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Abstract: Hypertension is a risk factor for myocardial infarction, stroke, renal failure, heart 

failure, and peripheral vascular disease. One feature of hypertension is a hyperresponsiveness to 

contractile agents, and inhibition of vasoconstriction forms the basis of some of the treatments 

for hypertension. Hypertension is also associated with an increase in the growth and proliferation 

of vascular smooth muscle cells, which can lead to a thickening of the smooth muscle layer of 

the blood vessels and a reduction in lumen diameter. Targeting both the enhanced contractile 

responses, and the increased vascular smooth muscle cell growth could potentially be an 

important pharmacological treatment of hypertension. Extracellular signal-regulated kinase 

(ERK) is a member of the mitogen-activated protein kinase family that is involved in both 

vasoconstriction and vascular smooth muscle cell growth and this, therefore, makes it an 

attractive therapeutic target for treatment of hypertension. ERK activity is raised in vascular 

smooth muscle cells from animal models of hypertension, and inhibition of ERK activation 

reduces both vascular smooth muscle cell growth and vasoconstriction. This review discusses 

the potential for targeting ERK activity in the treatment of hypertension.

Keywords: ERK, hypertension, smooth muscle, vasoconstriction

Introduction
Hypertension is a risk factor for myocardial infarction, stroke, renal failure, heart 

failure, and peripheral vascular disease. It is associated with both enhanced responses 

to contractile agents, and an increase in the growth and proliferation of vascular smooth 

muscle cells. The protein kinase extracellular signal-regulated kinase (ERK) is involved 

in both vasoconstriction and vascular smooth muscle cell growth and this, therefore, 

makes it an attractive target for the treatment of hypertension.

The mitogen-activated protein kinase (MAPK) family of enzymes include the 

ERKs (ERK1, ERK2, ERK3/4, ERK5, ERK7), the c-Jun amino-terminal kinases, and 

p38 MAPKs.1 Common to all of the MAPK family of protein kinases is activation 

via a sequential phosphorylation cascade, made up of three protein kinases: MAPK 

kinase (MEK) kinase, MEK, and MAPK (Figure 1).2 ERK1 and ERK2 are activated 

through the Ras/Raf/MEK cascade. Activation of the heterotrimeric G protein Ras 

leads to activation of the MEK kinase Raf, which in turn activates MEK, which then 

phosphorylates ERK1 and ERK2 at threonine 202 and tyrosine 204 to activate the 

enzymes.2

Although other isozymes of ERK are known, ERK1 and ERK2 are the most 

studied. This review will concentrate on these two isozymes. Phosphorylated ERK1 

and ERK2 enter the nucleus where they themselves phosphorylate transcription 
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factors involved in regulation of the cell-cycle and tissue 

proliferation.3 In differentiated, contractile vascular smooth 

muscle, ERK1 and ERK2 in the cytoplasm are involved 

in the regulation of vascular smooth muscle contraction. 

As far as this review is concerned, ERK refers to ERK1 

and ERK2.

ERK can be activated through stimulation of G protein-

coupled receptors (GPCRs) and release of Gβγ subunits,4 

or through activation of growth factor-stimulated tyrosine 

kinase receptors (Figure 2).5 As well as activation by Gβγ 

subunits after stimulation of GPCRs, ERK can also be 

activated through transactivation of growth factor tyrosine 

kinase receptors such as the epidermal growth factor (EGF) 

receptor, involving either tyrosine phosphorylation of the 

receptor, or the proteolytic cleavage of a membrane bound 

ligand, which then activates the receptor (Figure 2).6–9

Role of ERK in regulation  
of vascular smooth muscle 
contraction
Hypertension is associated with an increase in the contraction 

of blood vessels in response to agonist stimulation, and 

impaired relaxation responses to both endothelium-

dependent and -independent stimuli.10,11 Contraction of 

isolated blood vessels in response to activation of certain 

GPCRs is associated with an increase in ERK activity, and 

inhibition of ERK activation by inhibiting the upstream 

protein kinase MEK reduces contraction of blood 

vessels.12–14 Stretch-induced contractions are also associated 

with an increase in ERK activity.15 The relative role of 

ERK in the contractile response appears to depend upon 

the receptor activated and/or the blood vessel. For example, 

ERK appears to play a greater role in α
2
-adrenoceptor-

mediated contractions in the porcine palmar lateral vein 

compared to α
1
-adrenoceptor-mediated contractions in the 
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Figure 1 Schematic diagram showing (A) the general signaling pathway for activation 
of mitogen-activated protein kinases and (B) the specific pathway for activation of 
extracellular signal-regulated kinase. 
Abbreviations: ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated 
protein kinase; MEK, mitogen-activated protein kinase.
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Figure 2 Schematic diagram summarizing the potential mechanisms of extracellular signal-regulated kinase activation. 
Notes: Extracellular signal-regulated kinase activation can occur through stimulation of either a G protein-coupled receptor or a growth factor receptor, followed by 
activation of the Ras, Raf, mitogen-activated protein kinase kinase pathway. Activation of extracellular signal-regulated kinase through G protein-coupled receptors could 
be through direct activation of the Ras, Raf, mitogen-activated protein kinase kinase pathway, or through transactivation of a growth factor receptor, such as the epidermal 
growth factor receptor. This can occur through activation of a matrix metalloprotease and subsequent cleavage of a membrane-bound ligand such as heparin-binding 
epidermal growth factor, leading to release of the ligand and activation of the receptor. Alternatively, activation of the G protein-coupled receptor could lead to tyrosine 
phosphorylation of the epidermal growth factor receptor.
Abbreviations: EGF, epidermal growth factor; ERK, extracellular signal-regulated kinase; HB-EGF, heparin-binding epidermal growth factor; GPCR, G protein-coupled 
receptor; MEK, mitogen-activated protein kinase kinase; MMP, matrix metalloprotease.
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ferret aorta.12,14 Currently, the mechanism by which ERK 

causes contraction of the blood vessels is not clear. One 

hypothesis is that ERK phosphorylates the actin-binding 

protein caldesmon (Figure 3). Caldesmon can inhibit the 

adenosine triphosphatase activity of actomyosin,16 and it 

has been proposed that phosphorylation of caldesmon by 

ERK removes this inhibitory effect. Phosphorylation of 

caldesmon at serine 789 by ERK is thought to bring about a 

conformational change in caldesmon,17 resulting in decreased 

binding to actin and, hence, removal of the adenosine 

triphosphatase inhibition.18 Caldesmon phosphorylation 

that is inhibited by the MEK inhibitor PD98059 has 

been shown to be associated with vasoconstriction,12,19 

although other studies have suggested that ERK only 

phosphorylates l-caldesmon, which is only present in 

dedifferentiated smooth muscle, and thus suggesting that 

ERK phosphorylation of caldesmon is involved in cell 

division rather than contraction.20 Phosphorylation of 

l-caldesmon in dedifferentiated cells may regulate migration 

of proliferating vascular smooth muscle cells and, therefore, 

may play a role in the development of smooth muscle 

hyperplasia in hypertension.21 Other studies have found no 

correlation between caldesmon phosphorylation by ERK 

and blood vessel contraction, further questioning the role of 

caldesmon in the ERK-mediated contractile response.22–25

Alternative mechanisms by which ERK mediates 

vasoconstriction include activation of myosin light-chain 

kinase, leading to increased phosphorylation of myosin light-

chains and hence contraction.26 This is supported by studies 

in the porcine palmar lateral vein showing that inhibition 

of ERK activation causes a reduction in myosin light-chain 

phosphorylation.27 Phosphorylated ERK has also been shown 

to be associated with the actin cytoskeleton,28 which could be 

related to phosphorylation of caldesmon or phosphorylation 

of myosin light-chains.

Role of ERK in regulation  
of vascular smooth muscle growth
Abnormal growth and proliferation of vascular smooth 

muscle cells, leading to a thickening of the smooth muscle 

cell layer and a reduction of the lumen diameter, is a major 

feature of hypertension, and may underlie the increase in the 

contractility of blood vessels.29 Activation of ERK is associ-

ated with changes in gene transcription and cell proliferation 

(Figure 4).3 In vascular smooth muscle, ERK is activated 

by growth factors, such as EGF, to regulate gene transcrip-

tion and cell proliferation.5,30–32 Transactivation of the EGF 

receptor leading to activation of ERK has been shown to be 

involved in the induction of vascular smooth muscle cell 

growth after activation of α
1
-adrenoceptors.33 A similar trans-

activation of the EGF receptor is implicated in angiotensin 

II-induced vascular smooth muscle cell proliferation.34 These 

studies indicate the importance of ERK in the regulation of 

vascular smooth muscle cell proliferation. Indeed, modulation 

of primary vascular smooth muscle cells from a contractile to 

a proliferating phenotype is associated with prolonged ERK 

activation.35 This could be important in disease states such 

as hypertension and stenosis in which there are increases in 

vascular smooth muscle cell growth or remodeling (hyper-

trophy or hyperplasia).36,37

Vascular smooth muscle cells exist in two phenotypes: 

a fully differentiated, contractile phenotype and a 

dedifferentiated, proliferating phenotype. During hyperplasia 

of the smooth muscle layer, dedifferentiation from a 

contractile phenotype back into a proliferating phenotype 

causes a loss of contractile function. Altering the regulation 

of ERK activation may be a way of changing the phenotype 
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Figure  3 Schematic diagram summarizing the potential mechanisms by which 
extracellular signal-regulated kinase could regulate vasoconstriction. 
Notes: Phosphorylation of caldesmon at serine 789 is thought to inhibit the 
activity of this protein, thus removing its inhibitory effect on myosin adenosine 
triphosphatase. Alternatively, extracellular signal-regulated kinase could activate 
myosin light-chain kinase leading to an increase in phosphorylation of the myosin 
light-chains.
Abbreviations: ATPase, adenosine triphosphatase; ERK, extracellular signal-
regulated kinase; MLC, myosin light-chain; MLCK, myosin light-chain kinase; MLC-P, 
myosin light-chain phosphatase.
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Figure 4 Schematic diagram summarizing the effect of extracellular signal-regulated 
kinase on vascular smooth muscle cell growth and proliferation through effects on 
gene transcription.
Abbreviation: ERK, extracellular signal-regulated kinase.
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blood pressure.41 Similarly, chronic treatment with PD98059 

(24 weeks) did not reverse the increase in blood pressure in 

SHRs.46 On the other hand, inhibition of ERK activity was 

associated with an improvement of endothelial function, 

and angiotensin II-mediated vasoconstriction was inhibited 

after 24-hour treatment with PD98059.40 Structure of the 

blood vessels was unaltered by treatment with PD98059 

after 24 hours, but this would be as expected in such a short 

time frame. In comparison, chronic (24 week) treatment 

with PD98059 caused a partial reduction in the thickening 

of the vascular wall in renal arteries from SHRs.46 Although 

PD98059 had no effect on blood pressure in SHRs, in both 

deoxycorticosterone acetate salt-induced hypertension 

and angiotensin II-induced hypertension, treatment with 

PD98059 reduced blood pressure within 30–60 minutes,47,48 

suggesting that the role of ERK in the regulation of blood 

pressure may depend on the animal model used.

Role of reactive oxygen species  
in ERK activation in hypertension
Hypertension is associated with an increase in the levels of 

reactive oxygen species in vascular smooth muscle cells,49,50 
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Figure 5 Schematic diagram summarizing the role of extracellular signal-regulated kinase (ERK) in vascular smooth muscle and hypertension. 
Notes: ERK can be activated through either stimulation of G protein-coupled receptors or growth factor tyrosine kinase receptors. As well as direct activation of ERK 
through G protein-coupled receptors, G protein-coupled receptor-stimulated transactivation of growth factor receptors can also lead to ERK activation. ERK can also be 
activated through production of reactive oxygen species from both nicotinamide adenine dinucleotide phosphate oxidase and mitochondria. Activated ERK mediates vascular 
smooth muscle contraction and could underlie the changes in vasoconstriction in hypertension. Activated ERK also causes changes in gene transcription leading to modulation 
of vascular smooth muscle phenotype and increases in vascular smooth muscle cell proliferation, which could underlie the hypertrophy/hyperplasia in hypertension.
Abbreviations: ERK, extracellular signal-regulated kinase; GPCR, G protein-coupled receptor; H2O2, hydrogen peroxide; MEK, mitogen-activated protein kinase kinase; 
NAPDH, nicotinamide adenine dinucleotide phosphate; O2, oxygen.

of vascular smooth muscle cells back to the contractile type, 

thus reducing smooth muscle proliferation. For example, in an 

ex vivo organ culture model of smooth muscle hyperplasia, 

both platelet-derived growth factor and endothelin-1 induced 

smooth muscle cell growth were prevented by inhibiting ERK 

activation and caused a partial restoration of the contractile 

response,38 indicating that therapeutic inhibition of ERK 

activation could prevent smooth muscle hyperplasia.

Evidence for changes in ERK  
activity in hypertension
Basal levels of ERK are raised in a number of different 

animal models of hypertension, including spontaneously 

hypertensive rats (SHRs),39–41 and agonist-stimulated ERK 

activation is also enhanced in vascular smooth muscle cells 

from SHRs.42–44 Inhibition of ERK activation inhibits the 

enhanced contraction to agonists seen in hypertension. 

For example, angiotensin II-mediated contraction of 

smooth muscle cells from SHRs is increased compared to 

normotensive controls, and this is normalized by inhibition 

of ERK activation.45 On the other hand, treatment of SHRs 

with MEK inhibitor PD98059 for 24 hours had no effect on 
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from both mitochondria and nicotinamide adenine dinucleotide 

phosphate oxidase.51,52 This increase in reactive oxygen 

species may be responsible for the increase in ERK activity 

in hypertension (Figure 5). For example, hydrogen-peroxide 

increases ERK activation, which is more prominent in SHRs 

compared to control animals.53 Furthermore, nicotinamide 

adenine dinucleotide phosphate oxidase activation and 

peroxide production can enhance vasoconstriction through 

activation of ERK.15 5-hydroxytryptamine stimulation of 

ERK in bovine pulmonary artery smooth muscle cells is 

mediated through production of reactive oxygen species,54 

which may be related to the ability of 5-hydroxytryptamine 

to enhance smooth muscle proliferation.55 Interestingly, 

production of reactive oxygen species has been linked to the 

transactivation of the EGF receptor leading to ERK-mediated 

vascular smooth muscle cell growth.33 Protein kinase C and 

calcium/calmodulin-dependent pathways have also been 

suggested to be involved in hydrogen peroxide-mediated 

ERK activation in vascular smooth muscle cells.56 Although 

reactive oxygen species have been reported to activate Ras 

in vascular smooth muscle cells, this did not appear to lead 

to ERK activation.57 Together, these data indicate that the 

increase in reactive oxygen species in hypertension may 

produce responses through the ERK pathway and that reactive 

oxygen species-stimulated ERK activation may be involved 

in both vasoconstriction and increases in smooth muscle 

proliferation.

ERK as a therapeutic target  
in hypertension
The studies highlighted in this review demonstrate that 

ERK plays a role in mediating vasoconstriction and vascular 

smooth muscle cell growth, and that there is an increase 

in ERK activity in hypertension. The fact that ERK plays 

a role in both vasoconstriction and smooth muscle growth 

makes it an attractive target for treatment of hypertension as 

inhibition of ERK activity would lead to a reduced contrac-

tion of the vascular smooth muscle and would also prevent 

the increase in smooth muscle cell growth seen in vascular 

smooth muscle hyperplasia and hypertrophy. This has been 

demonstrated in animal models of hypertension in which 

there was a reduction in blood pressure and a reduction in the 

growth of the smooth muscle layer.46–48 Targeting the signal-

ing pathway that is activated by multiple receptors, including 

GPCRs and growth factor receptors, would reduce the need 

to target each receptor independently. However, inhibition of 

ERK would have to be targeted specifically to the vascular 

smooth muscle in order to prevent nonselective inhibition of 

cell growth elsewhere in the body. Indirect inhibitors of ERK 

activation could be used, and some of these are already in use 

therapeutically. 3-hydroxy-3-methylglutaryl-coenzyme A 

reductase inhibitors, or statins, for example, are used in the 

treatment of hypercholesterolemia. They inhibit the conversion 

of 3-hydroxy-3-methylglutaryl-coenzyme A to mevalonate, 

a precursor of cholesterol, which is also required for the 

production of the isoprenoids farnesyl pyrophosphate and 

geranylgeranyl pyrophosphate (Figure 6).58 Posttranslational 

modification of Ras by farnesyl pyrophosphate is required 

to enable its translocation to the cell membrane, where it is 

activated.58 For example, simvastatin inhibits angiotensin 

II-stimulated ERK activation,59 and inhibits proliferation 

of human vascular smooth muscle cells by preventing the 

farnesylation of Ras.60 A question mark, however, is whether 

high enough concentrations of statins could be obtained 

in vivo to replicate the effects seen in vitro.

Conclusion
Hypertension is associated with increased levels of ERK 

activity in vascular smooth muscle. This increase in ERK 

activity appears to be involved in both the enhanced con-

tractile responses and the increased smooth muscle pro-

liferation seen in hypertension (Figure 2). This fact makes 

it an attractive target for treatment of hypertension as this 

would enable dual inhibition of both contractile responses 

and smooth muscle hyperplasia. A potential problem with 

targeting ERK would be selectively targeting the vascular 

smooth muscle to prevent inhibition of cell growth in other 

tissues in the body.

Disclosure
The author reports no conflicts of interest in this work.
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Figure 6 Schematic diagram showing the role of the 3-hydroxy-3-methylglutaryl-
coenzyme A reductase pathway in the production of the isoprenoid farnesyl 
pyrophosphate and hence the farnesylation of Ras. 
Note: The site of inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A 
reductase pathway by statins is also indicated.
Abbreviations: ERK, extracellular signal-regulated kinase; FPP, farnesyl 
pyrophosphate; HMG CoA, 3-hydroxy-3-methylglutaryl-coenzyme A.
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