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Simple Summary: The cellular prion protein PrPC is best known for its involvement, under its
pathogenic isoform, in a group of neurodegenerative diseases. Notwithstanding, an emerging role
for PrPC in various cancer-associated processes has attracted increasing attention over recent years.
PrPC is overexpressed in diverse types of solid cancers and has been incriminated in various aspects
of cancer biology, most notably proliferation, migration, invasion and metastasis, as well as resistance
to cytotoxic agents. This article aims to provide a comprehensive overview of the current knowledge
of PrPC with respect to the hallmarks of cancer, a reference framework encompassing the major
characteristics of cancer cells.

Abstract: Beyond its causal involvement in a group of neurodegenerative diseases known as Trans-
missible Spongiform Encephalopathies, the cellular prion protein PrPC is now taking centre stage as
an important contributor to cancer progression in various types of solid tumours. The prion cancer
research field has progressively expanded in the last few years and has yielded consistent evidence
for an involvement of PrPC in cancer cell proliferation, migration and invasion, therapeutic resistance
and cancer stem cell properties. Most recent data have uncovered new facets of the biology of PrPC

in cancer, ranging from its control on enzymes involved in immune tolerance to its radio-protective
activity, by way of promoting angiogenesis. In the present review, we aim to summarise the body of
literature dedicated to the study of PrPC in relation to cancer from the perspective of the hallmarks
of cancer, the reference framework defined by Hanahan and Weinberg.
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1. Introduction

The cellular prion protein PrPC was discovered in the mid-1980s as the normal coun-
terpart of the scrapie prion protein, denoted PrPSc, itself responsible for the develop-
ment of a group of fatal neurodegenerative diseases known as Transmissible Spongiform
Encephalopathies or prion diseases [1]. PrPC, encoded by the PRNP gene located on
chromosome 20 in humans, is a ubiquitous protein that is highly conserved from fish to
mammals [2]. It is a small glycoprotein of 253 amino acids subject to various types of
post-translational modifications: removal of a N-terminal signal peptide responsible for
the trafficking of the protein to the endoplasmic reticulum for subsequent maturation, re-
placement of the C-terminus with a glycosyl-phosphatidylinositol (GPI) moiety that allows
PrPC anchoring at the extracellular plasma membrane, formation of a disulfide bridge and
potential N-glycosylation on two Asparagine residues (reviewed in [3]). Beyond being
majorly GPI-anchored at the cell membrane, PrPC may additionally exist as two topological
transmembrane variants with either the N-terminus (CtmPrP) or C-terminus (NtmPrP)
portion in the cytosol, possibly accounting for the interaction with cytosolic partners [3].
From a structure–function point of view, PrPC is composed of a N-terminal, intrinsically
disordered domain, also referred to as “flexible tail”, a central hydrophobic domain and a
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C-terminal globular domain (Figure 1). A notable feature within the N-terminal domain is
the presence of four histidine-containing octapeptide tandem repeats, which are involved
in the binding of divalent ions such as copper or zinc, themselves promoting the endo-
cytosis of PrPC [4]. In addition to full-length isoforms, several proteolytic processes can
generate various truncated or soluble forms of PrPC (reviewed in [5]). First, the so-called
alpha-cleavage, occurring at position 111/112, generates a N-terminal fragment termed
N1 and a C-terminal, GPI-anchored fragment termed C1 (Figure 1). This alpha-cleavage
occurs under physiological conditions and influences the endocytosis of PrPC as well as its
interaction with diverse partners [5]. The beta-cleavage generating N2 and C2 fragments
takes place within the octarepeat region (Figure 1). It is mostly described as a reactive
oxygen species-dependent reaction sustaining the protective role of PrPC against oxidative
stress [5]. Finally, a far C-terminal cleavage is responsible for the production of “shed PrPC”,
which nearly encompasses the full sequence of PrPC (Figure 1). Shed PrPC is, however,
distinct from soluble PrPC as it results from the phospholipase-C mediated hydrolysis of
the GPI anchor [5]. Altogether, miscellaneous glycosylation and proteolytic processes in
fine generate a variety of PrPC isoforms that may underlie its wide range of functions [6].
One should further bear in mind that the various soluble isoforms, N1, N2, shed PrPC as
well as phospholipase-C-released PrPC, have the capacity to signal to neighbouring cells
(see [5] for review). This also holds true for exosomal PrPC, as will be discussed below.
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The variety of PrPC isoforms may explain why PrPC has been ascribed a plethora
of functions, ranging from broad roles in the physiology of the central nervous system,
resistance to various types of stresses, cell fate and differentiation, cell adhesion and cell
signalling [6]. Unravelling the physiological roles exerted by PrPC has long emerged as
a powerful strategy to understand how the corruption of these functions may contribute
to pathological contexts, not only prion diseases [7] but also other disorders, including
Alzheimer’s disease, immune disorders or cancer [8]. Obviously, the research dedicated
to prion and cancer has lagged behind that of neurodegeneration, but this field is now
becoming the focus of growing interest. We here chose to provide a comprehensive review
of the current knowledge relating to PrPC in cancer through the lens of the hallmarks
of cancer. As such, the contribution of PrPC to the emergence and/or maintenance of
cancer stem cell properties or the potential therapeutic strategies to target this protein in
cancer will not be discussed here and have been covered by several reviews [9–12]. The
hallmarks of cancer are a reference framework introduced by Hanahan and Weinberg over
20 years ago [13] and further refined in 2011 [14]. It summarises the fundamental capacities
endowing cancer cells with the ability to develop and escape control by the organism. In
this review, we will summarise the overall data relating to the biology of PrPC in cancer
according to each hallmark, except the enabling replicative immortality hallmark due to a
lack of data on this axis. We further highlight some findings pertaining to the physiological
function of PrPC and discuss their potential implications in the field of cancer.
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2. Sustaining Proliferative Signalling

Since sustained proliferative capacity arguably represents one of the most funda-
mental traits of cancer cells, the contribution of PrPC to cancer cell proliferation has been
extensively studied. The first demonstration that PrPC drives the proliferation of cancer
cells was brought by the team of Daiming Fan using the SGC7901 and AGS gastric cancer
cell lines [15]. In the low PrPC-expressing SGC7901 cells, PrP overexpression promoted
an increase in cell proliferation in vitro, as well as tumour growth in xenografted nude
mice [15]. To the opposite, PrPC silencing in the high PrPC-expressing AGS cell line trig-
gered a reduction in their proliferative index [15]. At a mechanistic level, PrPC was shown
to foster the transition from the G0/G1 to the S phase and to transcriptionally control the
expression of Cyclin D1 via the PI3/AKT signalling pathway. From a structure-function
point of view, it is interesting to note that the action of PrPC requires the presence of the
N-terminal domain of the protein [15], in line with the importance of this region in the
coupling of PrPC to PI3K/AKT signalling in non-tumoral cells [16].

Similarly, Li and colleagues documented a reduction in cell proliferation and in vivo
tumour growth upon PrPC silencing in the pancreatic cancer cell lines BxPC3 and Pan
02.03 [17]. In a follow-up study based on the same cellular models together with the
Capan-1 pancreatic cell line, PrPC was found to control the levels of Ki67 [18], a key marker
of cell proliferation [19]. Interestingly, the decrease in cell proliferation observed after
PrPC silencing in Capan-1 cells was abrogated upon a concomitant overexpression of the
activated form of NOTCH1 [18]. This observation has to be brought together with the
PrPC-dependent control on the Notch pathway that we documented in neural stem and
progenitor cells [20]. A correlation between PrPC and Ki67 levels was also reported by
Lopes et al. in a large cohort of patients with glioblastoma [21]. As with gastric and
pancreatic cell lines, the latter study demonstrated a pro-proliferative action of PrPC in
the U87 glioma cell line and corresponding xenografts, which was dependent upon the
interaction of PrPC with its ligand STI1 [21]. The proliferative role of PrPC in glioblastoma
was also confirmed in U87 cells grown as spheres to mimic glioblastoma stem cells [22]
as well as in primary tumour cells [9]. In addition, PrPC expression was reported to vary
according to the cell cycle in U87 glioma cells with significantly higher levels in the G2/M
versus G1/S phase [23]. The PrPC-dependent control of proliferation was also exemplified
in schwannoma [24] and colorectal cancer [25–30]. In the context of colorectal cancer, we
notably brought to light a PrPC-dependent activation of the integrin linked kinase (ILK)
that relays its control on cell proliferation [26]. Adding another layer of complexity to
the picture, Yun et al. recently reported that the proliferation of various colorectal cancer
cells can be sustained by exosomes derived from the same cells grown under hypoxia in a
PrPC-dependent manner [31]. In this setting, two non-mutually exclusive mechanisms may
be at play: the proliferation of recipient cells may be directly regulated by exosomal PrPC,
the level of which is increased following hypoxia [31], or it may additionally depend upon
other exosomal proteins whose abundance in exosomes is influenced by the expression
of PrPC in cancer cells. In this respect, it is also worth noting that PrPC regulates the
balance between exosome biogenesis and autophagy [32]. Thus, we may surmise that
high PrPC-expressing cancer cells produce abundant levels of exosomes, enriched in PrPC,
that may sustain their proliferation in an autocrine and paracrine manner, especially in a
hypoxic environment.

We many finally note that the PrPC-dependent regulation of proliferation in the
context of cancer may be viewed as a gain of its normal physiological function resulting
from its overexpression. Indeed, the contribution of PrPC to normal cell proliferation
has been extensively documented (reviewed in [6]), most notably in the context of stem
cells (reviewed in [11]). The physiological PrPC-dependent regulation of proliferation
may involve a modulation of the Epidermal Growth Factor Receptor (EGFR) activity as
described by Llorens et al. [33]. Incidentally, PrPC and EGFR were shown to co-localise
and to interact, as inferred by co-immunoprecipitation experiments, in the HT29 colorectal
cell line [34]. These overall observations warrant investigating the signalling pathways
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through which PrPC sustains the proliferation of cancer cells and its potential functional
interactions with growth factor receptors.

3. Evading Growth Suppressors

This hallmark corresponds to the ability of cancer cells to circumvent anti-growth
signals [14]. They may do so by bypassing the activity of suppressors of proliferation such
as TP53 and RB, encoding p53 and the retinoblastoma-associated protein, respectively,
evading mechanisms of contact inhibition and/or corrupting anti-growth signalling cir-
cuitries such as the Transforming Growth Factor β (TGFβ) pathway. Although a direct
contribution of PrPC to growth suppressors evasion has yet to be fully investigated, some
observations are worth considering.

First, several studies have uncovered a modulation of p53 expression and activity by
PrPC and its proteolytic fragments (reviewed in [35]). On the one hand, the full length PrPC

was shown to up-regulate p53 activity and mRNA levels in neuronal cells upon exposure
to the apoptotic inducer staurosporine, thereby sensitising cells to cell death [36]. This
also holds true for the cleaved C1 fragment of PrPC, as shown in HEK293 cells [37]. On
the other hand, the N1 soluble fragment of PrPC was found to exert an opposite effect
on p53 and to protect cells from the full length and C1 PrPC-mediated potentiation of
cell death [38]. Importantly, this set of studies, as well as others [39,40], indicated that
overexpressed PrPC has no impact on the p53 pathway in basal conditions, i.e., in the
absence of pro-apoptotic signals.

Nevertheless, an activation of p53 signalling was reported upon PrP overexpression in
skeletal muscle [41]. In a more cancer-relevant context, Liang et al. documented that PrPC

silencing promotes an increase in the expression levels of p53 in the gastric cancer cell line
AGS, while an opposite effect was obtained upon PrPC overexpression [42]. Thus, until
now, these scarce studies have provided only a glimpse of the potential regulation of p53
by PrPC, which may notably depend upon the relative abundance of its different isoforms.

Regarding contact inhibition, an interesting observation is the upregulation of PrPC in
various types of Merlin-deficient tumours, including schwannoma and mesothelioma [24].
Merlin, encoded by the neurofibromatosis type 2 (NF2) gene, is a well-described regulator
of cell–cell attachment, whose loss of function allows cells to evade contact inhibition [43].
Of note, we recently demonstrated that PrPC levels positively control the phosphorylation
of NF2 on serine 518, itself negatively regulating NF2 activity, in colorectal cancer [26].
Mechanistically, PrPC operates via ILK [26], previously described as an upstream regu-
lator of the NF2-Hippo pathway in various types of cancer cells [44]. Accordingly, we
documented that the PrPC-ILK module promotes the activation of YAP/TAZ [26], the two
transcriptional effectors of the Hippo pathway, which play a key role in promoting the
poor-prognosis mesenchymal subtype of colorectal cancer [28,45]. Since YAP/TAZ are ma-
jor orchestrators of organ growth and contact inhibition [46], their upstream regulation by
PrPC clearly delineates a link between PrPC and contact inhibition. Furthermore, because
NF2 controls the cell surface availability of various growth factor receptors [43], it will be
interesting for future studies to evaluate the impact of its negative regulation by PrPC on
growth factor receptor signalling.

Finally, regarding TGFβ, we recently demonstrated that PrPC controls the soluble
levels of TGFβ in the supernatant of colorectal cancer cells [28]. Conversely, PrPC levels are
increased in response to TGFβ [28]. Although the mechanisms involved still require further
investigation, we were able to show that the PrPC-TGFβ axis contributes to the expression
of several markers that specify the mesenchymal subtype of colorectal cancer, including
that of ZEB1, a master regulator of Epithelial to Mesenchymal Transition (EMT) [28]. These
observations call for a better understanding of the interplay between PrPC and TGFβ,
considering the major role played by TGFβ not only in the poor prognosis subgroup of
colorectal cancer [47] but more widely in various aspects of high-grade malignancy across
cancer [48].
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4. Resisting Cell Death

Resistance to apoptosis was the first hallmark to be connected with PrPC nearly 20
years ago, as PRNP transcripts were found to be upregulated in adriamycin-resistant
SGC7901 gastric cancer cells as compared to the parental cell line [49]. That elevated
PrPC may confer resistance to anticancer agents was soon confirmed by the demonstration
of a causal relationship between increased PrPC expression and resistance to tumour
necrosis factor-α (TNFα) in the MCF7 breast cancer cell line [50]. The involvement of
PrPC in the resistance of cancer cells to cell death-inducing signals has been extensively
studied by employing diverse experimental paradigms. The first set of data provided
evidence for an upregulation of PrPC expression in drug-resistant contexts, as in a seminal
Zhao study [49]. For instance, PRNP gene expression [51] and PrPC protein levels [52]
were found to be upregulated in adriamycin-resistant MCF7 breast cancer cells, as well
as in SNU-5C colorectal cancer cells resistant to 5-fluorouracil (5-FU) or oxaliplatin [53].
Zhuang et al. further showed a dose-dependent increase in PrPC expression in U87 and
U251 glioblastoma cells in response to temolozomide [23]. Moreover, we reported that
high expression levels of PrPC are associated with 5-FU resistance in a panel of colorectal
cancer cell lines [28]. On the other hand, PrPC overexpression was reported to induce
resistance to adriamycin, vincristine, etoposide, 5-FU and cisplatin in SGC7901 gastric
cancer cells [54] and resistance to TNFα [30] or adriamycin [25] in LS174 colorectal cancer
cells. Conversely, silencing of PrPC increased the sensitivity of MKN28 gastric cancer cells
to adriamycin, vincristin, etoposide, 5-FU and cisplatin [55] and that of 5-FU-resistant
SNU-5C/FUR [56] or MDST8 [28] colorectal cancer cells to 5-FU. It also cancelled the
protection of hypoxia against TRAIL-mediated cell death in HCT116 colorectal cancer cells,
while PrPC overexpression conferred resistance to TRAIL-induced cytotoxicity in normoxic
conditions [57]. These observations are summarised in Figure 2.
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From a translational perspective, it is interesting to note that the relationship between
PrPC levels and chemoresistance was confirmed in patients. Indeed, an increased PrPC

expression was reported in recurrent versus primary lesions of patients with glioblastoma,
following combined temolozomide and radiation therapy [23]. In the same line, Yun et al.
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reported that plasma levels of PrPC are higher in colorectal cancer patients having received
chemotherapy versus untreated patients [31]. Moreover, high PrPC levels in gastric cancer
patients were found to be associated with a poor response to chemotherapy [58].

At a molecular level, PrPC may promote chemoresistance through the upregulation of
MDR1, which encodes the P-glycoprotein, a transporter responsible for the efflux of anti-
cancer drugs, as shown in SGC7901 gastric cancer cells [54]. The PrPC-dependent control
on MDR1 appears to be mediated by the PI3K-Akt pathway [59] and to necessitate the
octarepeat-rich N-terminal domain of PrPC [60], although the deletion of a single octarepeat
appears without effect [61]. The recruitment of the PI3K-Akt cascade downstream from
PrPC may rely upon its interaction with the 37kD laminin receptor precursor protein
(37LRP), as suggested by Luo et al. [62]. A different, non-mutually exclusive mechanism
is the positive regulation of the anti-apoptotic effector Bcl2, which may not only occur
in gastric [42,54,58], breast [51] and glioma [63] cancer cells but is also a well-described
pathway relaying the cell-survival physiological activity of PrPC (reviewed in [64]) and
was even recently documented in the context of liver metabolism [65]. Other effects
of PrPC on apoptotic effectors include the upregulation of survivin, cIAP-1 and XIAP
levels in colorectal cancer cells [25] or the sequestration of the pro-apoptotic factor Par4 in
glioblastoma cells [23]. Finally, Wiegmans et al. described a novel mechanism whereby
soluble PrPC promotes the resistance of breast cancer cells to adriamycin through the direct
binding and sequestration of the drug [66].

Beyond conferring resistance to anticancer drugs, PrPC was recently reported to
protect breast and colorectal cancer cells from irradiation-induced toxicity [67]. Accordingly,
PRNP expression levels were found to be increased following radiation treatment of breast
or rectal tumours [67]. As with other PrPC-related processes, the radioprotective function of
PrPC is not restricted to cancer cells but was also exemplified in hematopoietic progenitor
cells [68]. PrPC actually appears to confer a broad resistance to genotoxic stress, in part by
potentiating the activity of the APE1 endonuclease, a major player in DNA repair [69].

Overall, the relationship between PrPC and resistance to cell death in cancer is multi-
faceted and can be viewed as an exacerbation of one of its diverse physiological functions.

5. Inducing Angiogenesis

The link between PrPC and angiogenesis emerged almost two decades ago with
several studies showing that PrPC is expressed and released by endothelial cells and that
its levels are increased after ischemic injury (reviewed in [70]). These observations were
subsequently refined with the demonstration that PrPC-deficient mice submitted to cerebral
ischemia exhibit poorer recovery as compared with wild-type mice, including reduced
neo-angiogenesis [71]. In that study, the authors suggested that PrPC operates, at least in
part, by preventing the degradation of HIF1α by the proteasome (see Figure 3) [71].

In line with this, Alfaidy et al. suggested that PrPC is involved in placental angiogene-
sis by controlling the proliferation, migration and tube-like organisation of trophoblastic
cells [72]. This study further showed an upregulation of PrPC in response to hypoxia [72],
which is now quite well established under various paradigms (reviewed in [73]). The
HIF1α-dependent control on PrPC expression actually extends to the stabilisation of the
protein through the sequestration of the E3 ligase GP78 by hypoxia-induced HSPA1L
(Figure 3), as shown by Lee et al. in colorectal cancer cells [56]. Very recently, these data
were expanded with the demonstration that the levels of PrPC released in exosomes of
colorectal cancer cells are increased under hypoxia [31]. In accordance with the broad
role of hypoxia in tumour-associated angiogenesis [74] and the contribution of exosomes
to this process [75], Yun et al. found that exosomes derived from colorectal cancer cells
grown under hypoxia promote the proliferation, migration, invasion and permeability
of human umbilical vein endothelial cells (HUVECs) (Figure 3) [31]. This seminal study
provides the first direct evidence for a contribution of PrPC to cancer-associated angio-
genesis. Other indirect support is brought by the downstream effectors of PrPC in cancer
cells. For instance, we showed that, in colorectal cancer, PrPC controls the expression of
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Platelet-Derived Growth Factor C (PDGFC) (Figure 3) [28], a stimulator of angiogenesis [76].
It also activates YAP and TAZ [28], the two main effectors of the Hippo pathway, which
have been shown to promote vascular mimicry, a process whereby cancer cells themselves,
instead of endothelial cells, form angiogenic tubules to supply blood to the tumour [77].
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controlling the levels of PDGFC.

Finally, we may note that the PrPC paralogue Doppel has been incriminated in both
developmental [78] and cancer-associated angiogenesis [79]. As Doppel resembles the
C-terminal moiety of PrPC [80], whether PrPC or its cleaved fragments recapitulate the
functional interaction with VEGFR2 reported for Doppel in tumour endothelial cells [79]
seems worth investigating.

Altogether, the contribution of PrPC to cancer-associated angiogenesis is only begin-
ning to be unveiled and will certainly be an important axis for future research.

6. Activating Invasion and Metastasis

A most notable hallmark of cancer cells is their ability to disseminate to distant or-
gans. One major biological process sustaining invasion and metastasis is a transcriptional
program referred to as EMT, whereby cells lose cell–cell contacts and acquire the capacity
to migrate and degrade the surrounding matrix for dissemination [81]. The EMT program
is orchestrated by major transcription factors, such as SNAIL, SLUG, TWIST, ZEB1 or
ZEB2 [81]. There are multiple lines of evidence indicating that PrPC promotes the inva-
sion and migration of cancer cells and controls some EMT-associated features. Indeed,
silencing of PrPC in adryamicin-resistant MCF7 breast cancer cells reduces their invasion
and migration, as well as the expression of two metalloproteases MMP2 and MMP9 [52].
Conversely, PrPC overexpression in MCF7 cells enhances their invasion and migration as
well as the expression and activity of MMP9 [82]. Similarly, depleting PrPC in U87 glioma
cells reduces their migration on laminin [22]. In the Capan-1 pancreatic cell line, Wang et al.
found that the reduction in cell migration induced by the depletion of PrPC was rescued
upon overexpression of the activated form of NOTCH1 [18]. In addition, PrPC-silencing in
SGC7901 or MKN45 gastric cancer cells caused a reduction in their invasion, their expres-
sion of MMP11, as well as their ability to metastasise to the liver after tail vein injection [83].
In the context of lung cancer, higher PrPC levels were measured in a panel of invasive
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versus non-invasive lung cancer cell lines [84]. Furthermore, PrPC was shown to control the
invasive and migratory properties of CL1-5 cells via a JNK pathway and the knock-down
of PrPC reduced their metastatic potential in vivo [84]. Likewise, various studies based
on gain and loss of function experiments in colorectal cancer cell lines confirmed the pro-
invasive and pro-migratory action of PrPC [25,26,85]. In line with this, Go et al. depicted an
increased invasion and migration in the PrPC-positive versus the PrPC-negative fraction of
5-FU resistant SNU-5C/FUR cells [27]. Finally, the presence of PrPC together with that of
the cancer stem cell marker CD44 at the cell surface of primary colorectal cancer cells was
found to control their migration in vitro as well as their metastatic potential after injection
in the cecal wall [86]. Several studies have further documented a link between PrPC and
EMT. Thus, in primary colorectal cancer cells, PrPC was found to control the expression
of the EMT transcription factor TWIST and that of N-cadherin while repressing that of
E-cadherin [86]. Similar findings were obtained with HT29 colorectal cancer cells grown
under hypoxia [56]. Likewise, we documented that PrPC controls the expression of the
EMT transcription factor ZEB1 in colorectal cancer cell lines and that PRNP gene expression
is significantly correlated with an EMT signature in both colorectal cancer patients and cell
panels [28]. These overall findings are summarised in Figure 4 (top panel).

Cancers 2021, 13, x 8 of 19 
 

 

program referred to as EMT, whereby cells lose cell–cell contacts and acquire the capacity 
to migrate and degrade the surrounding matrix for dissemination [81]. The EMT program 
is orchestrated by major transcription factors, such as SNAIL, SLUG, TWIST, ZEB1 or 
ZEB2 [81]. There are multiple lines of evidence indicating that PrPC promotes the invasion 
and migration of cancer cells and controls some EMT-associated features. Indeed, silenc-
ing of PrPC in adryamicin-resistant MCF7 breast cancer cells reduces their invasion and 
migration, as well as the expression of two metalloproteases MMP2 and MMP9 [52]. Con-
versely, PrPC overexpression in MCF7 cells enhances their invasion and migration as well 
as the expression and activity of MMP9 [82]. Similarly, depleting PrPC in U87 glioma cells 
reduces their migration on laminin [22]. In the Capan-1 pancreatic cell line, Wang et al. 
found that the reduction in cell migration induced by the depletion of PrPC was rescued 
upon overexpression of the activated form of NOTCH1 [18]. In addition, PrPC-silencing in 
SGC7901 or MKN45 gastric cancer cells caused a reduction in their invasion, their expres-
sion of MMP11, as well as their ability to metastasise to the liver after tail vein injection 
[83]. In the context of lung cancer, higher PrPC levels were measured in a panel of invasive 
versus non-invasive lung cancer cell lines [84]. Furthermore, PrPC was shown to control 
the invasive and migratory properties of CL1-5 cells via a JNK pathway and the knock-
down of PrPC reduced their metastatic potential in vivo [84]. Likewise, various studies 
based on gain and loss of function experiments in colorectal cancer cell lines confirmed 
the pro-invasive and pro-migratory action of PrPC [25,26,85]. In line with this, Go et al. 
depicted an increased invasion and migration in the PrPC-positive versus the PrPC-nega-
tive fraction of 5-FU resistant SNU-5C/FUR cells [27]. Finally, the presence of PrPC to-
gether with that of the cancer stem cell marker CD44 at the cell surface of primary colo-
rectal cancer cells was found to control their migration in vitro as well as their metastatic 
potential after injection in the cecal wall [86]. Several studies have further documented a 
link between PrPC and EMT. Thus, in primary colorectal cancer cells, PrPC was found to 
control the expression of the EMT transcription factor TWIST and that of N-cadherin 
while repressing that of E-cadherin [86]. Similar findings were obtained with HT29 colo-
rectal cancer cells grown under hypoxia [56]. Likewise, we documented that PrPC controls 
the expression of the EMT transcription factor ZEB1 in colorectal cancer cell lines and that 
PRNP gene expression is significantly correlated with an EMT signature in both colorectal 
cancer patients and cell panels [28]. These overall findings are summarised in Figure 4 
(top panel). 

. 

Figure 4. Elevated PrPC is associated with increased invasion and migration of cancer cells and metastasis. PrPC promotes 
an upregulation of EMT transcription factors (EMT TF), a switch from E-cadherin to N-cadherin expression as well as an 
induction of matrix metalloproteases, themselves fostering the remodelling of the extracellular matrix (ECM) (top panel). 

Figure 4. Elevated PrPC is associated with increased invasion and migration of cancer cells and
metastasis. PrPC promotes an upregulation of EMT transcription factors (EMT TF), a switch from
E-cadherin to N-cadherin expression as well as an induction of matrix metalloproteases, themselves
fostering the remodelling of the extracellular matrix (ECM) (top panel). This action may be fostered
by the interaction between PrPC and its ligand STI1. It is also supported by pro-PrPC, through its
interaction with Filamin-A and the active cleaved fragment of Notch, NICD (Notch Intra Cellular
Domain) or by exosomal PrPC (bottom panel).

At a mechanistic level, several findings are worth noting. Lacerda et al. found that
the PrPC pro-invasive action in colorectal cancer cells depends upon its interaction with
its ligand STI1 [87]. Moreover, we recently highlighted the importance of the PrPC-ILK
coupling in the invasive and migratory properties of the MDST8 colorectal cancer cell
line [26]. On the other hand, in melanoma cells, where PrPC is mainly found as a pro-
PrP isoform retaining its C-terminus instead of a GPI anchor, invasion and migration
depends upon the interaction of pro-PrP with Filamin-A [88], which was shown to form
a complex with pro-PrP and NOTCH1 in pancreatic cancer cells [18]. Yun et al. further
demonstrated that exosomes derived from various colorectal cancer cells grown under
hypoxia can sustain their own invasion and migration in a PrPC-dependent manner (see
Figure 4, bottom panel) [31].
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From a clinical point of view, several studies have depicted a correlation between high
levels of tumour PrPC—as inferred through immuno-histochemistry—and metastasis in
patients with breast [89], gastric [83,90] and colorectal [31,56,86] cancer. In the same line,
Lin et al. depicted increased levels of tumour PrPC in patients with invasive versus in situ
lung adenocarcinoma [84]. Moreover, in colorectal cancer, we reported an enrichment in
the expression of the PRNP gene in the mesenchymal subtype [28], itself associated with
increased progression to advanced stages [91]. We further documented that plasma levels
of PrPC have prognostic value in terms of disease control in metastatic colorectal cancer
patients [28]. Thus, PrPC is unambiguously associated with this hallmark of cancer.

7. Reprogramming of Energy Metabolism (Emerging Hallmark)

Metabolic reprogramming features as one of the emerging hallmarks of cancer [14],
which has taken centre stage over the past decade [92]. It is clear that studies address-
ing the question as to whether PrPC may influence the metabolism of cancer cells are
very scarce. Most data come from the work by Li et al. who found a regulation of the
expression of GLUT1, encoding the glucose transporter 1, downstream from PrPC in the
DLD-1 colorectal cancer cell line [29]. Accordingly, the authors demonstrated that PrPC

depletion reduces glucose uptake and the glycolytic rate of colorectal cancer cells [29].
From a translational point of view, it is worth noting that the expression levels of PrPC

and GLUT1 were correlated in colorectal cancer patients [29]. These findings actually
recall the identification of both PrPC and GLUT1 as specific cell-surface biomarkers of
the adenoma-to-carcinoma transition in colorectal cancer [93]. Aside from cancer, the link
between PrPC and glucose uptake is further strengthened by the work of Ashok et al.
based upon a comparison of various tissues of mice deficient in PrPC versus their wild-
type counterparts for the expression of glucose transporters [94]. However, in apparent
contradiction with the data obtained in cancer cells, the absence of PrPC was associated
with increased GLUT1, GLUT2 or GLUT3 levels according to the tissue—brain, retina or
liver—considered [94]. Changes in the expression of the mono-carboxylate transporters
MCT1 and MCT4, involved in the transport of lactate and pyruvate, were also observed in
the brains of mice lacking PrPC, with positive or negative regulations depending on the
cerebral region considered [95]. In this respect, it is interesting to note that PrPC was found
to control the uptake of lactate by astrocytes through the interaction with Na+-K+ ATPase,
the driving force for MCT1 activity [96]. Other points of interest include the interaction
between PrPC and the lactate dehydrogenase isoforms LDH-A and LDH-B, which were
uncovered through systematic proteomic assays for PrPC partners [97–99]. PrPC was later
shown to potentiate the activity of LDH in the hypoxic brain, which may contribute to
the protective role for PrPC against stress [100]. Other PrPC interactors involved in gly-
colysis include aldolase C (ALDOC) [101] and as well as aldolase A (ALDOA) [99], both
catalysing the conversion of fructose-1,6-bisphosphate into glyceraldehyde 3-phosphate
(G3P), alpha- and gamma- enolase (ENO1 and ENO2), two isoenzymes that converts
2-phosphoglycerate into phosphoenolpyruvate [97,99], the well-known glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) [97–99], the triose-phosphate isomerase TPI [98,99]
as well as the pyruvate kinases PKM1/PKM2 that catalyse the de-phosphorylation of
phosphoenolpyruvate into pyruvate [97,102]. PrPC was further shown to interact with both
cytoplasmic malate dehydrogenase [97], which converts oxaloacetate into malate, itself
being imported in the mitochondrial matrix, and mitochondrial malate dehydrogenase [99],
which catalyses the oxidation of malate into oxaloacetate within the Krebs cycle. It is of
note that these overall interactions have been recapitulated in several studies, suggesting
functional implications. However, apart from LDH, how PrPC may influence the activity
of these diverse enzymes remains to be explored.

On the other hand, several studies have brought to light links between PrPC and
mitochondria. First, beyond its main location at the cell surface, PrPC was also found to
locate in the mitochondria of healthy mice [103]. PrPC was further shown to co-localise
with COX4 [103], one of the nuclear-encoded subunits of complex IV of the respiratory
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chain. In addition, PrPC-deficient mice were reported to have reduced numbers of mito-
chondria, which have a larger morphology, and an enhanced maximal respiratory capacity,
presumably to compensate for low mitochondrial numbers [104,105]. A proteomic study
comparing WT and PrPC-deficient neurons also exemplified reduced levels of the mitochon-
drial proteins COX2 in the absence of PrPC [106]. Finally, coming back to PrPC partners,
two independent studies have identified citrate synthase (CS) as a PrPC interactor [97,98].
Again, whether PrPC modulates the activity of CS has yet to be investigated.

As a whole, despite the scarcity of data relating to PrPC and cancer cell metabolism,
the findings obtained with respect to PrPC physiological role and, more importantly, to
PrPC binding partners offer many avenues for future investigation.

8. Evading Immune Destruction (Emerging Hallmark)

The second emerging hallmark emphasised by Hanahan and Weinberg refers to the
ability of cancer cells to thwart the immune system [14]. A first hint at a link between
PrPC and immune-evasion can be inferred from the enrichment of PRNP gene expression
in the mesenchymal subtype of colorectal cancer [28], itself associated with an immune-
suppressive signature [107]. Secondly, a more general role for PrPC in immunological
quiescence has been proposed, based on its pattern of expression in immune privilege
organs as well as its cytoprotective and immune-regulatory function [108]. Mechanistically,
PrPC may, by itself, induce cell signalling events sustaining immunomodulation, and
thereby temper inflammation [8,108]. On the other hand, tumour associated PrPC controls
the levels of several effectors known to promote immune evasion. One such effector is
TGFβ, whose soluble levels are regulated by PrPC through a yet-to-be-uncovered mecha-
nism [28]. It is indeed now well-acknowledged that TGFβ inhibits anti-tumour immunity
through multiple mechanisms (see [109] for review). Another major player in immune tol-
erance is IDO (indoleamine 2,2 dioxygenase), an enzyme of the kynurenine pathway [110],
which we recently identified as a molecular target downstream from PrPC signalling in
colorectal cancer [26]. Thus, it appears that PrPC from cancer cells orchestrates diverse
pathways that altogether tone down the anti-tumour immune response by favouring an
immune-suppressive contexture.

9. Genome Instability and Mutation

Genomic alterations represent a key characteristic enabling cancer cells to acquire
their diverse hallmarks [14]. The question as to whether PrPC may be linked to this
enabling characteristic is twofold. First, we may ask whether genome instability and
mutation foster the expression of PrPC. A second question is whether the expression of
PrPC may afford protection against DNA damage. A major observation regarding the first
point is the identification of cell surface PrPC as a marker of aneuploidy in a pan-cancer
screening study [111]. The authors further reported an increase in PrPC levels in parental
or aneuploid HCT116 colorectal cancer cells upon serum-deprivation, which they linked to
oxidative stress, and showed that PrPC is protective against serum-deprivation-induced
necrotic death [111]. On this basis, the authors proposed that the upregulation of PrPC

in aneuploid cells is a consequence of the oxidative stress associated with this genomic
alteration. This notion actually fully fits in with the physiological role described for PrPC

in the protection against oxidative stress (reviewed in [6]). According to Qin et al. the
induction of PRNP gene expression in response to oxidative stress involves the Ataxia
Telangiectasia Mutated (ATM) kinase [112]. More recently, ATM was further shown to
mediate the upregulation of PRNP transcription in response to irradiation [67]. In line with
the Domingues study [111], PrPC expression was found to confer a protective role against
irradiation [67]. This radioprotective action fits in with the protective role against other
types of genotoxic stresses [69], as mentioned above.

Thus, since PrPC is induced in response to DNA injury and supports protection against
DNA damage, we may propose that PrPC takes part in the balance between DNA damage
and repair, a trade-off for cancer cell survival and growth [113].
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10. Tumour-Promoting Inflammation

Chronic inflammation is a well-acknowledged driver of cancer development [114].
Several pieces of evidence indicate that inflammatory conditions may promote an increase
in PrPC expression. In the context of cancer, the upregulation of PrPC in Merlin-deficient
tumours was found to depend on the NFκB transcription factor [24], which embodies a
major link between inflammation and cancer (reviewed in [115]). Whether NFκB positively
regulates the expression of PrPC in other types of tumours obviously deserves further
investigation. Conversely, PrPC was shown to activate NFκB-dependent transcription in
breast cancer cells [82], or to be necessary for the TNFα-dependent activation of NFκB
in melanoma M2 cells [116], thereby delineating a bidirectional link between PrPC and
NFκB. An alternative yet still hypothetical mechanism leading to an upregulation of PrPC

would be via ILK, which we showed to be both a downstream target and an upstream
regulator of PrPC [26] and has been reported to be induced in colonic cells in response
to inflammation [117]. Another observation worth noting is the induction of PrPC in the
mucosa of patients with Helicobacter Pylori gastritis [118], a condition well-known to
predispose patients to gastric cancer.

Paradoxically, Prnp-deficient mice were reported to be more sensitive than wild-
type mice to dextran sulfate-induced colitis [119]. This is, however, reminiscent of the
observations obtained in mice deficient for Yap [120], itself a downstream target of PrPC [28].
In the case of Yap, results were interpreted as Yap being necessary for tissue repair after
injury, a function whose over-activation supports cancer progression [121]. Likewise, we
may surmise that PrPC is mandatory for tissue regeneration, in accordance with its function
in stem cell self-renewal [11], and that its upregulation under inflammatory conditions
contributes to cancer development.

Altogether, the interplay between PrPC and tumour-promoting inflammation is cur-
rently supported by few studies and could be worthy of further exploration.

11. Conclusions/Future Prospects

In summary, we have enlightened the involvement of PrPC in cancer biology from the
standpoint of the hallmarks of cancer (Figure 5).
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a consequence of the hallmark. The thickness of the arrow is related to the amount of evidence
supporting the link. The hallmarks of cancer have been adapted from Hanahan and Weinberg [14].
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While the participation of PrPC to some of those hallmarks—most notably prolifera-
tion, survival, invasion and metastasis—is substantiated by multiple cell-based, pre-clinical
or clinical studies across cancer types, its links to other hallmarks, such as reprogramming
of energy metabolism or evading immune destruction, are only beginning to be explored
or even merely suggested from observations outside the field of cancer. These underap-
preciated roles of PrPC in cancer-related processes represent important areas for future
research. Regarding the binding partners involved in the contribution of PrPC to each
hallmark (Table 1), data remain scarce at present and are likely to expand in the near future.

Table 1. Summary of the binding partners involved in the PrPC contribution to a given hallmark of
cancer, in relation with the cancer type.

Hallmark Partner Cancer Type Reference

Sustaining proliferative signalling NOTCH1 Pancreatic [18]
Sustaining proliferative signalling STI1 Glioblastoma [21]

Resisting cell death 37LRP Gastric [62]
Activating invasion and metastasis STI1 Colorectal [87]
Activating invasion and metastasis Filamin-A Melanoma [88]

Although some of the signalling pathways through which PrPC operates have been
elucidated (Table 2), the picture is far from complete and also requires further investigation.

Table 2. Summary of the signalling pathways through which PrPC contributes to a given hallmark of
cancer, in relation with the cancer type.

Hallmark Partner Cancer Type Reference

Sustaining proliferative signalling PI3K/AKT- CyclinD1 Gastric [15]
Sustaining proliferative signalling NOTCH1 Pancreatic [18]
Sustaining proliferative signalling ILK Colorectal [26]

Evading growth suppressors NF2 Schwannoma [24]
Evading growth suppressors TGFβ Colorectal [26]

Resisting cell death MDR1 Gastric [54]
Resisting cell death PI3K/AKT Gastric [59]
Resisting cell death BCL2 Gastric [42,54,58]
Resisting cell death BCL2 Breast [51]
Resisting cell death BCL2 Glioma [63]

Resisting cell death Survivin/cIAP-
1/XIAP Colorectal [25]

Resisting cell death Par4 Glioblastoma [23]
Resisting cell death Soluble PrPC Breast [66]

Inducing angiogenesis Hypoxia Colorectal [31]
Activating invasion and metastasis MMPs Breast [52,82]
Activating invasion and metastasis MMPs Gastric [83]
Activating invasion and metastasis NOTCH1 Pancreatic [18]
Activating invasion and metastasis JNK Lung [84]

Reprogramming of energy metabolism GLUT1 Colorectal [29]
Evading immune surveillance TGFβ Colorectal [26]
Evading immune surveillance IDO Colorectal [26]

Casting further light on these specific points will undoubtedly help reach an in-
tegrated view of the multifaceted contribution of PrPC to cancer initiation, promotion
and progression.
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Abbreviations

5-FU 5-fluorouracil
APE1 apurinic/apyrimidinic endonuclease 1
ATM ataxia telangiectasia mutated
EMT epithelial to mesenchymal transition
EGFR epidermal growth factor receptor
GPI glycosyl-phosphatidylinositol
HIF-1α hypoxia-inducible factor 1 alpha
HSPA1L heat shock protein 70 member 1-like
HUVEC human umbilical vein endothelial cell
ILK integrin linked kinase
NF2 neurofibromatosis type 2
PDGFC platelet-derived growth factor C
PrPC cellular prion protein
PrPSc scrapie prion protein
SNU-C5/FUR 5-FU resistant SNU-C5 cells
TGFβ transforming growth factor β
TNFα tumour necrosis factor-α
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