle) and patched cells (full square) and

IGABA as a function of the interval between the beginning of the

modified ACSF perfusion and GABA application. Numbers in the

brackets correspond to the number of studied cells.

(TIF)

File S1 Effects of replacement of nacl with nascn on
currents and phase response.
(DOC)

File S2 Derivation of the relastionship between phase
and current.
(DOC)
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