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Abstract 
Background.  The prognostic roles of clinical and laboratory markers have been exploited to model risk in 
patients with primary CNS lymphoma, but these approaches do not fully explain the observed variation in 
outcome. To date, neuroimaging or molecular information is not used. The aim of this study was to deter-
mine the utility of radiomic features to capture clinically relevant phenotypes, and to link those to molecular 
profiles for enhanced risk stratification.
Methods.  In this retrospective study, we investigated 133 patients across 9 sites in Austria (2005–2018) and 
an external validation site in South Korea (44 patients, 2013–2016). We used T1-weighted contrast-enhanced 
MRI and an L1-norm regularized Cox proportional hazard model to derive a radiomic risk score. We inte-
grated radiomic features with DNA methylation profiles using machine learning-based prediction, and val-
idated the most relevant biological associations in tissues and cell lines.
Results.  The radiomic risk score, consisting of 20 mostly textural features, was a strong and independent 
predictor of survival (multivariate hazard ratio = 6.56 [3.64–11.81]) that remained valid in the external valida-
tion cohort. Radiomic features captured gene regulatory differences such as in BCL6 binding activity, which 
was put forth as testable treatment target for a subset of patients.
Conclusions.  The radiomic risk score was a robust and complementary predictor of survival and reflected 
characteristics in underlying DNA methylation patterns. Leveraging imaging phenotypes to assess risk and 
inform epigenetic treatment targets provides a concept on which to advance prognostic modeling and pre-
cision therapy for this aggressive cancer.

Key Points

• In primary CNS lymphoma, radiomic features capture imaging phenotypes and are 
associated with survival.

• Image-based phenotypic differences relate to distinct DNA methylation patterns.

• Differential gene regulation nominates key transcription factors as therapeutic 
targets.

Primary CNS lymphoma (PCNSL) is a malignant brain 
tumor characterized by extensive phenotypic variability. 
Clinical factors such as age, clinical performance, and 
immune status, as well as complex, adaptive treatment 
strategies shape the disease course of individual patients 
in myriad ways and entail survival times ranging from a 
few months to several decades. Two commonly used prog-
nostic scoring systems, the models of the International 
Extranodal Lymphoma Study Group and the Memorial 
Sloan Kettering Cancer Center, rely on sets of clinical and 
laboratory markers to stratify patients into clinically useful 

risk groups, but do not fully explain the observed variation 
in survival.1,2

The phenotypic heterogeneity of PCNSL is in parts cap-
tured at the level of magnetic resonance imaging (MRI), 
where lesions vary in size, number of foci, and contrast en-
hancement.3 Importantly, different MRI characteristics vis-
ualize tumor biological properties such as the disruption of 
the blood-brain barrier, tumor vascularity, cellularity, and 
eventually genetic alterations.3 One particular approach 
that has substantially advanced the concept of phenotype-
genotype correlations is the quantification of a large 

Importance of the Study

To our knowledge, this is the first study to systemati-
cally evaluate radiomic features for their prognostic 
value in primary CNS lymphoma (PCNSL), and to derive 
a radiomic risk score that accurately stratifies patients 
according to risk. It further links the radiomic features 
with epigenome-wide DNA methylation, unraveling the 
gene regulatory basis that contributes to the observed 
phenotypic differences. Using this integrated ap-
proach, we nominate transcription factors as potential 

epigenetic treatment targets for subsets of patients. 
Our study demonstrates the potential of radiomic fea-
ture analysis as a clinically meaningful and noninvasive 
imaging marker for risk assessment in patients with 
PCNSL. Assessing risk and selecting epigenetic treat-
ment based on radiomic phenotypes substantially ad-
vances prognostic modeling and precision therapy for 
this aggressive brain cancer.
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number of radiomic image features that may be readily in-
tegrated with genome-wide molecular tumor profiles.4

The molecular landscape of PCNSL, specifically primary dif-
fuse large B-cell lymphoma of the CNS (DLBCL-CNS), is char-
acterized by a common transcriptional state that resembles 
early post-germinal center activated B-cells, who undergo 
continued somatic hypermutation driving genetic heteroge-
neity.5–9 Only few studies have focused on its epigenomic di-
mensions such as DNA methylation at CpG sites,10–13 which 
may, however, strike a balance between little transcriptional 
and excessive genetic variation. Moreover, in the context of 
hematological cancers, DNA methylation was found to refine 
prognostic rating, contribute information to new multiomic 
data integration, and identify key gene regulatory mechan-
isms as potential targets for epigenetic therapy.14–20

Limited information exists regarding the potential links 
between MRI phenotypes and epi-genotypes in PCNSL, 
hampering the development of novel, radiomic-based 
risk models that inform targeted treatment. To address 
this gap of knowledge, we profiled a large patient cohort 
at the radiomic and DNA methylation levels. We identified 
imaging-based risk groups that differ in their gene regula-
tory basis, proposing specific transcription factors as test-
able treatment targets in subsets of patients.

Materials and Methods

Patient Cohort and Resources

Patients were retrospectively selected from a population-
scale cohort comprising 207 adult patients, extending a 
previous series.21,22 The study was approved by the IRB of 

MedUni Vienna under #1861-2018 and written informed 
consent was obtained from all patients. Consecutive adult 
patients of both sexes with newly diagnosed PCNSL at 9 
Austrian centers between January 2005 and December 
2018 were eligible. Eight secondary CNS lymphomas, and 
14 EBV-related PCNSLs were excluded. Another 2 cases 
with missing clinical information, MRI data, or tumor tissue 
were excluded (Figure 1A).

MRI data were available for 133 patients, and after 
quality assessment 83 cases were included (contrast-
enhanced T1 with near-isotropic 1 mm resolution). As an 
external validation cohort, we obtained 44 MRI of patients 
acquired at the Samsung Medical Center, South Korea. 
MRI data were obtained during routine clinical work-up 
at different MR scanners (1.5T, 3T, Siemens, Philips, and 
GE). Each case had a minimum of contrast-enhanced 
T1-weighted (T1-ce) and either T2-weighted or fluid atten-
uated inversion recovery (FLAIR) images available. The 
T1-ce volumes had a consistently high resolution across 
all centers with a median voxel size of 0.9 × 0.86 × 1.2 mm. 
A board-certified radiologist (J.F. > 15 years of reading ex-
perience) and a neuroimaging expert (K.H.N. > 10 years 
of reading experience) consensually segmented the le-
sions into enhancing tumor, necrosis, and edema. J.F. la-
beled cases with presence of hemorrhage, calcification, 
heterogeneous contrast enhancement, or necrosis as 
atypical.23–26

In 116 patients, formalin-fixed and paraffin-embedded 
tissues were available, which were reviewed by a neuro-
pathologist (A.W. > 15 years of diagnostic experience) to 
confirm the diagnosis of CNS DLBCL and to define regions 
for DNA isolation and reduced representation bisulfite 
sequencing (RRBS, N = 78), as well as the construction of 

Potentially eligible population:

Potential study population:

Study population:

50 patients
excluded because of

data quality issues

24 patients
excluded because of
unavailable data or

histology review

MR imaging
(n = 83)

DNA
methylation

(n = 78)

Tissue
microarray

(n = 89)

MR imaging
(n = 44)

External Imaging
Validation Cohort

Overlapping data of the included 133 patients

11
38

8

207 patients with newly diagnosed
PCNSL between 2005 – 2018

183 patients with either imaging,
RRBS, or TMA data available

133 patients with either sufficient
MR imaging quality (n = 83),
successful tissue microarray

staining (n = 89), or sufficient DNA
methylation coverage (n = 78)

A B

Figure 1. Overview of the study cohort and the multimodal patient annotation. (A) Flow chart of patient selection. (B) Overlapping data samples 
including magnetic resonance imaging (MRI) data, histology data based on tissue microarrays (TMA), and DNA methylation sequencing data.
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tissue microarrays (TMA, N = 89). TMAs were used to allo-
cate tumors to germinal center B-cell (GCB, 12%) or non-
germinal center B-cell types (non-GCB, 88%) according to 
the Hans algorithm.27

Taken together, the discovery cohort comprised 83 cases 
with MRI data and 78 cases with DNA methylation profiles, 
with 46 cases having both (Figure 1B). Details of the multi-
modal workflow are provided in Supplementary Materials.

Radiomic Feature Extraction and Risk Score 
Generation

Radiomic features were extracted from contrast-enhanced 
T1-weighted MRI using the Pyradiomics library28 and 
quantified for 2 tumor masks: (i) contrast-enhanced tumor 
and necrosis (tumor core), and (ii) contrast-enhanced 
tumor, necrosis, and edema (tumor-plus-vicinity). The 
most relevant features were identified using a least abso-
lute shrinkage and selection operator (LASSO) with a Cox 
proportional hazard model implemented in Glmnet.29 The 
radiomic risk score was defined as a linear combination of 
the coefficients of those features, and the median was used 
to initially stratify patients into equally sized risk groups. 
Feature selection and risk score generation were evaluated 
within the discovery cohort using 10-fold cross-validation. 
To exclude that the risk score was generated by chance, 
feature selection and risk score generation were repeated 
in 1,000 permutation runs with shuffled survival labels (fol-
low-up time and survival status).

For external validation, we chose an optimal cutoff based 
on its discriminative performance (the highest hazard ratio 
(HR), lowest P value, and maximum median survival dif-
ference) in the discovery cohort. Details are provided in 
Supplementary Materials.

Reduced Representation Bisulfite Sequencing

Reduced representation bisulfite sequencing data were 
preprocessed (details see Supplementary Materials), 
and reads were aligned to the human reference genome 
(GRCh38). RRBS data analysis was restricted to gene pro-
moter regions, and the specific DNA methylation levels 
were calculated with RnBeads.30 For further analysis, we 
included only promoter regions that were covered in >80% 
of the samples, and those with <80% coverage across all 
promoters were excluded. Missing data were imputed with 
k (=5) nearest neighbors.

Integration of MRI and RRBS Data

We used a support vector machine (SVM) to predict 
radiomic risk groups based on DNA methylation pro-
files, employing 10-fold cross-validation and a permuta-
tion baseline. The receiver operating characteristic (ROC) 
curves and the area under the curve (AUC) were assessed 
for true and permuted labels. We employed locus overlap 
analysis (LOLA)31 to identify group differences using the 
most informative sites as the LOLA universe, while re-
stricting region sets to B-cell-related transcription fac-
tors. Their protein expression was evaluated in TMAs 

using immunohistochemistry (antibodies specified in 
Supplementary Table S1).

In Vitro Experiments

Ultimately, 2 commercially available DLBCL cell lines of 
ABC type with low and high BCL6 expression (NU-DHL1, 
OCI-LY3) were challenged with methotrexate (Sigma 
Aldrich, IC50) in the presence of a BCL6 inhibitor (79-6, 
Calbiochem, Merck KGaA, IC50) versus methotrexate 
alone. Experiments were performed in 3 technical rep-
licates and repeated upon chemical degradation of BCL6 
using BI-3802 (MedChem Express LLC, 3 nM). Cell viability 
was quantified using RealTime-Glo MT Cell Viability as-
says (Promega) with fluorescence read-outs at 2, 4, 19, 23, 
and 26 hours posttreatment. For each time point, counts 
of treated cells were normalized to untreated cells and the 
percent changes reported.

Statistical Analysis

Statistical analysis was performed with MATLAB v2014a. 
The primary study endpoint was overall survival. Prognostic 
values were assessed upon Kaplan-Meier survival analysis 
using logrank tests, and uni- and multivariate Cox regres-
sion with backwards elimination. P values < .05 were con-
sidered significant, and where appropriate, corrected for 
multiple comparisons using false discovery rate correction.

Data Availability

The RRBS data and the de-identified MRI data are avail-
able from the corresponding author upon request and after 
signing a data usage agreement. Radiomic features were 
based on the openly available Pyradiomics feature library 
(https://pyradiomics.readthedocs.io/). The glmnet toolbox 
is available at https://glmnet.stanford.edu/.

Results

A total of 133 patients fulfilled the criteria of adequate MRI 
(N = 83) and/or tumor tissue availability (RRBS in 78, TMA-
based histology in 89; Figure 1B). The median age at sur-
gery was 66 years (range 23–84 years), and the median 
survival time was 10.6 months. The clinical characteristics 
are summarized in Table 1 demographics.

Radiomic Risk Score Captures Differences in 
Survival

The L1-norm regularized Cox proportional hazard model 
identified 20 radiomic features that were consistently as-
sociated with survival (10-fold cross-validation data in 
Supplementary Figure S1B). The linear combination of 
those features resulted in a radiomic risk score, where a 
higher score indicated a shorter survival. A risk-score-by-
feature-weight heatmap pointed toward 2 equally sized 
groups (Figure 2A), which were confirmed by a UMAP 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
https://pyradiomics.readthedocs.io/
https://glmnet.stanford.edu/
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
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Table 1. Baseline Demographic and Clinical Characteristics of 133 Patients in the Discovery Cohort and 44 Patients in the Validation Cohort

Discovery Cohort Validation Cohort

Sex

Male 69 (51.9%) 25 (56.8%)

Female 64 (48.1%) 19 (43.2%)

Age, y

Median (range) 66 (23–84) 57 (20–77)

Overall survival

Median survival time 10.6 months 40.6 months

Tumor properties, mm3

Volume enhancing mean: 17.32, std: 18.65 mean: 25.46, std: 23.57

Volume edema mean: 92.43, std: 71.62 mean: 98.87, std: 58.55

Volume necrosis mean: 0.35, std: 1.66 mean: 0.95, std: 3.28

Number of tumor foci

1 54 (40.6%) 19 (43.2%)

>1 66 (49.6%) 25 (56.8%)

N/A 13 (9.8%) —

First line treatment

Chemotherapy (CT) 73 (54.9%) 20 (45.4%)

Radiation therapy (RT) 11 (8.3%) 1 (2.3%)

Combined CT-RT 28 (21.0%) 20 (45.4%)

Best supportive care 12 (9.0%) 1 (2.3%)

N/A 9 (6.8%) 2 (4.6%)

ECOG performance status

0/1 72 (54.2%) —

>1 43 (32.3%) —

N/A 18 (13.5%) —

Activities of daily living performance

Independent — 27 (61.4%)

Moderate assist — 15 (34.0%)

Minimal assist — 2 (4.6%)

Methotrexate

Yes 91 (68.4%) 40 (91.0%)

No 33 (24.8%) 2 (4.5%)

N/A 9 (6.8%) 2 (4.5%)

Rituximab (375 mg/m2)

Yes 27 (20.3%) 4 (9.1%)

No 96 (72.2%) 38 (86.4%)

N/A 10 (7.5%) 2 (4.5%)

Median number of therapy cycles

Methotrexate 4 (1–8) 9 (1–19)

Rituximab 3.5 (1–7) N/A

LDH level

Normal 71 (53.4%) —

Elevated 29 (21.8%) —

N/A 33 (24.8%) —
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representation of feature similarities (Supplementary Figure 
S1C). Splitting the cohort at the median risk score resulted in 
significant survival differences (Figure 2B, HR = 2.38 [1.46–
3.90], median overall survival (OS): high-risk 5.3 months, 
low-risk 38.2 months). As a confirmation, 1,000 permutation 

runs repeating feature selection and risk score generation 
based on shuffled survival labels did not randomly result 
in a larger survival difference (Supplementary Figure S1D). 
The strictly test-only validation cohort using 44 MRIs of an 
independent sample differed in acquisition settings and 
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p = 0.0599
HR = 2.95 (1.27 – 6.86)

p = 1.52e–11
HR = 5.65 (3.53 – 9.04)

p = 0.000129
HR = 2.38 (1.46 – 3.9)

High-Risk
Low-Risk
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Figure 2. Radiomic risk score captures differences in survival. (A) Heatmap of patients ranked by the radiomic risk score and by the feature 
weights. (B) Kaplan-Meier survival analysis of the discovery cohort stratified at the median risk score, upon 10-fold cross-validation. (C) Kaplan-
Meier survival analysis stratified at the cutoff with maximized hazard ratio in the discovery cohort. (D) Kaplan-Meier survival analysis stratified at 
the transferred cutoff in the external validation cohort.

Table 1. Continued

Discovery Cohort Validation Cohort

Second line treatment

Yes 20 (15.0%) 27 (61.4%)

HD-MTX (5), Rituximab (3), R-CHOP (2), 
HD-AraC (2), Topotecan (1), MTX (1), 
Cytarabin (1), AraC (1), N/A (4)

Ara-C (13), ICE/Dexa (6), HD Ara-C #2 
(2), R-CHOP (1), HD cytarabine (1), 
GDP (1), FOLFOX (1), Etoposide (1), 
Cytarabine (1)

No 102 (76.7%) 15 (34.1%)

N/A 11 (8.3%) 2 (4.5%)

Radiation therapy details

N/A 106 (79.7%) 44 (100%)

Completed (yes/no/n/a) 20/5/2 —

Dose (average, std) 38.85 (8.79) —

Fractions (average, std) 1.95 (0.15) —

Autologous stem cell transplantation

Yes 6 (4.5%) 9 (20.5%)

No 109 (82.0%) 33 (75.0%)

N/A 18 (13.5%) 2 (4.5%)

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
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patient demographics (Supplementary Figure S2A). While 
the transfer of the median risk score as a cutoff found in the 
discovery cohort did not replicate survival differences in the 
validation cohort, a cutoff based on the maximal hazard ratio 
in the discovery cohort showed a trend toward survival dif-
ferences in the validation cohort (Figure 2C, Supplementary 
Table S2; HR = 5.65 [3.53–9.04], median OS: high-risk 
5.4 months, low-risk 129.6 months; Figure 2D, HR = 2.95 
[1.27–6.86], median OS: high-risk 25.1 months, low-risk: not 
reached). However, an optimal cutoff was also found for the 
validation cohort, which yielded significant survival differ-
ences (Supplementary Figure S6, Supplementary Table S5; 
P = .013, HR 3.45 [1.6–7.44]), supporting the overall relevance 
and generalizability of the extracted imaging features.

Radiomic Risk Groups Differ in Clinical and MR 
Imaging Phenotypes

When comparing the risk score with an extended set of 
clinical and MRI features, a mere correlation with age 
was observed (ρ = 0.29, pFDR = 0.07, Figure 3A). Uni- and 

multivariate Cox regression analyses confirmed a strong 
association between survival and the radiomic risk score 
(univariate HR = 6.36 [3.57–11.34], Figure 3B; multivariate 
HR = 6.56 [3.64–11.81], Figure 3C). In the validation cohort, 
multivariate Cox regression yielded a sole significant asso-
ciation between survival and volume of necrosis (HR = 4.27 
[1.81–10.05]), and the radiomic risk score was removed 
from the multivariate model as the second-to-last feature 
before the last iteration with a P value of .0636. The risk 
score did not differ significantly between submitting cen-
ters (ANOVA F(8,74) = 1.8, P = .095; Supplementary Figure 
S2B) and risk groups showed a comparable prevalence 
of treatment modalities (#low-risk: 53.7% CT, 21.9% CT-RT, 
12.2% RT-BSC, 12.2% ASCT; #high-risk: 69.1% CT, 23.8% 
CT-RT, 7.1% RT-BSC; Supplementary Figure S3). Of note, it 
also provided a stronger association with survival than the 
Memorial Sloan Kettering Cancer Center (MSKCC) score 
(Figure 3B), which did not create independent prognostic 
classes in our discovery cohort (Supplementary Figure 
S1E). High-risk lesions preferentially involved the ante-
rior and posterior corpus callosum, where they showed a 
stronger spatial overlap than low-risk lesions (Figure 3D).
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Figure 3. Radiomic risk groups differ in clinical and MR imaging phenotypes. (A) Correlation (Spearman’s ρ) of the risk score with clinical 
and imaging parameters (Perf = clinical performance ECOG score; Vol-CE = volume contrast-enhancing tumor; Vol-NEC = volume of necrosis; 
Vol-ED = volume of edema; Deep = involvement of deep brain location; Foci = multifocal disease; Year = year of diagnosis; Type = typical/atyp-
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and low-risk tumors. (E) Representative MRI of cases with high- and low-risk scores.
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Among the 20 selected radiomic features, 17 were 
texture features, emphasizing the informative value of 
intensity-based heterogeneity (Table 2). Similarly, the bal-
anced selection of features derived from both masks, that 
is, tumor core and tumor-plus-vicinity, suggested that the 
relation between tumor and surroundings was important. 
Of note, the predictive value of the radiomic features was 
superior to mere volumetric differences in contrast en-
hancement and edema (Figure 3D), and superior to the 
presence of gross atypical radiologic findings (Figure 3A, 
r = 0.03, P = .79). Overall, low-risk tumors were character-
ized by ordered intensity differences such as sharper edges 
or ring-like structures, while high-risk tumors were char-
acterized by patchy and ill-defined contrast enhancement 
(representative MRI in Figure 3E).

Radiomic Risk Groups Differ in DNA Methylation 
Attributes and Key Transcription Factors

A SVM-based classifier was trained on DNA methylation 
data to predict radiomic risk groups, which showed a good 
performance upon 10-fold cross-validation (AUC = 0.78, 
Figure 4A). A risk-score-by-weight heatmap of the 1,000 

most predictive DNA methylation sites suggested more 
abundant DNA hypomethylation of high-risk tumors with 
more pronounced interpatient variability (Figure 4B), which 
was confirmed across genome-wide CpG sites (Figure 
4C). DNA methylation loss for high-risk tumors indicated 
enrichment of the Wnt signaling pathway, Hedgehog 
signaling pathway, and synaptic vesicle trafficking pathway 
(Supplementary Table S3). A LOLA using the 1,000 most in-
formative sites as a query set, found strong enrichment for 
BCOR, BCL6, and RUNX3 binding sites in hypermethylated 
regions of high-risk tumors (Figure 4D). Following up on 
BCL6 as a master regulator of the germinal center reac-
tion, whose activity is sensitive to DNA methylation,32 its 
diminished protein expression was confirmed in high-risk 
tumors (Figure 4E) independent of transcriptional subtype 
(Supplementary Figure S4).

To probe the computational findings in vitro, 2 ABC-type 
DLBCL cell lines with diverging high and low BCL6 expres-
sion levels, NU-DHL1 and OCI-LY3 (Supplementary Figure 
S5), were challenged with methotrexate plus the BCL6 in-
hibitor 79-6, which resulted in an added benefit of com-
bined treatment in both cell lines, being more pronounced 
with higher BCL6 levels (Figure 4F) and reverted upon 
chemical BCL6 degradation (Figure 4G).

Table 2. Core Radiomic Features Included in the Risk Score. Out of the 20 Identified Features, 17 Captured Texture Characteristics and 3 Intensity 
(Firstorder) Profiles. No Shape Features Were Identified As Predictive

Coefficients Labels Type Tissue Wavelet Interpretation

0.25106889 Gray level nonuniformity glszm Tumor core HLH Skewed distribution of gray-level size zones

0.18059428 Sum entropy glcm Core + vicinity LLL Neighborhood intensity value differences

0.148945719 Interquartile range firstorder Core + vicinity HLL Intensity range

0.13777253 Cluster shade glcm Core + vicinity LLH Skewness and uniformity of the GLCM

0.130139962 Small area emphasis glszm Tumor core HHL Distribution of small gray-level size zones

0.037002116 Skewness firstorder Core + vicinity LHH Asymmetry of the intensity distribution

0.033505563 Inverse variance glcm Tumor core LLH Inverse of the variance

0.015692966 Robust mean absolute 
deviation

firstorder Core + vicinity — Mean distance of all intensity values from the 
mean

−0.010046394 Informational measure of 
correlation 2

glcm Tumor core LLH Complexity of texture

−0.015986847 Maximal correlation coef-
ficient

glcm Tumor core LHL Complexity of texture

−0.0368548 Large area high gray level 
emphasis

glszm Core + vicinity LLL Larger size zones with higher gray-level values

−0.042206768 Small area low gray level 
emphasis

glszm Tumor core — Smaller size zones with lower gray-level values

−0.0465881 Small dependence high 
gray level emphasis

gldm Tumor core LLH Small dependence with higher gray-level values

−0.051812131 Large area emphasis glszm Core + vicinity LLL Coarseness of texture

−0.069709197 Long run high gray level 
emphasis

glrlm Core + vicinity LLH Joint distribution of long run lengths with higher 
gray-level values

−0.081066228 Contrast glcm Tumor core LLH Local intensity variation

−0.089818195 Long run emphasis glrlm Core + vicinity LLL Distribution of long run lengths

−0.132682264 Cluster shade glcm Tumor core LHL Skewness and uniformity of the GLCM

−0.14236702 Large area low gray level 
emphasis

glszm Tumor core HLH Larger size zones with lower gray-level values

−0.182621688 Strength ngtdm Tumor core LHH Coarse differences in gray level intensities

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad136#supplementary-data
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Discussion

In this study, comprising patients from 9 centers and one 
additional external site, we established and evaluated a 
novel risk score for patients with PCNSL that accurately 
identifies those at risk for aggressive disease and early 
death. The risk score is based on a set of radiomic features 
extracted from routinely available, preoperative contrast-
enhanced T1-weighted MRI. It is noninvasive and objective, 
and has the potential to improve existing prognostic scoring 
systems. In our retrospective setting with limited availa-
bility of laboratory markers, we were able to comparatively 
evaluate the radiomic risk score against the MSKCC prog-
nostic score,2 which relies on age and clinical performance. 
Intriguingly, we found the risk score to be more sensitive 
(higher hazard ratio) upon univariate direct comparison.

Unlike previous studies that mostly cataloged radiomic 
features to delineate PCNSL from other tumors such as 
glioblastoma,33–37 our study identified clinically relevant 
subgroups within PCNSL. In line with recent work, textural 
features were particularly informative.35–39 Of note, in the 
present cohort, the tumor surroundings contributed rele-
vant information to the model, which is important to con-
sider since those regions are not necessarily included in 
radiomic studies.40–42 Moreover, we evaluated the radiomic 
risk score in a multicenter setting across different MRI 
scanning conditions and distinct patient populations, 
suggesting resilience and generalizability of informative 
imaging-based features in patients with PCNSL. Its con-
tinued evaluation in prospective series, also incorporating 
novel therapies with prolonged survival will be key to fur-
ther substantiate its prognostic rating ability. Along this 
line, prospective cohorts will be best suited to further 
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Figure 4. Radiomic risk groups differ in DNA methylation attributes and key transcription factors. (A) ROC curve of the prediction of radiomic risk 
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genome-wide promoter DNA methylation levels according to risk group. Error bars indicate standard deviation. (D) Locus overlap analysis (LOLA) 
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develop it, for example, through the inclusion of additional 
MRI sequences and/or longitudinal imaging data.

Mining imaging features at scale, and linking them to 
epigenetic profiles allowed us to identify key transcription 
factors as potential treatment targets that may advance tai-
lored treatment strategies. Precisely, gene regulatory dif-
ferences underlying the radiomic risk groups nominated 
3 key transcription factors including BCL6. We provided 
experimental data corroborating the latter, since biolog-
ically it acts in tandem with BCOR and had been previ-
ously shown to be regulated by DNA methylation, even 
though its prognostic role is controversially discussed in 
PCNSL.43,44 Of note, multiomic data integration further 
supported a role for DNA hypermethylation and differential 
BCL6 binding activity in defining distinct clusters of PCNSL 
that were associated with immune cold tumor microenvir-
onments.20 Our in vitro experiments suggested some 
antitumor activity of BCL6 inhibition when combined with 
methotrexate, in line with a recent report.45 Beyond BCL6 
as a potential target, our study highlights the potential of 
leveraging imaging phenotypes to allocate patients to tar-
geted treatments in future clinical trials.

Our study has several limitations. First, larger pro-
spective series will be needed to define and specify an 
optimal risk score cutoff prior to its integration in prog-
nostic scoring systems such as the MSKCC prognostic 
score2 or newer refined versions that integrate lactate 
dehydrogenase-to-lymphocyte ratio.46 Second, the ex-
ternal replication cohort provided by a tertiary care center, 
differed in terms of better overall survival, younger patient 
age, and larger tumor size, but still supported the gener-
alizability of the selected radiomic features. Third, our 
samples lacked anatomical annotation, which prevented 
a more precise phenotype-epigenotype correlation. Even 
though the majority of our samples were likely derived 
from contrast-enhancing tumor regions (as prime target 
during neurosurgery), at the histological level a fraction 
also displayed adjacent brain parenchyma and/or tumor 
necrosis. Hence, future approaches will benefit from the 
exact coregistration. Similarly, information on prior cor-
tisol treatment would be relevant because of its rapid 
tumor-vanishing effect. However, high tumor cell densities 
and retained diagnostic features of all biopsies suggested 
minor effects in the present series. Ultimately, it would 
have been desirable to evaluate drug response directly in 
PCNSL-derived cell lines (ideally with matched MRI data), 
which was hampered by the lack of well-characterized and 
commercially available cell lines. This seems particularly 
important given the multifaceted role of BCL6 in B-cells 
during adaptive immunity, and the need for its further in-
vestigation in PCNSL patients and patient-derived cells.

In summary, we present a radiomics-based risk score 
that accurately predicts survival for patients with PCNSL 
and informs biological differences that underlie the 
radiomically defined groups. Differences in master gene 
regulatory programs converged on BCL6 activity as test-
able therapeutic intervention. From the perspective of 
precision medicine, assessing risk and selecting targeted 
treatment based on objective MRI criteria represents an im-
portant step forward, and the radiomic risk groups provide 
a promising basis for developing personalized therapy for 
this aggressive brain cancer.
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