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Abstract: Hereditary breast and ovarian cancer (HBOC) syndrome is mainly caused by mutations in
the BRCA1 and BRCA2 genes. The 3’UTR region allows for the binding of microRNAs, which are
involved in genetic tune regulation. We aimed to identify allelic variants on 3’UTR miRNA-binding
sites in the BRCA1 and BRCA2 genes in HBOC patients. Blood samples were obtained from 50 patients
with HBOC and from 50 controls. The 3’UTR regions of BRCA1 and BRCA2 were amplified by PCR and
sequenced to identify genetic variants using bioinformatics tools. We detected nine polymorphisms
in 3’UTR, namely: four in BRCA1 (rs3092995 (C/G), rs8176318 (C/T), rs111791349 (G/A), and rs12516
(C/T)) and five in BRCA2 (rs15869 (A/C), rs7334543 (A/G), rs1157836 (A/G), and rs75353978 (TT/del TT)).
A new variant in position c.*457 (A/C) on 3’UTR of BRCA2 was also identified. The following three
variants increased the risk of HBOC in the study population: rs111791349-A, rs15869-C, and c.*457-C
(odds ratio (OR) range 3.7–15.4; p < 0.05). Genetic variants into the 3’UTR of BRCA1 and BRCA2
increased the risk of HBOC between 3.7–15.4 times in the study population. The presence/absence of
these polymorphisms may influence the loss/creation of miRNA binding sites, such as hsa-miR-1248
in BRCA1 3′UTR or the hsa-miR-548 family binding site in BRCA2. Our results add new evidence of
miRNA participation in the pathogenesis of HBOC.
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1. Introduction

Breast and ovarian cancer are the most common types of cancer among women, and account
for 16% of all cancers in women globally; a total of 1.38 million new cases per year are estimated
worldwide [1]. Hereditary cancer syndromes are disorders characterized by an above-average increase
in the risk of cancer-specific tissue development [2]. Neoplasms develop because of germ line mutations
in specific genes. Among these types of cancer are Li-Fraumeni syndrome, hereditary gastric cancer, von
Hippel-Lindau, and hereditary breast and ovary cancer (HBOC) syndromes [2–4]. HBOC syndrome is
an autosomal dominant disease of incomplete penetrance, with the appearance of neoplasms in the
breast and ovary before 40 years of age and is an aggressive form of cancer. Germline mutations in the
BRCA1 and BRCA2 genes are primarily responsible for HBOC [3,5].

BRCA1 and BRCA2 are tumor suppressor genes,and are involved in the mechanisms of
double-stranded DNA error repair. In addition to RAD51, p53 is involved in the stability and
safety of the genome at cell cycle checkpoints; those that are not repaired send signals of regulated cell
death, such as apoptosis and cell arrest. However, errors in the functions of the proteins encoded by
these genes provoke cell proliferation [5]. There are regulatory events that reduce the function of BRCA1
and BRCA2, such as promoter hypermethylation and posttranslational regulation by microRNAs
(miRNAs) [6,7].

MicroRNAs (miRNAs) are endogenous noncoding RNA molecules of 17–24 nt, capable of
fine-tuning transcription of about 50% of genome organisms. They are a type of interfering RNA
(iRNA); their target of action is in the 3’UTR regions (≈90%), but they have been found to be able to
regulate in sequences located in 5’UTR and in open read frame (ORF) regions (Sun 2013). Sequences of
miRNAs, as well as their targets, are highly conserved in species, mainly 7–8 nt in the 5’ sense, called
the “seed region”. miRNAs can degrade mRNA completely (perfect complementation in binding site)
or repress translation (partial complementation). Because of the high degree of conservation of seed
regions and white sites, it has been observed that mutations or single nucleotide polymorphisms (SNPs)
at the miRNA binding sites are mechanisms of natural selection of organisms [8]. This mechanism
can be observed when SNPs in the 3’UTR regions of various genes are involved in the development
of degenerative diseases, such as Tourette’s syndrome, diabetes, cancer in humans, and muscular
dystrophies in different vertebrates [9,10].

The northeast region of Mexico is a particular area where the population has a high rate of
miscegenation, because of the high migratory flow between mestizo ancestry (characteristics of central
and southern Mexico) and a high genetic mixture among the American and European populations
(mainly Spanish, Ashkenazi jews, French, and Germans) [11]. SNPs have been identified in 3’UTR
BRCA1 and BRCA2 gene regions in specific populations. These allelic variants are associated with
the increased risk of developing breast or ovary cancer, mainly in those related to HBOC [12–15].
In addition, SNPs represent a form of trans-regulation of miRNAs that change the mRNA affinity
because of the creation or elimination of binding sites, which could result in highly inheritable mutations
that produce the phenotypes associated with the development of HBOC. We performed an exploratory
study in a Mexican population in order to evaluate allelic variations in the 3’UTR regions of the BRCA1
and BRCA2 genes, and to determine if their presence allows for the onset and/or elimination of miRNA
binding sites, and whether the mutations are associated with HBOC syndrome.

2. Materials and Methods

2.1. Study Population

A case-control study was performed. Electronic records of patients previously treated at the
University Cancer Center of the University of Nuevo Leon were selected based on specific inclusion
criteria (women with clinical data of HBOC: diagnosis of primary breast cancer, ≤45 years of age at
the time of diagnosis, and familiar history of breast or ovarian cancer in ≥3 relatives). After selection,
the patients were contacted. Clinically healthy women with a risk estimation <1% using the Gail
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calculation tool, ≤45 years of age, were included as controls. The women who agreed to participate in
the study were interviewed for updating the clinical record and signed consent. Individuals belonged
to the Northeastern region of Mexico, including ancestry in the first and second degree. The protocol
was submitted and approved by the Ethics Committee of the College of Medicine of the Universidad
Autonoma de Nuevo Leon (ID: G15-003).

2.2. Amplification of 3′UTRs BRCA1 and BRCA2 Regions

DNA was isolated and purified from peripheral blood using the commercial kit DNA Isolation,
Serum and Plasma (Qiagen, Frederick, MD, USA), following the manufacturer’s specifications.
The quality of the samples was verified using a spectrophotometer (Nanodrop, Thermo Scientific™,
Whaltam, MA, USA). The genomic material was concentrated to 50 ng/µL, eluted to a final volume
of 100 µL, and stored at −20 ◦C until PCR amplification. The primers were designed for the
specific 3′UTR of each gene of interest, using the sequences provided by GenBank for BRCA1
(NM_007294.3) and BRCA2 (NM_000059.3), and Primer Blast software was used to obtain an
amplified product (AP) of 1420 bp for BRCA1 (forward: ACCTGATACCCCAGATCCCC; reverse
TTTGGAAGTGTTTGCTACCAGG) and 902 bp BRCA2 (forward: GAACAGGAGAGTTCCCAGGC;
reverse: AATCAGTGCCAATTTGAAAGCA). A PCR reaction was performed using JumpStart Taq
ReadyMix™ (Sigma-Aldrich™, St. Louis, MO, USA). The reactions had a final volume of 30 µL, 10
µM of which was used for each primer, and 1 µL was for the DNA template (50 ng/µL). The final
volume was completed with nuclease-free water. The amplification program consisted of one cycle
of 94 ◦C × 4 min, followed by 35 amplification cycles (denaturation at 94 ◦C × 1 min; alignment at
60 ◦C × 30 s; and extension at 72 ◦C × 1 min), and a final extension cycle of 72 ◦C × 6 min. To clean the
AP, we added 2 mL of ExoSAP-IT. ® Product Cleanup (Affymetrix, Santa Clara, CA, USA) to 5 µL of AP,
and incubated at 37 ◦C × 15 min and then 80 ◦C × 15 min to inactivate the reagent. Because of the lack
of DNA samples from individuals, these procedures could not be analyzed in duplicate in all cases.

2.3. Sequencing and Analysis of 3′UTR Regions

The 3′UTRs region labelling was performed using the BigDye Terminator v3.1 Cycle Sequencing
commercial kit (Applied Biosystem, Foster, CA, USA). Because the resolution of the capillary is
approximately 500 bp, we designed internal primers to amplify short fragments (350–550 bp) for a
better reading accuracy (Table 1).

Table 1. Internal primers used for labelling sequences. Primer used in to perform 3′UTR (BRCA1 and
BRCA2) sequencing.

Gene Primer Sequences 5′→3′ Tm (◦C)

BRCA1

ACCTGATACCCCAGATCCCC 60.0
ATCCAAGCACTCTCCTTCC 57.3

CCTGTGTTCACAAAGGCAGA 62.0
TGATCTTGGCTCACTGCAAC 57.3

GGCAGGAGAATCACTTCAGC 57.9
GCAACAGCTTCCTTCCTGGTGGG 56.1
GGAAAATGAAACTAGAAGAGATTT 58.0

AGGCTCTGAGAAAGTCGGCT 60.0

BRCA2

GAACAGGAGAGTTCCCAGGC 56.0
CCCACCTCAGCTTCTCAAAG 57.3
GGTGGCTCATGCCTGTAATC 57.9

TTGCTCAAAAGGAAACACCA 56.1
CAGTTATTTGATGCAGATTCC 58.0

AATCAGTGCCAATTTGAAAGCA 60.0
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The sequencing reaction, with 1 µL of BigDye, 2 µL of 10× buffer, 1 µL of oligonucleotide
(30 ng/µL), 3.5 µL of AP, and milliQ water, was prepared to a final volume of 10 µL. The labelling
program consisted of one cycle of 96 ◦C × 1 min, and 25 cycles of 96 ◦C × 10 s, 50 ◦C × 5 s, and 60 ◦C
× 4 min. The resulting products were purified, stored, and protected from light at −20 ◦C. We used
the ABI-3130xl sequencer Avant Genetic Analyzer (Applied Biosystems), a 36-cm capillary (Applied
Biosystem) and the POP-4 polymer, following the manufacturer’s instructions. After sequencing, the
files that contained electropherograms were analyzed using the GeneStudio™ Professional software v20.

The sequences obtained after testing were stored in FASTA format for further analysis.
The sequencing results were compared with the wild type sequences of the BRCA1 and BRCA2
genes. The relationship between the known variants and the risk of HBOC were verified using the
online bioinformatic and supports programs Ensemble Genome Browser (ENSEMBL; http://www.
ensembl.org/), the Human Gene Mutation Database (HGMD; http://www.hgmd.cf.ac.uk/ac/all.php),
and Human Genome Variations Society (HGVS; http://www.hgvs.org/dblist/dblist.html). We also used
the NCBI database of SNPs (dbSNP) (http://www.ncbi.nlm.nih/gov/SNP) to obtain information about
genetic variations.

2.4. Clinical and Statistical Analysis

Simple frequency calculations of the HBOC risk variables and the clinical characteristics of
the study participants were determined by direct counts, and it were expressed as percentages and
means ± standard deviation. An evaluation of the possible relationship between genotypes/alleles
and HBOC was done using the SNPstat program (https://www.snpstats.net/start.htm) from the
Institute of Oncology of Catalonia (Catalonia, Spain) [15]. Odds ratios (ORs) were estimated for each
genotype variant. The Hardy–Weinberg equilibrium (HWE) was analyzed using online software.
In the case control studies, tests for deviation from the Hardy–Weinberg equilibrium, and tests
for association, (https://ihg.gsf.de/cgi-bin/hw/hwa1.pl; Neuherberg, Germany) p-values < 0.05 were
considered significant.

3. Results

3.1. HBOC Population

A total of 50 patients were clinically characterized with HBOC and, therefore, they were included
in the study; the mean age at the first diagnosis of breast cancer was 37.28 years (range 25–45 years).
Of these patients, 34% had a status at least double or triple negative (TNC) at estrogen (ER), progesterone
(PR), and human epidermal growth factor receptor 2 (HER2/neu) receptors ((ER–PR–HER2+ n = 3;
ER+ PR–HER2– n = 8; TNC n = 17). The clinical relevance of the carriers of mutations in 3′UTR BRCA1
and BRCA2 are shown in Table 2.

The purpose of our study similar to that proposed by Erturk et al. (2014) [12], who carried out
an exploratory study on the genetic situation of the population,and will require future case-control
trials with a larger number of samples. We identified nine SNPs in the 3′UTR region of BRCA1 and
BRCA2 genes. These variants were rs3092995 (C/G), rs8176318 (C/T), rs111791349 (G/A), and rs12516
(C/T) for 3′UTR BRCA1. For BRCA2, we identified the polymorphisms rs15869 (A/C); rs7334543 (A/G);
rs1157836 (A/G); rs75353978 (TT/del TT); and a new variant, not identified yet, in position c.*457 (A/C)
(Figure 1). The genotypic and allelic frequency percentages are shown in Table 3.

http://www.ensembl.org/
http://www.ensembl.org/
http://www.hgmd.cf.ac.uk/ac/all.php
http://www.hgvs.org/dblist/dblist.html
http://www.ncbi.nlm.nih/gov/SNP
https://www.snpstats.net/start.htm
https://ihg.gsf.de/cgi-bin/hw/hwa1.pl
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Table 2. Clinical description of the study population. Clinical aspects of hereditary breast and ovarian
cancer (HBOC) participants.

Clinical Data >% Clinical Data %

Diagnostic age (years) Mean 37.28 ± 3.30 Receptor status (ER, PR, HER2/neu)
BMC (kg/m2) Mean 27.76 ± 5.59 ER+ PR+ HER2+ 10%

Disease free-survival ER+ PR+ 40%
>36 months 29% ER+ HER2+ 2%

<36 months No data 21% 50% HER2+ 6%
Menarche 11.77 ± 2.48 ER+ 4%

Menopause Triple negative 34%
Yes 38% Therapy
No 62% Chemotherapy

Oral-contraceptive use AC(4)-Taxol(12) 28%
Yes (>5 years) 74% Anthracyclines 18%

No 20% Taxanes 10%
Inclusion criteria Capecitabine 2%

Family history 41% Not especified 10%
Diagnostic >40 years 59% No chemotherapy 32%

Births Radiotherapy
0 20% Adjuvant 76%

1,2 54% Palliative 2%
3–5 20% Adjuvant/Palliative 2%
>5 3% No radiotherapy 16%

Screening method Hormone therapy
Autoexploration 88% Yes (Tamoxifen) 54%
Clinical finding 2% No hormone therapy 42%
Mastography 4% TNM Score

Smoke I A 4%
Yes 78% I B 10%
No 22% II A 16%

Histology II B 20%
Infiltrating ductal 74% III A 34%

Medullar carcinoma 4% III B 4%
Lobullar 2% III C 4%

Ductal/Lobullar 2% IV 6%
Grade of cell differentiation Metastasis

G1 6% Bone 10%
G2 28% Visceral 2%
G3 36% Bone, visceral 2%
Gx 28% Bone, visceral, lymph node 2%

Table 3. Comparison of the genotypic and allelic frequencies of variants between the HBOC and control
groups by gene.

Gene Variant
HBOC Patients Control

Genotype Frequency MAF Genotype Frequency MAF

BCRA 1

rs3092995
C/C C/G G/G G C/C C/G G/G G
82% 0% 18% 18% 76% 8% 16% 20%

rs8176318
C/C C/T T/T T C/C C/T T/T T
84% 10% 6% 11% 90% 10% 0% 5%

rs111791349
G/G G/A A/A A G/G G/A A/A A
68% 12% 20% 26% 76% 18% 6% 15%

rs12516
C/C C/T T/T T C/C C/T T/T T
82% 4% 14% 16% 84% 16% 0% 8%

BCRA 2

rs15869
A/A A/C C/C C A/A A/C C/C C
84% 6% 10% 13% 82% 18% 0% 9%

rs7334543
A/A A/G G/G G A/A A/G G/G G
94% 0% 6% 6% 94% 0% 6% 6%

c.*457
A/A A/C C/C C A/A A/C C/C C
66% 12% 22% 28% 68% 30% 2% 17%

rs11571836
A/A A/G G/G G A/A A/G G/G G
82% 4% 14% 16% 82% 14% 40% 11%

rs75353978 **
TT/TT delTT TT/TT delTT
32% 68% 32% 92% 8% 8%

* MAF = Minor Allele Frequency; ** rs75353978 SNP is a deletion of TT bases, it is indicated like delTT.
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Figure 1. Identification of variants’ single nucleotide polymorphisms (SNPs). Allelic variants of each
3’UTR region were identified by comparing the alleles carrying the HBOC and healthy patients; blue
legends indicate SNP previously reported; red legend indicate a new genetic variant. (A) Comparison
of 3’UTR of BRCA1; (B) Comparison of 3’UTR of BRCA2.

3.2. Hardy-Weinberg Equilibrium (HWE) and Allelic Risk

Based on the information obtained, we performed a test for the balance of the Hardy-Weinberg
equilibrium, with the purpose of determining if there was independence between the observed alleles
and what was expected. The SNPs that were considered for the following studies were rs8176318
and rs12516 for BRCA1, and rs15869 and variant c.*457 for BRCA2. In the remaining SNPs, HWE was
unbalanced for the control group. Although the most common cause is the genotyping method, we
consider that the causes were due to the high migratory flow of the area and its genetic consequences.
A significant difference between the groups was found with homozygous minor frequent alleles (MAF)
of the SNPs rs111791349 (allele A, p = 0.047), rs15869 (allele C, p = 0.032), and c.*457 (allele C, p = 0.007),
which were considered as a risk for HBOC patients (Table 4 and Table S1).
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Table 4. Tests for association between genetic variants and hereditary breast and ovarian cancer. All tests were carried out with a 95% confidence interval (CI).

Gene Variant/Alleles

Risk Allele 1 Risk Allele 2

Allele Freq. Difference Heterozygous Homozygous Allele Positivity Allele Freq. Difference Heterozygous Homozygous Allele Positivity

[1]↔[2] [11]↔[12] [11+]↔[22] [11]↔[12+22] [2]↔[1] [22]↔[12] [22]↔[11] [11+12]↔[22]

BRCA1
rs8176318 (C/T) 2.4 (0.8–7.0) 1.1 (0.3–4.0) 7.5 (0.4–149.4) 1.7(0.5–5.7) 0.4 (0.1–1.3) 0.1 (0.01–3.5) 0.1 (0.01–2.7) 0.1 (0.01–2.7)

0.118 (P) 0.918 0.078 0.372 0.118 (P) 0.1185 0.078 0.079

rs12516 (C/T) 2.2 (0.9–5.4) 0.3 (0.05–1.3) 15.4 (0.9–277.7) 1.2 (0.4–3.3) 0.5 (0.2–1.1) 0.02 (0.001–0.5) 0.1 (0.004–1.2) 0.1 (0.003–1.0)
0.082 (P) 0.078 0.001 0.79 0.082 (P) 0.001 0.0099 0.006

BRCA2
rs15869 (A/C) 1.5 (0.6–3.7) 0.3 (0.08–1.3) 10.7 (0.6–200.5) 0.9 (0.3–2.5) 0.7 (0.3–1.6) 0.03 (0.001–0.8) 0.1 (0.005–1.7) 0.1 (0.004–1.51)

0.366 (P) 0.097 0.032 0.79 0.366 (P) 0.005 0.032 0.0218

c.*457 (A/C) 1.9 (0.96–3.8) 0.4 (0.1–1.2) 11.3 (1.4–92.8) 1.1 (0.5–2.5) 0.5 (0.3–1.0) 0.04 (0.004–0.4) 0.1 (0.01–0.7) 0.1 (0.01–0.6)
0.063 (P) 0.096 0.007 0.832 0.063 (P) 0.0005 0.007 0.0021

Cell contents: odds ratio (95% confidence interval) and p-value. rs8176318: Allele [1] = T; allele [2] = C, rs12516: allele [1] = T; allele [2] =C, rs15869: allele [1] = C; allele [2] = C; c.*457:
allele [1] = C; allele [2] = A. Significative values are indicate in bold.
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3.3. Presence of Genetic Changes Could Modify miRNA Binding Mechanisms

We determined the effect of the allelic changes in the 3′UTR regions of the BRCA1 and BRCA2
genes on the miRNA binding mechanism. Our aim was to establish if the miRNA seed region was
maintained and if it was not modifying binding with its usual mRNA, or conversely, if the allelic
changes provoked the elimination of recognition sites or created new binding loci. In silico analysis
showed that there are trans modifications in miRNA regulatory mechanisms (Figure 2). The changes
allow different for miRNAs, considered as oncomiRs, i.e., hsa-miR-1248 and -4278 for BRCA1 3′UTR,
or the creation of members of the miRNA family binding site, such as hsa-miR-548 in BRCA2 (Table 5).
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Table 5. In silico effect of allelic variants on the miRNAs-binding seed regions. Some SNPs modified
the sequence regions of the mRNA causing the deletion or creation of miRNA binding sites. Red line
indicates a new miRNA binding site created; red cross indicates that a miRNA binding site were deleted.

Gene Variant microRNA ∆∆G
(Kcal/mol) Duplex SNP-miRNA Effect

BRCA1

rs8176318
(G/T)

hsa-miR-20a-3p
Wt: 0.00 miRNA: 3′-gaaauuCACGAGU-AUUACGUCa-5′

Created|||:||| ||||||
SNP: −22.70 UTR: 5′-aaccctGTGTTCACAAATGCAGa-3′

rs12516 (C/T)

hsa-miR-4278
Wt: −18.30 miRNA: 3′-guucccGUUUGGGGGAUc-5′

Created:|: |||||||
SNP: −21.60 UTR: 5′-cttcccTAGCCCCCCTAg-3′

hsa-miR-637
Wt: −28.30 miRNA: 3′-ugcgucucGGGCUUUCGGGGGUCa-5′

Eliminated||| |: ||||X||
SNP: −16.00 UTR: 5′-taggtcttCCCTAGCCCCCCTAGt-3′

BRCA2

rs15869
(A/C)

hsa-miR-9-5p
Wt: −14.00 miRNA: 3′-ucuuugguuaucUAGCUGUAUga-5′

Created|| :|| |
SNP: −23.20 UTR: 5′-ttatgttgcacaATGAGCAAAga-3′

c.* 457 (A/C) hsa-miR-4484
Wt: −11.10 miRNA: 3′-ACCCCGAAGAGGGCGGAAAA-5′

Created:| ||||||
SNP: −23.70 UTR: 5′-TGAAATAAACATACCCTTTT-3′

3.4. Trans-Mechanisms miRNAs Affect Molecular and Cellular Regulation

A comparative molecular ontology and cellular pathway analysis between the miRNAs that
lost their binding sites and the new ones that did bind because SNPs were performed. Previous
experimental evidence indicates that there are changes in the metabolic and gene signaling pathways
of differentiated controls for each group of miRNAs. The pathways involved in the generation of
molecules were characteristic of tumor microenvironments, such as adherents binding, hormonal
signaling, hypoxic environments, etc. This was also the case for molecular pathways of genome
stabilization and regulation at the cell cycle checkpoints and cell arrest. This proves that the presence of
allelic variations in patients modifies the molecular and cellular pathways. For example, miRNAs that
bind to normal genotypes regulate the mechanisms of lysine degradation (p = 0.0006), HIF-1 signaling
(p = 0.0118), and the central carbon of cancer metabolism (p = 0.0119), simultaneously. However, this
regulation ceases to be performed in the presence of other miRNAs. These apparent regulatory control
differences suggest that both early tumor development and cancer progression could be indicative of
aggressive cancer phenotypes in carrier allelic variants patients.

4. Discussion

We observed that more than 50% of patients with HBOC were diagnosed at the disease stage
(IIB and IIIA). The Northeastern region of Mexico is one of the areas with the highest morbidity and
mortality rates due to breast cancer over 20 years (28.58:100,000), compared with the national average
statistics (18.97:100,000) [16,17]. A fundamental analysis in the confirmatory diagnosis of breast cancer
is the determination of the expression status of membrane receptors; because of the degree of cancer
heterogeneity, these analyses help to determine the prognosis and specific treatment. In addition,
oncological treatments should consider specific molecular therapeutic targets. For example, ER+ and
PR+ patients are eligible for tamoxifen treatment. With the introduction and approval of trastuzumab
(Herceptin), over-expressing HER2/neu patients are candidates for its use.

In previous reports, it was observed in central Mexico that 23–25% of HBOC patients were double
or triple negative for these receptors. However, in our study, it was observed that about 53% had
at least double negatives (36% TNC and 16% double negative), surpassing almost double what was
expected [17]. These characteristics are associated with aggressive neoplasia and poor prognosis.
This work can be used as an exploratory study of the genetic characteristics of HBOC patients in the
region, based on the specific characteristics, allelic and genotypic frequencies, and the new allelic
variant identified (c.*457) with a strong statistical relationship.
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Molecularly, miRNAs related to the regulatory changes by 3’UTR mutations of both BRCA1 and
BRCA2 are related in the mechanisms of neoplastic development. These changes presume a change
in metabolic and cellular function, which must be validated by means of luciferase assays in cell
cultures [12,18–20]. In the larger study of 3’UTR BRCA1 in five sample collections, the variants c.* 528
(G/C), c.*718 (A/G), c.*1271 (T/C), c.*309 (T/C), c.*379 (G/A), c.*823 (C/T), and c.*264 (C/T) decreased the
3’UTR activity in luciferase assays, while variants c.* 291C>T and c.* 1139G>T increased the activity.
However, none of these were considered pathological [21,22]. Rs3092995 SNP (c*36 C/G) was reported
in 1998, and the CG and GG alleles were observed in breast cancer cases of African American patients
(28%). OR adjusted by age was 3.5 (95% CI, 1.2–10.0); the authors determined that this variant is in a
partial linkage imbalance. We found rs3092995 SNP in both the HBOC cases and the controls (18%
and 16%, respectively); the like study above explained, rs3092995 was not balanced in the mestizo
population of Northeastern Mexico [11].

Our modified results were like those from the analyzes performed by García et al. (2016) in
the subgroup of patients of the French national study GENESIS (GENE SYSters), in which patients
with family breast cancer were evaluated, with at least one sister diagnosed. They detected in their
population the variants c.*421 (G/T) (MAF = 0.324) and c.* }1287 (C/T) (MAF = 0.342) for the 3’UTR
BRCA1, which were also present in our study. In 3’UTR-BRCA2 variants c.* 105 (A/C)(MAF = 0.161),
c.*369 (A/G) (MAF = 0.222), and c.*532 (A/G) (MAF = 0.197) were screened. All the variants were
found in patients of Caucasian ethnicity. Historically, the Northeastern region of Mexico has been
characterized by a population dynamic in which many people have ancestors in the third or fourth
generation from Europe or the Middle East; this could explain the presence of this genetic vestige like
a founder mutation [23]. We found a new genetic variant in 3′UTR BRCA2, c.*457 (A/C), which has
not been described so far in any other similar studies. This is relevant, because the C allele presents a
risk in HBOC patients (p = 0.007). This finding is important, given the few mutations described in the
3’UTR BRCA2.

Rs-8176318, -12516, and -15869 SNPs were previously found and analyzed in a Chinese population,
and they evaluated SNPs’ role in the miRNA mechanism; rs15869 demonstrated a suppression of
the BRCA2 expression in MCF7 and MDA-MA-231 cell lines through luciferase assays. The authors
suggest that this interaction increases the risk of breast cancer. This can support part of our results, but
we should perform similar assays [23,24].

Control of bias in case-control studies is essential. We performed each process in this study
with strict quality control and bias in case-control selection, data collection, experiment design and
operation, data entry, and the results of statistical analysis. However, a source of possible bias may be
because most cases come from the hospital, and this can lead to Berkson’s bias. We reduced this type
of bias by evaluating only pathologically confirmed cases of newly diagnosed breast cancer patients,
and data were collected through the questionnaire through personal interviews. Confusion bias was
effectively controlled by strict inclusion criteria and matched controls. However, some limitations
in the present study cannot be ignored. The relatively small sample size reduces statistical power,
especially in some subgroups.

On the other hand, a factor that may be affecting the HWE of both populations (and the main
reason for carrying out this genetic study) is that the Northeastern region of Mexico has characterized
from the beginning of the 20th century to date by a high settlement of European populations (Spanish,
Ashkenazi Jews, French, and Germans), Middle and Far East (Saudi Arabia, China, Japan, and Korea),
and American (due to the border with the United States). Likewise, because of the economic wealth
of the region (Monterrey is the city with the highest quality of life index in Latin America), there
is a continuous flow of mestizo population from central and southern Mexico, which is genetically
different [11]. These reasons make the gene flow dynamics of this region high, and therefore these
alleles are on their way to achieve genetic equilibrium. We proposed that some allelic variants may be
due to founder genes from all the communities mentioned.
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Future findings could be complemented by determining the expression levels of the set of miRNAs
presumably being deregulated by mutations in the 3’UTR regions, as well as validating deleted/created
miRNA binding sites using assays of the luciferase activity and precipitation of Dicer, among others,
in various types of cancer cell lines. It would also be of great importance to establish whether the
mutations are germinal and whether they can be traced in groups of families with histories of breast
and ovarian cancer, as well as prostate cancer.

With respect to our study, because of the number of sequenced individuals, the statistical findings
cannot be extrapolated to the population of Northeastern Mexico (approximately 11.51 million people).
However, this work provides preliminary data for the study of specific genetic variants for the 3’UTR
regions of BRCA1 and BRCA2 genes in this population, the linked miRNAs, and their implication in
the fine tuning of the genome.

5. Conclusions

Genetic variants in 3’UTR of BRCA1 and BRCA2 increased the risk of HBOC by 3.7–15.4 times in
the study population. The presence/absence of these polymorphisms may influence the lost/creation
of miRNA binding sites, such as hsa-miR-1248 in BRCA1 3′UTR or the hsa-miR-548 family binding
site in BRCA2. Our results provide new evidence of the miRNAs’ participation in the pathogenesis of
HBOC. However, molecular predictions should be evaluated by a luciferase activity assay or similar
assays to demonstrate the deep impact of the allelic variations found in fine molecular regulation.
The genetic alterations found and analyzed can support further research that may clarify its effect on
BRCA1 and BRCA2 genes molecularly and clinically. Future studies should be defined to evaluate
miRNAs binding mechanism in order to develop diagnostic, prognostic, and treatment tools based on
miRNAs technology. Thus, we consider this exploratory study as a pioneer in the understanding of
HBOC in a Mexican mestizo population.
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