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Abstract

In multispecies microbial communities, the exchange of signals such as acyl-homoserine

lactones (AHL) enables communication within and between species of Gram-negative bac-

teria. This process, commonly known as quorum sensing, aids in the regulation of genes

crucial for the survival of species within heterogeneous populations of microbes. Although

signal exchange was studied extensively in well-mixed environments, less is known about

the consequences of crosstalk in spatially distributed mixtures of species. Here, signaling

dynamics were measured in a spatially distributed system containing multiple strains utiliz-

ing homologous signaling systems. Crosstalk between strains containing the lux, las and rhl

AHL-receptor circuits was quantified. In a distributed population of microbes, the impact of

community composition on spatio-temporal dynamics was characterized and compared to

simulation results using a modified reaction-diffusion model. After introducing a single term

to account for crosstalk between each pair of signals, the model was able to reproduce the

activation patterns observed in experiments. We quantified the robustness of signal propa-

gation in the presence of interacting signals, finding that signaling dynamics are largely

robust to interference. The ability of several wild isolates to participate in AHL-mediated sig-

naling was investigated, revealing distinct signatures of crosstalk for each species. Our

results present a route to characterize crosstalk between species and predict systems-level

signaling dynamics in multispecies communities.

Author summary

In nature, bacteria are commonly found in spatially heterogeneous mixtures. Within

these environments, multiple species communicate using chemical signals, and crosstalk

often governs the activities of microbial populations, including interactions with the host

system, forming biofilms, and bioluminescence. Understanding such bacterial interac-

tions is essential to control and prevent these population-level behaviors regulated by

signal exchange. Additionally, quantifying bacterial crosstalk will help improve the robust-

ness of synthetic cellular networks that utilize signal exchange.
Although cellular signaling is understood in well-mixed systems with one signal, we

lack a detailed understanding of signaling in spatially distributed cellular networks or
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networks with multiple signals. We created an experimental system to observe and quan-

tify microbial crosstalk between three bacterial languages. A mathematical model was

implemented to predict the consequences of the exchange of multiple signals within cellu-

lar networks and good agreement between the experimental results and theoretical predic-

tions was observed. In the mathematical model, a single parameter was sufficient to

account for crosstalk between bacterial species. These experimental and theoretical tools

enable us to better understand and predict how signaling influences the behavior of both

natural and synthetic microbial communities.

Introduction

Microbes communicate with each other in order to coordinate behavior and gene expression

through a process known as quorum sensing. Several Gram-negative bacteria use acyl-homo-

serine lactones (AHLs) as a signal to communicate [1–6]. These signaling systems typically

consist of a synthase, such as luxI, which produces a variant of AHL, and a receptor, such as

luxR, which binds to AHLs. The receptor enacts global changes in gene expression in response

to high concentrations of AHLs. Over 150 quorum sensing systems have been characterized

[7,8], with most species containing one or a few signaling pathways. Each system typically pro-

duces one dominant version of AHL [7,8], and 56 different AHLs have been identified to date

[7]. Variant versions of AHL involve changes in the length of the carbon chain extending from

the lactone ring and chemical modifications of this carbon chain such as the addition of car-

bonyl groups [2,7]. Variation in the chemical structure of AHLs impacts both affinity for the

receptor and the regulatory response [6–8].

Several examples of crosstalk between signaling microbes, in which signal produced from

one species binds to the receptor of a second species, have been reported [1,6,9–14]. For exam-

ple, Chromobacterium violaceum, a pathogenic Gram-negative bacteria that produces a shorter

chained AHL, activates gene expression in Vibrio harveyi, a Gram-negative marine bacteria

that produces a longer chained AHL [9]. Each such pairing of AHL and receptor inhibits or

promotes the activation of gene expression to a variable degree. Multispecies communities col-

lectively produce complex mixtures of signals and the activation of gene expression within the

community is influenced by crosstalk between different AHL variants. Quantifying AHL-

mediated crosstalk will help us build a predictive understanding of the signaling dynamics

within heterogeneous microbial populations, potentially enabling us to control the activation

of gene expression in natural and synthetic microbial communities [1,2,5,9,15–19].

Here we develop and implement a signaling assay using sender, receiver, and interactor

strains to measure signaling dynamics in populations containing multiple AHLs, see Fig 1A.

This crosstalk assay assesses the robustness of signal exchange within mixed microbial commu-

nities. Here we use a sender strain producing the AHL 3-oxo-C6 HSL and multiple interactor

strains producing signals including 3-oxo-C12 HSL made by the synthase LasI and C4-HSL

made by the synthase RhlI. Our work expands the scope of prior studies that focused on signal

exchange in well-mixed environments, where diffusion of AHLs plays a minimal role

[12,17,18,20–23]. Initial work done by Canton et al.[20] quantitatively explored the ability of

multiple AHLs to bind to one receptor in a plate-reader. Wu et al. [23] used a microfluidic and

flow-cytometry approach to measure the interactions between the lux and las circuits. Other

studies such as McClean et al. [11] observed the response of the signaling system in Chromoac-
terium violaceum to purified variants of AHL. Although diffusion plays a role here, there was no

significant quantitative work done to capture the spatial effects. In another study Dilanji et al.
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[24] looked at influences of a diffusive AHL wave front produced by an exogenously added

chemical on agar plates. As an alternate to adding AHLs exogenously, we added a sender E. coli
colony to the middle of the plate capable of synthesizing AHL molecules, as shown in Fig 1B

and similar to previous experiments [25]. Our assay incorporates an interactor strain to deter-

mine the robustness of AHL signaling to crosstalk from several AHL signals, including signals

produced by wild bacterial isolates.

The exchange of multiple AHLs has been reported [14,26], but these studies minimized

crosstalk by using AHLs that will weakly interact with each other. Consequently, AHL cross-

talk in natural contexts, where multiple signals are exchanged in spatially structured commu-

nities, is not well understood. Our study experimentally measured the effects of a neighboring

interactor strain on the time scale of signaling between sender and receiver strains. The inter-

actor strain produces a non-cognate AHL signal that influences the ability of a receiver strain

to respond to the cognate AHL signal emitted from the sender strain. The consequences of

such crosstalk were examined over length scales much larger than individual cells. A mathe-

matical model was derived and compared to experimental results to predict complex AHL-

receptor interactions occurring in microbial populations in nature.

Fig 1. An experimental assay to quantify crosstalk between bacterial quorum sensing signals. A. The crosstalk assay

measures the consequences of introducing a variable amount of an interactor strain into a quorum sensing network containing a

sender and receiver strain. B. The sender strain is placed in the middle of an agar pad, surrounded by a uniform mixture of receiver

and interactor strains. C. As the signal from the sender colony diffuses outward, the receiver strain produces a red fluorescent

protein in response to a threshold level of signal. D. The spatial dynamics of gene expression in the receivers are compared in the

presence and absence of the interactor strain. Hypothetical curves show how the interactor strain shifts the activation curve, either

promoting activation (excitatory crosstalk) or repressing activation (inhibitory crosstalk).

https://doi.org/10.1371/journal.pcbi.1005809.g001
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Results

Detecting quorum sensing crosstalk using the plate-assay setup

Our experimental setup was based on a LuxI/LuxR sender-receiver type plate assay

[14,20,24,25,27,28] with the addition of an interacting strain. In this setup, the sender strain

produces the AHL 3-oxo-C6 HSL [21], which then binds to the receptor protein LuxR and

activates gene expression in the senders when there is a sufficient amount of AHLs present.

Activated gene expression in the senders results in elevated GFP production, see Fig 1A. The

receivers have the capability of producing the LuxR receptor protein, and in the presence of a

sufficient amount of AHLs, they will activate gene expression of RFP. The interactors constitu-

tively produce a non-cognate AHL corresponding to the lasI or rhlI synthase genes. The plas-

mids encoding these constructs are shown in Figure A in S1 File. Coculture of the receiver and

the sender resulted in a threefold increase in fluorescence and the introduction of the interac-

tors produced an equivalent or reduced level of fluorescence, see Figure B in S1 File.

Receiver cells containing a LuxR regulated fluorescent reporter were distributed on a 20

mm diameter LB agar pad containing a sender strain colony in the middle of the plate, see Fig

1B. The sender contains a plasmid expressing the LuxRI circuit, see Figure A in S1 File. The

activation times of the gene expression in the receivers were measured with respect to the dis-

tance from the sender colony. By adding an interacting strain producing an additional AHL

into the lawn of receiver cells, the shift in the activation profile quantifies crosstalk between the

interactor strain and the sender/receiver system.

As shown in Fig 1C, in the plate assay receiver cells adjacent to the senders express RFP

around 5.25 hours and the receiver cells located at larger distances activated RFP after 6–8

hours. To quantify this propagation of activation within the plate, RFP fluorescent images

were used to calculate the time it takes to activate RFP expression in the receivers at multiple

distances from the sender colony. Activation of RFP is defined as when at least 10% of the pix-

els belonging to cells have a pixel intensity greater than a threshold value. Activated cells dis-

played a clear increase in fluorescence intensity (Figure B in S1 File) and the measured

activation times were not sensitive to small changes in the threshold intensity used in image

analysis, see Figure C in S1 File.

As mentioned previously [9], there are two main types of AHL crosstalk mechanisms

between microbial species as shown in Fig 1D. In the context of crosstalk, the senders will pro-

duce the cognate AHL for the receivers while the interactors will produce a non-cognate signal

variant, which binds to the LuxR receptor. For excitatory crosstalk, the interacting species are

promoting the activation of the receivers while for inhibitory crosstalk, the interacting species

are repressing the activation.

The introduction of an interactor species to the sender-receiver setup should shift the acti-

vation times of the receivers. As an initial positive control shown in Fig 2, sender cells contain-

ing luxI were added to the lawn of receivers to verify a decrease in activation time, by 0.75 hr,

for an interactor strain producing the cognate signal. In a negative control where the interactor

strain is the wild type E. coli host strain not producing any AHL signal, the activation time is

unchanged. This result indicates that the space taken up by interactor cells did not affect the

response of the receiver cells (see Figure D in S1 File).

We tested crosstalk from non-cognate signals by introducing an E. coli strain containing

the synthase genes rhlI or lasI, producing C4-HSL and 3-oxo-C12-HSL as their principle prod-

ucts, respectively [9,23]. We chose these two AHL circuits based on the evidence of both excit-

atory and inhibitory crosstalk with the LuxI/R system from previous studies [17,20,23,29]. As

shown in Fig 2, when the E. coli LasI strain was introduced as the interactor strain, the receiv-

ers activated RFP earlier compared to the no crosstalk control. When the E. coli RhlI strain was
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introduced as the interactor strain, the receivers activated RFP later. These initial tests con-

firmed that both inhibitory and excitatory crosstalk could be observed in our assay. As seen in

Figure E in the S1 File, the introduction of these interactor strains does not influence the

growth of the sender or receiver strains, supporting the conclusion that the observed effect was

due to the crosstalk among the AHLs and receptor.

Measuring the scaling of crosstalk delay with community composition

The delay in the activation of the receiver strain as a function of the number of interactor cells

was measured by varying the amount of interactor strain loaded onto the plate. The amount of

interactor strain added to the plate is captured as the interactor to receiver ratio, which is

defined as the ratio of the number of interactors cells loaded on the plate assay to the number

of receiver cells loaded on the plate assay. The number of receivers was always kept constant at

108 cells. As shown in Fig 3, the shift in the activation time was proportional to the amount of

interacting cells. The activation curves are shown for the cases of excitatory crosstalk (Fig 3A),

with LasI as the interactor strain, and inhibitory crosstalk (Fig 3B), with RhlI as the interactor

strain. These experiments quantify how the propagation of the activation front depends on the

community composition, both in terms of the types of signals produced and the relative

amount of each interactor strain in the environment.

Modeling quorum sensing crosstalk with a reaction-diffusion equation

In this section, we build a mathematical model to explore the correlations of the micro level

binding of a signal to a receptor, and the macro level spatiotemporal patterns of gene expression

in a system incorporating quorum sensing crosstalk. In previous work done by [21,22,28,30–

32], the authors have implemented a logistic growth Eq (1) and a reaction-diffusion model (2)

to simulate signal production from growing cells. The logistic growth equation considers the

transient behavior of the cell density ni, which is growing at a rate of μ per cell. As the media has

a finite amount of resources, the total cell density (senders + receivers + interactors), nT, will

Fig 2. The assay captures a range of crosstalk behaviors. Schematic of the crosstalk assay. A kymograph of fluorescence expression

in the receiver cells at a position 2 mm from the sender colony for five different conditions. The squares show fluorescent images taken

between 4 and 6 hours. The top two lines demonstrate that the addition of an interactor strain that does not produce any signal, WT, did not

change the activation time. The addition of an interactor strain containing a signal synthase gene (bottom three conditions) shifted the time

of activation.

https://doi.org/10.1371/journal.pcbi.1005809.g002
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approach a saturated cell density of s.

@ni
@t
¼ m ni 1 �

nT
s

� �
: ð1Þ

Initially the senders produce the AHLs at a basal rate of ρb per cell. The sender AHLs, with a

concentration of cs, diffuse away from the cells with a diffusion coefficient of Dc and are

degraded by the media at a rate of da. ρ accounts for an increase in AHL production in the pres-

ence of signal. For the senders, the activity (A) defines how this activated rate of signal produc-

tion, due to changes in production of the synthase protein, depends on the concentrations of

multiple AHLs.

@cs
@t
¼ Dcr

2cs þ ns r Aþ rbð Þ � dacs: ð2Þ

In the presence of an interacting AHL, the transcriptional activity will be modulated due to

the binding of AHLs to the LuxR receptors. Each signal has a variable influence on the activity,

both in the ability to bind to a receptor and the downstream influence of such binding on the

expression of quorum sensing controlled genes. The ability of an AHL to bind to the LuxR

receptor depends on the binding energy and the local concentration of each AHL. In simula-

tions, we considered the probability of an AHL to bind to a receptor and introduced a weight to

account for the downstream influence of each AHL variant on gene expression. Therefore, the

activity takes the form of,

A ¼ g ð
Pj

i¼0
PðciÞwiÞ; ð3Þ

where, g is the number of receptors per cell, i is the index to describe the type of AHL, ci is the

concentration of the ith AHL, P(ci) is the probability of an AHL binding to the receptor, wi is the

weight parameter and j is the total number of interacting AHLs. The probability of binding

accounts for differences in the binding affinity of each signal variant to the receptor, as well as

Fig 3. The dependence of activation dynamics on the number of interactor cells. A. The addition of the LasI strain as the interactor

strain reduces the activation time compared to case of no crosstalk. B. The addition of the RhlI strain as the interactor increases activation

times compared to the no crosstalk case. In both cases, the shift in activation time was proportional to the amount of interactor strain added,

as defined by the ratio of interactor to receiver (see text for details). Experimental data are from three independent measurements. The plots

in the background show the trend of the data and are solely meant to guide the eye.

https://doi.org/10.1371/journal.pcbi.1005809.g003
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the competition for multiple signals to bind to the same receptor. The number of receptors (g)

changes from a basal level of 100 to 600, as gene expression levels increase due to signal accumu-

lation. To model this smooth transition we used a Hill’s function, see Table A in S1 File. It is

only physical to have zero or positive levels of transcriptional activity, therefore the weights

should also be greater than or equal to zero.

The weight parameter (wi) relates the number of AHL-receptor complexes to the extent of

gene regulation, with large positive weights indicating that complexes formed by that AHL

lead to strong upregulation of quorum sensing regulated genes while weights close to zero lead

to inhibition of these genes. The weight is determined by the affinity of the bound receptor for

the promoter region of quorum sensing regulated genes, the efficiencies of transcription and

translation of quorum sensing regulated genes, and the rate of dissociation for the AHL-recep-

tor complex. A deterministic Boltzmann weight approach was applied to calculate the receptor

binding probabilities from AHL concentrations and receptor binding energies [33], see the

mathematical model in Text A in the S1 File and Figures F-H in the S1 File. Parameter values

given in Table A in the S1 File were measured in control experiments or obtained from previ-

ous experimental studies [19,31,34–36].

Since the interactor strain did not produce any receptors, signal production was constitu-

tive and did not incorporate positive feedback from AHL level. The activity (A) for the interac-

tors was zero and signal production occurred at a basal level,

@cint
@t
¼ Dcr

2cint þ nint r � dacint : ð4Þ

The constitutive production rate was assumed to have the same value as the maximum pro-

duction rate of the senders. These equations were solved using the finite difference method.

The model predictions were obtained considering the transient behavior of the AHL concen-

trations. In simulations, we considered two concentric circles; the inner circle has a radius of 1

mm while the outer circle has a radius of 10 mm. The cell densities are governed by Eq (1), the

dynamics of the signals of the senders are governed by Eqs (2) and (3), and the interactors by

Eq (4). The initial conditions for simulations were chosen to mirror experimental conditions.

As in experiments, initially 107 sender cells were added to the inner circle. The inner circle was

assumed to have an initial AHL concentration of 70 nM. The outer circle has a variable mix-

ture of receivers and interactors distributed evenly in space. In all cases, there were 108 receiv-

ers cells. The initial concentration of the interactor AHL in the outer circle was 70 nM [31]. In

simulations, the amount of interactor strain was adjusted, as specified by the interactor to

receiver ratio.

Based on the diffusive gradients of signals created by the senders and the interacting species,

the activity of the receivers was calculated using,

AR ¼ gðPðcSÞws þ PðcintÞwintÞ; ð5Þ

where, P(cS) is the probability that the AHLs from the sender will bind to the receptor, P(cint) is

the probability that the AHLs from the interactor will bind to the receptor, ws is the weight

associated with the sender AHL and wint is the weight associated with the interactor AHL. The

activity of the receivers modulates the production of the fluorescent gene reporter (RFP), as

the reporter gene is transcribed by a promoter regulated by signal bound receptor.

The level of activity of the receivers acts as an indicator of changes in gene expression result-

ing from the crosstalk. Therefore, we define a threshold activity level for the activation of gene

expression and used Eq (5) to track whether the activity level of the receivers exceeded this

Quorum sensing crosstalk within microbial communities
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threshold. In simulations, the threshold activity was taken to be half of the maximum activity

level when there is no crosstalk.

Robustness of signal transduction to crosstalk

To obtain signal weights of the sender AHL and the two interacting AHLs, simulation results

were fit using the experimental data from Fig 3. The weight parameter (w1) for the signal 3-oxo-

C6-HSL binding to the LuxR receptor was fit using the experimental data for no crosstalk. Non-

linear least square fitting method was used for this purpose, see Figure Ia in S1 File. Additional

weight terms are needed to account for each interacting AHL. To identify the weight parameters

of the interacting AHLs, experimental plots shown in Fig 3 were fit for the case of 0.9 ratio of

interactor to receiver using the non-linear least square fitting (Figure I in S1 File). Calculated

weights for signals produced by LasI and RhlI interactor strains are shown in Table 1. Using

these weights, activation curves for the ratio of interactor to receiver of 0.2 and 0.5 were simu-

lated, as shown in Fig 4A and 4B, revealing a scaling similar to experimental data shown in Fig 3.

The validated model of crosstalk has enabled the exploration of the robustness of signal

propagation. Signal propagation in the presence of variable levels of crosstalk was simulated

for both the LasI and RhlI interactor strains. Fig 4C shows the predicted delay in the activation

of the receiver strain at distances of 0, 2, 5, 7 and 10 mm for ratio of interactor to receiver val-

ues between 0 and 1. Data points show experimental measurements of the activation of the

RFP response at those distances and crosstalk levels, revealing a good agreement with model

predictions.

Using the model, we predicted the sensitivity of signaling dynamics to changes in model

parameters, including cell growth rate (Figure J in S1 File), signal production rate (Figure K in

S1 File), diffusion coefficient (Figure L in S1 File), and the signal degradation rate (Figure M in

S1 File). Activation times strongly depended on the diffusion coefficient, signal production

rate, and signal degradation rate, as together these parameters set the concentration profile of

the signal. Growth rate did not affect the activation times, likely because cells were loaded onto

the plate at a density near saturation, so few divisions took place during the experiment. Addi-

tionally, we observe that the crosstalk is highly correlated to the binding energy and the weight

parameter, see Figure N and Figure O in S1 File. The activity of the receiver strain for variable

concentrations of the signals made by the sender strain and the interactor strain is also plotted

in Figure P in the S1 File. The model predicts that the activity of the senders are unaffected by

signal exchange with the interactors, see Figure Q in the S1 File.

Measuring the crosstalk potential of wild isolates

The assay also enables measurements of crosstalk with wild isolates. As an initial test, crosstalk

with wild type Pseudomonas aeruginosa was measured, as shown in Fig 5A. The presence of

Table 1. The weight parameters derived from the comparison of the model simulations and the exper-

imental results.

Synthase Type of AHL Weight

LuxI 3-oxo-C6-HSL wLux = 0.701 ± 0.016

LasI 3-oxo-C12 HSL wLas = 0.400 ± 0.013

RhlI C4-HSL wRhl = 0.002 ± 0.001

These values represent the regulatory response of each type of AHL bound to the LuxR receptor protein.

The error represents the standard deviation for the weight values.

https://doi.org/10.1371/journal.pcbi.1005809.t001
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Pseudomonas aeruginosa at 0.9 ratio of interactor to receiver delays activation by several hours.

Because the las and rhl genes are derived from Pseudomonas aeruginosa, the weight parameters

extracted from the E. coli interactor strains were used to predict the expected delay in activa-

tion as a result of crosstalk with these two systems. We simulated interactions with a hypotheti-

cal interactor strain containing both the las and rhl. Here the activity for the receivers will be,

AR ¼ gðPðcLuxÞwLux þ PðcLasÞwLas þ PðcRhlÞwRhlÞ: ð6Þ

In Fig 5A, we observed that the trend of the simulated activation curve is similar to the

experimental results, showing delayed activation and a shallower activation curve across the

plate. The predicted delay was shorter than the experimentally measured delay by approxi-

mately 2 hours. In the S1 File, additional simulations are performed to determine if a delay in

growth of the sender strain or the influence of the sender strain AHL on AHL production in P.

aeruginosamight contribute to the additional delay in activation. A reduction in the sender

strain growth rate, when cocultured with P. aeruginosa, was confirmed in growth measure-

ments, see Figure R in S1 File. Fig 5A shows the prediction of the model that incorporates

Fig 4. Robustness of the activation of gene expression to crosstalk. A,B. Theoretical predictions for the response of the receiver cells

in the presence of excitatory crosstalk or inhibitory crosstalk. The experimental data from Fig 3 are shown for comparison. C. Comparisons

between the experimental measurements of the activation of gene expression in the plate assay to predictions made using the reaction

diffusion model. Lines show the predicted change in the activation time at multiple distances from the sender colony as a function of the

amount of interactor strain added to the plate. Predictions were made using the experimentally calculated crosstalk weights for the RhlI and

LasI interactor strains. Data points show experimental measurements at selected distances from Fig 3.

https://doi.org/10.1371/journal.pcbi.1005809.g004
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growth influences. Although QS activation was delayed, growth interactions alone were not

sufficient to reproduce the 2 hour delay in activation, see Text B, Figure S and Figure T in S1

File.

Next, the crosstalk potential of four additional wild isolates was tested. The four were added

to the plate assay at 0.9 ratio of interactor to receiver. 16S rRNA sequencing identified the wild

type species as Aeromonas hydrophila, Aeromoans veronii, Pantoea agglomerans, and Pantoea
vagans. The ability of these strains to produce AHL has been reported previously [37–42]. In

Fig 5B, we observed that when A. veronii or P. vagans were added to the lawn of receiver cells,

the activation of the RFP in the receivers was earlier as compared to no interactor strain. A.

hydrophila and P. agglomerans both delayed activation. The extent of crosstalk was different

for each species, suggesting that the activation of genetic expression in diverse communities is

likely influenced by crosstalk of variable strength from multiple species.

Discussion

Our results give new insights into signaling within mixed communities of bacteria. Adapting

an approach used in previous studies [24,25,28,43–45], we created a sender-receiver type plate

assay to quantify the activation of gene expression due to AHL-mediated signaling in the pres-

ence of multiple signal producing strains. The assay measured the robustness of specific signal-

ing networks to interference by a strain producing a non-cognate signaling molecule. When

comparing the spatial reaction-diffusion based assay to well-mixed systems, we found that the

spatial assay is able to differentiate an interactor strain that produces a non-cognate signal

from a strain that produces a signal destroying enzyme, see Figure U in S1 File. Although

crosstalk between quorum sensing networks has been previously reported [9,11,12,23,46,47],

our titration of the interacting strain revealed the sensitivity of signal-mediated gene expres-

sion in a spatially distributed network to interference. As shown in Fig 4C, at distances 2 mm

or less, the fold change is less than 10% even for crosstalk ratios of 1. At distances of 10 mm,

Fig 5. Testing the model and experiments with natural isolates. A. The comparison of simulation results to the experimental results with

Pseudomonas aeruginosa as the interactor strain. Data from the LasI and RhlI interactor strains were used to predict the combined influence

of the LasI and RhlI quorum sensing circuits in P. aeruginosa. The LasI + RhlI + growth influences line adds the experimentally measured

reduction in the growth rate of E. coli in the presence of P. aeruginosa to the model, see Figures R-T in S1 File. B. The plate assay was used

to measure the interference potential of four wild bacterial isolates at 0.9 ratio of interactor to receiver. Lines, shown to guide the eye, are

exponential fits to the data.

https://doi.org/10.1371/journal.pcbi.1005809.g005
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the activation time has changed by approximately 10% at only 20% ratio of interactor to

receiver. These numbers suggest that quorum sensing based genetic activity is largely robust to

interference and that any abundant species should activate its quorum sensing network in a

typical system. Our results are specific to LasI and RhlI interference with LuxRI QS system,

and it is yet unclear if some AHL systems would have evolved differing levels of robustness or

sensitivity to particular non-cognate signals.

The model demonstrates the robustness of the AHL network to interference is in part due

to differences in the binding energies of cognate and non-cognate signals. Figure N in the S1

File shows that as the binding energy of the non-cognate signal weakens, crosstalk from the

non-cognate signal has little effect on gene regulation. The ratio of interactors to receiving

cells also influences robustness. As shown in Figure V in the S1 File, when interactor cells

greatly outnumber the receiver cells, robustness is lost and the expression of LuxR/I regulated

genes is delayed by several hours. A third factor affecting robustness is the interaction weight

for the non-cognate signal, as shown in Figure O in the S1 File. Future work should further

characterize the range of interaction weights present in real systems. A better understanding of

the robustness of signal exchange in mixed populations would be beneficial to the implementa-

tion of quorum sensing gene circuits in synthetic microbial communities [2,15,18–20,44].

Our experimental measurements aided in the development of a detailed model to predict

AHL-based signaling dynamics in mixed populations. The model accounts for crosstalk

between strains using a single parameter called the weight that we calculate from experiments

for a given receptor for each combination of signals. This weight accounts for the downstream

regulatory consequences of a receptor binding to the AHLs, and would be related to funda-

mental processes such as receptor dimerization, interactions between the receptor, DNA, and

RNA polymerase, and the transcription and translation of the AHL-regulated genes. We

found that a model using a single weight value was in good agreement with experimental acti-

vation dynamics covering over 1 cm of space with variable amounts of interference. This close

agreement between the model and experiments suggests that the model can be implemented

to examine quorum sensing crosstalk in more complex and realistic contexts, such as in the

presence of more than two strains, when cells are heterogeneously distributed in space, or

even when transport dynamics are spatially dependent [21,25,30]. Since the experiments in

these contexts would be challenging, our assay and model provide a straightforward path

towards predicting signaling dynamics in complex conditions. In addition to predicting the

dynamics in complex conditions, as mentioned above, the model has enabled an explora-

tion of how robustness to interference might emerge by adjusting the parameters that regu-

late the response to signal exchange. Robustness can be achieved if the receptor has evolved

to bind the non-cognate signal much more weakly than the cognate signal. The difference

in the receptor binding energies between the non-cognate and cognate signals needed for

robustness is influenced by the number of interactor cells and the influence of the non-cog-

nate signal on gene expression, as captured in the weight term. Some receptors may have

evolved a sufficient amount of binding discrepancy based on interactor strains and non-

cognate signals typically encountered.

Our analysis of signal interference with wild species revealed a wide variety of crosstalk pat-

terns within natural populations. We found both excitatory and inhibitory crosstalk within

our isolates and a variable extent of crosstalk with the luxRI quorum sensing system. Previous

measurements have also shown that non-cognate AHLs can interact with receptors such as

LuxR to varying degrees [9,23]. Because we use the wild isolate directly instead of purified sig-

nal, cell free supernatant, or synthetic producer strains, we capture both direct and indirect

signaling interactions with the interacting strain. Examples of indirect interactions include

modulation of growth rate and gene regulatory pathways, and the evolving spatial distributions

Quorum sensing crosstalk within microbial communities
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of the interactor. We attempted in the case of the interaction with Pseudomonas aeruginosa to

specify the source of these indirect signaling interactions by independently accounting for the

influence of each AHL signal produced by the interactor strain and growth influences of the

interactor strain on the receiver cells. Although the model predicted an increased delay in acti-

vation due to growth effects, as shown in Fig 5A, there are still additional currently unknown

interactions that further delay activation. We speculate that the QscR receptor residing in Pseu-
domonas aeruginosamight be absorbing the sender AHLs and contributing to this delay [48],

although other non-AHL based regulatory interactions between species likely contribute to sig-

naling dynamics. Future efforts should attempt to disentangle the direct and indirect interac-

tions that influence signal transduction to improve our ability to predict signaling dynamics in

real populations. In addition, for some ecological niches, growth dynamics and cell movement

can affect the AHL gradients in unexpected ways and these factors should be incorporated to

any future work to understand signaling dynamics in complex environments [49,50]. Using the

assay to broadly sample interactions between known AHL signal-receptor system, such as

luxRI, and wild signal producers should yield new insights into patterns of crosstalk within real

environments and their consequences in ecosystem level regulation of quorum sensing.

Materials and methods

Bacterial strains and plasmids

In Table 2, we have represented the details of the bacterial strains used in this study. The host

strain used for the sender, receiver and interactors are Escherichia coli NEB 5-alpha. The major

QS signals are 3-oxo-C6 HSL for the sender strain, 3-oxo-C12 HSL for the LasI interactor

strain, and C4-HSL for the RhlI interactor strain, see Figure A in S1 File for further details.

The plasmids were either obtained from Addgene [21] or constructed using Gibson assembly

(New England Biolabs).

Culturing conditions

The bacterial strains were inoculated from frozen stocks in a 12 ml Falcon tube with 5 mL of

LB broth with appropriate antibiotics. The inoculum was grown in a shaker at 220 RPM at

37˚C for 16 hours. Cells were resuspended in fresh media to remove signal in the supernatant.

Late log phase cultures were used such that quorum sensing of the sender strain was activated

before measurement in the plate assay.

Plate assay

The plate assay was setup as described in Silva et al [35]. The interactor strain was mixed with

100 μl of the receivers in a 1.5 mL centrifuge tube and spread onto the top of 2.5% LB agar

Table 2. The bacterial strains used in this study.

Species or strain Plasmid Obtained from

Escherichia coli sender ptD103LuxI sfGFP [21]

E. coli receiver ptD103LuxR RFP [35]

E. coli LasI interactor pZE2501Las this study

E. coli RhlI interactor pZE2501Rhl this study

Pseudomonas aeruginosa [51]

Aeromonas hydrophila [52]

Aeromonas veronii [52]

Pantoea agglomerans this study

Pantoea vagans this study

https://doi.org/10.1371/journal.pcbi.1005809.t002
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plates using sterile 4 mm glass beads. Figure W in the S1 File shows that the spatial distribution

of cells remained mixed during the assay.

Microscopy measurements

A Nikon eclipse TI fluorescent microscope was used for image acquisition. Experiments were

done at 37˚C using a temperature controlled chamber. Samples were imaged at a magnifica-

tion of 20x. To record the RFP activation in the receiver cells, RFP images were taken every 15

minutes for 16 hours at 30 different distances from the sender colony. Activation times were

calculated at each position. Exposure times were 1s for RFP and 500 ms for GFP. No signifi-

cant photobleaching was observed.

Each image taken was saved in.tiff format and analyzed using a custom Matlab code. A low

threshold was applied to the RFP images to identify the location of the receiver cells within

each image. An upper threshold was used to identify the receivers that had activated RFP. For

each time point and position, the fraction of cellular pixels above the RFP activation threshold

was calculated. If the fraction of activated pixels exceeded 10%, that position was included as

part of the activated region, see Figure C in S1 File.

Growth measurements

To obtain growth curves, overnight cultures were diluted 1 to 1000 in LB media and selective

plating was performed to measure cell density over time. To obtain growth curves from mix-

tures of strains, each strain had a unique resistance marker and was plated on the appropriate

selection plate.

Plate-reader measurements

Tecan Infinite m200 Pro plate reader was used to measure growth rates and fluorescence acti-

vation in well-mixed conditions. Cells were grown to late log phase, diluted 1000 fold in pure

LB media, and cultured for an additional 3 hours. After three hours of growth, 200 μl of these

early log-phase cells were loaded into a flat bottom 96-well plate. The plate was inserted into

the plate reader set to 37˚C and the optical density and fluorescent intensity were measured

every 15 minutes for 16 hours. Optical density measurements were carried out at a wavelength

of 600 nm. For GFP measurements, a wavelength of 485 nm was used for excitation and a

wavelength of 515 nm was used for emission. For RFP fluorescence measurements, a wave-

length of 590 nm was used for excitation and a wavelength of 650 nm was used for emission.

Supporting information

S1 File. Contains all the supporting figures, texts and tables for the manuscript.
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