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Abstract

BACKGROUND—Motivation for high-fat food is thought to contribute to excess caloric intake 

in obese individuals. A novel regulator of motivation for food may be Neuromedin U (NMU), a 

highly-conserved neuropeptide which influences food intake. Although these effects of NMU have 

primarily been attributed to signaling in the paraventricular nucleus of the hypothalamus (PVN), 

NMU has also been found in other brain regions involved in both feeding behavior and motivation. 

We investigate the effects of NMU on motivation for food and food intake, and identify the brain 

regions mediating these effects.

METHODS—The motivational state for a particular reinforcer (e.g., high-fat food) can be 

assessed using a progressive ratio schedule of reinforcement under which an increasing number of 

lever presses are required to obtain subsequent reinforcers. Here, we have employed a progressive 

ratio operant responding paradigm in combination with an assessment of cumulative food intake to 

evaluate the effects of NMU administration in rats, and identify the brain regions mediating these 

effects.

RESULTS—We found that peripheral administration of NMU decreases operant responding for 

high-fat food in rats. Evaluation of Fos-like immunoreactivity in response to peripheral NMU 

indicated the PVN and dorsal raphe nucleus (DRN) as sites of action for NMU. NMU infusion 

into either region mimics the effects of peripheral NMU on food intake and operant responding for 

food. NMU-containing projections from the lateral hypothalamus (LH) to the PVN and DRN were 

identified as an endogenous source of NMU.

CONCLUSIONS—These results identify the DRN as a site of action for NMU, demonstrate that 

the LH provides endogenous NMU to the PVN and DRN, and implicate NMU signaling in the 

PVN and DRN as a novel regulator of motivation for high-fat foods.
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Introduction

Over one-third of the American population is obese, due in part to the overconsumption of 

high-fat foods (1). Recent research has suggested that obesogenic high-fat foods are 

overconsumed as a result of their reinforcing or motivating effects (2–4). However, the 

neuroanatomical and molecular mechanisms underlying the intake of high-fat foods remain 

poorly understood. Elucidating these mechanisms would identify key brain regions and 

proteins that alter consumption behavior and, ultimately, obesity.

A promising candidate in this regard is neuromedin U (NMU), an anorectic neuropeptide 

expressed in both the periphery and the central nervous system (CNS). Intraperitoneal (IP) 

and intracerebroventricular (ICV) administration of NMU decrease acute food intake and 

body weight in animal models (5–14). NMU expression is also upregulated in the brains of 

fasting animals (15), though the specific peripheral or central signaling pathways involved 

have yet to be identified. The paraventricular nucleus of the hypothalamus (PVN), a key 

region in the regulation of food intake, mediates some of the feeding effects of NMU (5, 

9,11, 12, 16, 17). However, further understanding of the regions and pathways involved is 

essential to interpreting the behavioral effects of NMU. While the effects of NMU on food 

intake and body weight have been evaluated (8, 11, 18–21), little consideration has been 

given to the reinforcing properties of food. However, NMU has recently been shown to 

regulate the reinforcement value of alcohol (22), and signaling between NMU and its CNS 

receptor, NMUR2, regulates preference for obesogenic food (9). Although NMU and food 

preference have been linked, the ability of NMU-NMUR2 signaling to modulate food 

reinforcement remains unstudied, and the specific neuroanatomical regions mediating the 

effects of NMU are not fully understood.

Here we present behavioral data indicating that NMU regulates motivation for food. 

Peripheral NMU, administered with dimethylsulfoxide (DMSO) to promote brain access 

(23), decreases lever pressing for obesogenic food pellets on a progressive ratio schedule of 

reinforcement, a model of motivation. Furthermore, peripheral NMU induces changes in 

Fos-like immunoreactivity in both feeding and reinforcement-associated brain regions. We 

present neuroanatomical data linking NMU modulation of standard and high-fat food intake 

with specific brain regions, and show that food reinforcement is regulated by administration 

of NMU into the PVN and dorsal raphe nucleus (DRN). Finally, immunohistochemical 

studies demonstrate that these regions are endogenously innervated by NMU-positive 

projections from the lateral hypothalamus (LH), a region known regulate both high-fat food 

consumption and reinforcement (24–27).

Materials and Methods

Subjects

Male Sprague-Dawley rats (N=102; Harlan, Inc., Houston, TX) weighing 225–250 grams (at 

experiment start) were used for all experiments. Sample sizes were selected based on 

previous studies of NMUR2 and feeding (9) and NMU and Fos-like immunoreactivity (28). 

Separate cohorts of animals were used for analysis of: peripheral NMU and feeding, 

peripheral NMU and operant responding, Fos-like immunoreactivity (2 cohorts of 3 animals/
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group), viral tracing and NMU/NMUR2 localization, and central NMU administration 

experiments. All animals were randomly assigned to treatment or control groups, with 

baseline behavior balanced across groups; investigators were subsequently blinded to the 

treatment given to each animal, and behavioral and immunohistochemical data were stored 

and analyzed separately from treatment data. Colony environment was maintained at 71°F 

and 30–50% relative humidity, with lights-on between 06:00 and 18:00. Experiments were 

carried out in accordance with the Guide for the Care and Use of Laboratory Animals (29) 

and with the approval of the Institutional Animal Care and Use Committee at the University 

of Texas Medical Branch.

Feeding and Peripheral NMU Administration

Rats were separated into individual home cages for assessment of food intake. Feeding was 

assessed separately for standard diet (Teklad Mouse/Rat Diet 7912, Harlan, Inc., Houston, 

TX), containing 17% energy from fat, and high-fat diet (Open Source Diets formula 

D12451, Research Diets Inc., New Brunswick, NJ), containing 45% energy from fat. Rats 

(n=6/group) received an IP injection of NMU (0.3mg/kg; 046-39, Phoenix Pharmaceuticals, 

Inc., Burlingame, CA) in saline with 10% DMSO or vehicle alone (total volume 3mL), 

fifteen minutes prior to dark cycle start (17:45) on each test day. Food weight was measured 

immediately before dark cycle start, and monitored for three consecutive 24-hour periods 

(18:00-18:00).

Operant Conditioning and Peripheral NMU Administration

Between 13:00 and 17:00, rats were placed in standard rat operant chambers (Med 

Associates, Georgia, VT). Responding on the lever associated with food delivery resulted in 

delivery of a high-fat food pellet (45% energy from fat, 45mg, Bioserv F06162, Frenchtown, 

NJ). Rats were trained in half-hour sessions on a fixed ratio (FR) 1 schedule, where a single 

response on the active lever is needed to receive a pellet.

Once the percentage of responses on the active lever exceeded 85% for three consecutive 

days (30), animals were advanced to an FR3 and then an FR5 schedule, which require 3 and 

5 correct responses for pellet delivery, respectively. Once animals have reached this criterion 

on the FR5, they move to a progressive ratio (PR) schedule, where earning each successive 

high-fat food pellet within the session requires a greater number of responses 

(1,2,3,6,9,12,15,20,25,32,40,50,62,77,95). Responses on the active, reinforced lever within a 

60-minute test session were quantified. On test day, animals (n=11/group) received an IP 

injection of 0.3mg/kg NMU in DMSO (6), or vehicle alone fifteen minutes prior to testing 

(total volume 3mL).

Analysis of Fos-like immunoreactivity

To identify the central targets enabling NMU-mediated alterations in food intake and 

reinforcement, rats (n=6/group) were given IP NMU and Fos-like immunoreactivity was 

examined in CNS sites associated with feeding, reinforcement, and NMUR2 mRNA 

expression. Rats were injected with 0.3mg NMU/kg, in a saline and 10% DMSO solution, or 

an equal volume of vehicle (total volume 3mL), and euthanized two hours later. Euthanasia 

was performed between 13:00 and 15:30. Brains were extracted, cryoprotected and sliced 
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into sections as previously described (9). Sections were analyzed for Fos expression as 

previously described (31).

Viral tracing and localization of NMUR2 and NMU

Regions demonstrating changes in Fos-like immunoreactivity were investigated to determine 

their potential to have reacted directly to the NMU treatment, and characterize endogenous 

sources of NMU for these regions. For viral tracing of signaling pathways, guide cannulae 

were implanted based on Kasper et al. 2016 (31). PVN coordinates were adjusted for a 10° 

outside angle and set at (A/P −0.18, M/L +0.15, D/V −0.82) from bregma; DRN coordinates 

were adjusted for a 30° outside angle, with internal cannula inserted at (A/P −0.71, M/L 

+0.32, D/V +0.83) from bregma.

Rats (n=3/group) received a guide cannula pointed to the lateral ventricle (A/P +0.14, M/L 

+0.23, D/V −0.54) from bregma. Additionally, each animal received an interstitial injection 

of 2µL of a replication-incompetent retrograde tracer, Rb-ΔG-B19-GFP into the PVN or the 

DRN, at above coordinates, at a rate of 0.2µL/30 seconds over a period of 5 minutes. 

Following injection, the needle remained in place for 3 minutes before removal. Incisions 

were stapled closed and post-operative care was administered following Benzon et al. 2014 

(9). Animals were given 10 days to recover after surgery to allow for maximal viral 

expression (32, 33). Rats were then given 75µg colchicine in 1µl artificial cerebrospinal fluid 

(aCSF) ICV via the implanted guide cannula, to block axonal transport (34). Two days after 

colchicine administration, animals were euthanized and tissues were taken for 

immunohistochemistry as described above. Surgeries and euthanasia procedures were 

performed between 09:00 and 17:00.

Immunohistochemistry

Immunohistochemistry for NMUR2 was performed as previously published (9, 31) and 

validation of the specificity of the NMUR2 antibody was also previously published (9, 31). 

Briefly, sections of brain were washed 3X in 1X PBS, 5 minutes/wash, to remove residual 

sodium azide, and incubated in 1% SDS for 5 minutes for antigen unmasking. Sections 

(n=10–20/rat) were washed 3X in 1X PBS, 5 minutes/wash, and incubated for 1 hour in a 

blocking solution containing 3% normal donkey serum, 3% normal goat serum, and 0.3% 

Triton X-100 in 1X PBS. Primary antibodies against NMU (rabbit anti-NMU, 1672285, 

Thermo Scientific, Houston, TX; 1:100) and GFP (chicken anti-GFP, GFP-1020, Aves Labs, 

Tigard, OR; 1:1 000) were diluted in blocking solution and incubated on brain slices 

overnight (20 hours) at room temperature. Sections were washed 3X in 1X PBS, 5 minutes/

wash, followed by secondary antibody application. Fluorescent secondary antibodies, Alexa 

Fluor 568 goat anti-rabbit (A-11011, Invitrogen, Carlsbad, CA) and Alexa Fluor 488 donkey 

anti-chicken (703-545-155, Jackson Immunoresearch, West Grove, PA) were used in 1X 

PBS at 1:200. For NMUR2 immunohistochemistry, no goat serum was used in the blocking, 

and the primary and secondary antibodies used were rabbit anti-NMUR2 (NBP1-02351, 

Novus Biologicals, Littleton, CO; 1:150) and Alexa Fluor 488 donkey anti-rabbit 

(NC0241229, Jackson Immunoresearch; 1:100) respectively. Slices were washed again, 

mounted, coverslipped and imaged as described above in “Analysis of Fos-like 

immunoreactivity.”
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Feeding and Central NMU Administration

Having identified NMUR2-positive brain regions that showed altered Fos-like 

immunoreactivity following peripheral administration, we moved to central administration 

of the peptide to confirm that NMU-NMUR2 signaling in these regions mediates food intake 

and reinforcement. Following acclimation, rats received cannulae implantation surgery as 

described above in the “Viral Tracing and NMUR2 localization” section. In this instance, 

guide cannulae were implanted bilaterally targeting the PVN and unilaterally targeting the 

DRN at the previously stated coordinates. Brains in which one or more cannulae (n=6) or 

injections (n=10) were off-target were excluded from further analysis, and the corresponding 

animals’ data was not considered. Feeding assays were performed as above, with the 

exception of NMU treatment. Rather than receiving peripheral NMU, rats (n=8/group) 

received site-specific infusions of aCSF or 0.3 nmol NMU per cannula in aCSF (total 

volume 2µl/side, over five minutes), delivered via implanted guide cannula immediately 

prior to dark cycle start (18:00).

Operant conditioning and Central NMU Administration

Animals were trained to respond for high-fat food pellets in operant chambers, as described 

above in the “Operant Conditioning and Peripheral NMU Administration” section. After 

criterion was reached on PR responding (85% of responses on active lever) (30), animals 

received cannulation surgeries targeting the PVN and DRN, as described in the previous 

section. Following surgical recovery, an additional week of operant training was 

administered to confirm that all animals returned to criterion following surgery. As 

demonstrated with ICV-administered NMU prior to feeding by Wren et al. 2002 (11), a dose 

of 0.3 nmol NMU reduces food intake. PR testing was performed as described above, with 

interstitial infusions replacing intraperitoneal injections, and infusions immediately 

preceding testing. Cannulated rats (n=8/group) received 0.3 nmol NMU in aCSF, or vehicle 

(total volume 2µl/side, over five minutes) immediately prior to testing, followed by a 48-

hour washout period prior to retesting. During this period, PR testing was performed to 

ensure the responsiveness of the animals had not been altered. Following the testing period, 

animals were euthanized as described above, and brains were examined to confirm cannula 

targeting.

Data Analysis

Feeding and operant conditioning data fit the assumptions of, and were analyzed using 

multiple-comparisons ANOVA tests, together with Sidak post-hoc analysis, to account for 

the multiple treatments and timepoints. Fos-like immunoreactivity data were analyzed using 

unpaired t-tests, to allow for bidirectional comparison between the independent treatment 

and control groups. Variance was analyzed using the Brown-Forsythe test or the F test of 

variances, for behavioral and Fos data, respectively.
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Results

Dose selection of NMU

Peripheral doses were chosen based on Peier et al. 2011 (6), which indicated 0.3mg/kg 

NMU as the lowest dose producing the changes in core body temperature which accompany 

NMU’s anorectic effects. Interstitial doses of NMU were selected based on Wren et al. 2002 

(11), which demonstrated a dose-effect of ICV NMU on feeding. Specifically, doses below 

0.1 nmol do not produce a significant behavioral effect, and significant reductions in feeding 

are seen at 0.3 nmol and 1 nmol. To minimize animal usage, a single behaviorally relevant 

dose of 0.3 nmol was used.

Behavioral effects of peripheral NMU administration

The effects of NMU signaling on total food consumption have been previously examined (5–

14,18, 21, 35, 36). It has been shown that intra-PVN and ICV NMU regulate intake of a 

standard diet in rodents and that NMUR2 mediates preference for high-fat food (9). Here, 

we establish that IP administration of NMU significantly decreases consumption of both 

standard and high-fat diet (Figure 1). NMU (0.3mg/kg) significantly reduced standard diet 

intake compared to vehicle treatment at the 2-hour timepoint (p<0.05 by multiple-

comparisons ANOVA, n=6/group, F=1.685 (n.s.); Figure 1A). A similar significant effect of 

peripheral NMU (0.3mg/kg) was observed upon high-fat diet intake vs. vehicle at the 2-hour 

timepoint (p<0.05 by multiple-comparisons ANOVA, n=6/group, F=2.188 (n.s.); Figure 1B). 

Additionally, there are no significant differences of NMU treatment on either diet after 2 

hours, presumably due to the rapid breakdown of NMU (37). As previously described, NMU 

does not cause a taste aversion (10). Additional findings demonstrated that NMUR2 

signaling in the PVN had no effect on sucrose preference or consumption (9), which also 

suggests that NMU does not cause a taste aversion. Based on our previous work indicating 

that NMUR2 regulates preference for a high-fat diet (9), we investigated the effects of NMU 

on motivated behavior. To study NMU as a mediator of motivation for food, we used operant 

conditioning on a PR schedule. The PR schedule specifically quantifies reinforcement 

efficacy. Therefore, increased levels of responding on this schedule are associated with 

increased motivation for the high-fat food reinforcer. We found that the number of lever 

presses for pellets of high-fat food was significantly decreased by peripheral NMU 

(0.3mg/kg) treatment (p<0.05 by unpaired t-test, n=11/group, F=1.294 (n.s.)), as compared 

to vehicle (Figure 1C). This suggests that NMU suppresses the motivation for high-fat food 

reinforcers.

Effects of NMU on Fos-like immunoreactivity

To identify candidate brain regions mediating the NMU-induced changes in behavior, we 

investigated changes in expression of Fos, an immediate early gene and indicator of neuronal 

activation (38), following peripheral NMU treatment (Figure 2). While most studies of CNS 

NMU-NMUR2 have focused on the PVN, we identified the DRN as responding to 

peripheral NMU administration. Both the PVN (Figure 2A, top) and DRN (Figure 2A, 

bottom) displayed significantly lower Fos-like immunoreactivity following peripheral NMU 

(0.3mg/kg) treatment, compared to vehicle (p<0.05 by unpaired t-test, n=6 animals/group, 

F=5.487 and 6.068, respectively (p<0.05)). Since the PVN and DRN displayed decreased 
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Fos-like immunoreactivity over vehicle in response to peripheral NMU administration 

(Figure 2B), we further investigated these two brain regions as potential mediators of the 

effects of NMU on feeding and reinforcement. No significant treatment-dependent 

differences were noted in other feeding areas, such as the ventromedial hypothalamus 

(VMH) or regions associated with memory, such as the hippocampus (HC) (Supplementary 

Figure 1A, B). While significant increases in motor cortex (M1/M2) activity were found 

(Supplementary Figure 1C, p<0.05 by unpaired t-test), this has been previously observed 

and investigated (10, 39).

Behavioral effects of centrally-administered NMU

Since peripherally administered NMU produces significant effects on total food 

consumption and operant behavior and reduces Fos expression in brain regions associated 

with NMU-NMUR2 signaling, we sought to ascertain whether these brain regions 

specifically mediated the NMU-driven behavior. In agreement with the literature describing 

NMUR2 mRNA localization (39, 40), NMUR2 protein expression was identified in both the 

PVN (Figure 3A) and DRN (Figure 3B). Additional NMUR2 immunofluorescence was 

observed in several other regions known to express NMUR2 mRNA, including the prefrontal 

cortex, ventral tegmental area, and nucleus accumbens (data not shown). Following training, 

surgery, and recovery (Figure 4A), animals receiving either intra-PVN (Figure 4B) or intra-

DRN (Figure 4C) infusions of NMU (0.3nmol/kg) were given access to food as described 

above and consumption of standard and high-fat diet was measured at intervals over a 24-

hour period. Intra-PVN NMU decreased standard diet intake at 2 and 4 hours post-treatment 

(p<0.05 by multiple-comparisons ANOVA, n=5/group, F=0.9455(n.s.)) and high-fat diet 

intake at 2 and 4 hours post-treatment (p<0.05 and p<0.01, respectively, by multiple-

comparisons ANOVA, n=5/group, F=0.7659 (n.s.)), versus aCSF (Figure 5A, C). Intra-DRN 

NMU decreased standard diet intake at 2, 4, and 24 hours post-treatment (p<0.01 by 

multiple-comparisons ANOVA, n=8/group, F=1.710 (n.s.)) and high-fat diet intake at 2, 4, 

and 24 hours post-treatment (p<0.01 by multiple-comparisons ANOVA, n=7/group, F=2.365 

(n.s.)) as compared to vehicle baseline (Figure 5B, D). In correspondence with the activity 

patterns identified in the Fos expression experiment (Figure 2), NMU administration into 

either the PVN or DRN was sufficient to induce a significant decrease in intake of a standard 

or high-fat diet.

Mirroring our peripheral administration studies, animals trained to lever-press for high-fat 

food pellets were treated with intra-PVN or intra-DRN infusions of NMU (0.3nmol/kg) or 

aCSF immediately prior to testing sessions. NMU delivery into the PVN decreased PR 

responding for high-fat pellets, as compared to vehicle (Figure 5E; p<0.05 by unpaired t-test, 

n=8/group, F=4.415 (n.s)). Similarly, intra-DRN NMU administration caused a decrease in 

PR responding, significantly greater than that produced by vehicle treatment (p<0.05 by 

unpaired t-test, n=8/group, F=1.914 (n.s.)) (Figure 5F). This suggests that NMU acts directly 

via the PVN and DRN to regulate not only consumption of, but also motivation for high-fat 

food.
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NMU-containing neurons in the LH project to the PVN and DRN

While NMU in the PVN and DRN is behaviorally relevant, the source of NMU-containing 

neurons that innervate these brain regions has not been established. To explore this 

neurocircuitry, animals were treated with a combination of ICV colchicine and an 

attenuated, replication-incompetent rabies virus, Rb-ΔG-B19-GFP, targeted at the PVN 

(Figure 6A) or DRN (Figure 6B). Rb-ΔG-B19-GFP serves as a retrograde tracer, infecting 

via the presynaptic terminal and being transported in a retrograde direction thus labeling the 

cell body of the projection neurons (32). Colchicine blocks axonal transport resulting in an 

accumulation of NMU in the cell body. This combination allows for visualization of afferent 

pathways producing NMU. Analysis focused on regions known to project to the PVN and 

DRN (41). Fluorescent immunohistochemistry was used to enhance the native GFP signal 

expressed by the attenuated rabies virus (Figure 6A and 6B, left column) and visualize NMU 

(Figure 6A and 6B, middle column) in the cell bodies of projection neurons. NMU 

immunoreactive cell bodies were observed in the LH, but not in the arcuate nucleus (ARC) 

or the prefrontal cortex (PFC) (Figure 6A and 6B). GFP-labeled cells were found in the LH 

and to a lesser extent, the ARC, following injection of the viral tracer into the PVN (Figure 

6A, left column), and in the LH and PFC following injection of the viral tracer into the DRN 

(Figure 6B, left column). The data indicate that NMU-producing neurons projecting to the 

PVN (Figure 6A) and the DRN (Figure 6B, n=3 animals/group) primarily originate in the 

LH.

Discussion

One of the understudied aspects of obesity is the motivation for high-fat foods (2–4). Such 

foods are powerful drivers of obesity that contribute to, maintain, and promote overeating 

(42–46). This is due, in part, to the highly reinforcing properties of high-fat foods. Our work 

builds on previous data showing that NMUR2 signaling in the brain is capable of regulating 

preference for, and consumption of high-fat foods (9). Consistent with previously published 

data (6), we show that systemic NMU administration decreases standard food intake, and 

demonstrate its ability to reduce high-fat food intake. Systemic NMU was co-administered 

with DMSO to ensure that NMU would cross the blood brain barrier. This allowed us to 

evaluate the expression patterns of Fos, an immediate early gene marker of neuronal activity, 

and to identify potential anatomical targets in the brain for NMU binding. We identify 

increases in Fos-like immunoreactivity in the M1/M2 region of the motor cortex, a finding 

consistent with previously identified induction of locomotor activity by ICV NMU (39). 

Moreover, the PVN and DRN demonstrate decreases in Fos-like immunoreactivity following 

NMU administration, and importantly also express NMUR2 protein. Direct infusion of 

NMU into the PVN supports previous research indicating that hypothalamic NMU 

suppresses food intake (11), and extends these findings by demonstrating that PVN NMU 

signaling regulates both consumption of, and motivation for high-fat food. Importantly, a 

connection has been implied between PVN–mediated feeding effects and the nucleus 

accumbens, a key structure for the regulation of reinforcement behavior (47). Recent 

research has confirmed the existence of a pathway linking the PVN to the nucleus 

accumbens, and demonstrates that the pathway is capable of regulating social aspects of 
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reinforcement (48), suggesting a potential downstream mechanism by which the PVN may 

regulate food reinforcement.

In addition, we have identified the DRN as a novel site of action for NMU-NMUR2 based 

regulation of food intake and motivation for food. The role of the DRN on feeding is not 

fully elucidated. However, its regulation of reinforcement behavior via serotonin signaling 

has been reported (49) and recent research demonstrates that food reinforcement activates 

serotonin neurons within the DRN (50). Additionally, PVN ghrelin signaling regulates 

appetite through DRN serotonin signaling (51). As ICV NMU has been demonstrated to 

alter serotonin expression in the brain, and the behavioral effects of NMU are regulated by 

serotonin receptor function (52), NMU may regulate food reinforcement via serotonin 

signaling downstream of the DRN.

Pathways linking the LH and PVN, as well as the LH and DRN, have been unexplored with 

regards to NMU regulation of reinforcement. The LH has, however, been investigated in 

both non-food (25, 53, 54), and food (55) reinforcement, and projections to the PVN and 

DRN (56, 57) have been characterized. The production of NMU by these projections, and 

the observed downstream regulation of feeding and food reinforcement by NMU release, is 

consistent with the alterations of NMU mRNA in response to energy balance (15). This 

suggests that endogenous regulation of the feeding and food reinforcement behaviors 

identified here may be driven by NMU-producing LH-PVN and LH-DRN neurons. There is 

also potential for alternative ligands driving endogenous NMUR2 signaling in the PVN; 

neuromedin S (NMS) has been shown to bind NMUR2 in the PVN (13), producing anorectic 

effects. However, NMS has not been identified in the DRN, or implicated in raphe-

dependent regulation of feeding behavior.

Taken together, these data indicate that NMU-NMUR2 signaling in the PVN and DRN 

assists in regulating consumption of, and motivation for high-fat food, a key element in the 

development of, or resistance to, obesity. These studies highlight the emerging role of NMU 

signaling in reinforcement, elucidate the neurocircuitry mediating its behavioral effects, and 

identify an endogenous source of the peptide. The combined result is the identification of 

specific NMU-NMUR2 signaling pathways as mediators of motivation for high-fat food. As 

motivated consumption of high-fat foods is a potent driver of obesity in both humans and 

animals (1–4), dysregulated NMU signaling pathways may underlie overconsumption of 

obesogenic food.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Peripheral administration of Neuromedin U (NMU) (0.3mg/kg, intraperitoneal) decreases 

food intake and motivation for both a low-fat diet (LFD) and a high-fat diet (HFD). (A) 
Animals treated with NMU consumed significantly less of a standard diet in the 2 hours 

following treatment (p<0.05 by Sidak’s multiple comparisons test). (B) Animals receiving 

NMU consumed significantly less of a high-fat diet in the 2 hours following treatment 

(p<0.05 by Sidak’s multiple comparisons test). (C) Peripheral treatment with NMU 
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decreases responding for high-fat food pellets (p<0.05 by unpaired t-test). Error bars 

represent standard error of the mean.
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Figure 2. 
Fos-like immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN) and 

dorsal raphe nucleus (DRN) is significantly altered by peripheral Neuromedin U (NMU). 

(A) Representative images of vehicle-treated and NMU-treated PVN (top row) and DRN 

(bottom row). 20× magnification. (B) Significantly fewer Fos-positive cells are found in 

PVN and DRN of NMU-treated animals, as compared to vehicle-treated animals. (n=3/

group, **p<0.01 by unpaired t-test). Dashed line indicates Fos-like immunoreactivity in 

naïve tissue. DMSO refers to 10% dimethylsulfoxide in saline. Error bars represent standard 

error of the mean.
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Figure 3. 
Localization of Neuromedin U Receptor 2 (NMUR2) in the paraventricular nucleus of the 

hypothalamus (PVN) and dorsal raphe nucleus (DRN). (A) NMUR2 is expressed in the 

PVN. (B) NMUR2 is expressed in the DRN. 3V indicates third ventricle; Aq indicates 

cerebral aqueduct. 20× magnification.
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Figure 4. 
Timeline and targeting. (A) Timeline of experiments involving central Neuromedin U 

(NMU) administration. FR refers to fixed-ratio responding. PR refers to progressive-ratio 

responding. LFD and HFD refer to low-fat diet and high-fat diet, respectively. (B) Cannula 

targeting for the paraventricular nucleus of the hypothalamus (A/P −1.80 mm). (C) Cannula 

targeting for the dorsal raphe nucleus (A/P −7.10 mm).
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Figure 5. 
Administration of Neuromedin U (NMU) directly to the paraventricular nucleus of the 

hypothalamus (PVN) and dorsal raphe nucleus (DRN) decreases food intake and motivation 

for high-fat food. (A) NMU infused into the PVN reduces consumption of a low-fat diet 

(LFD) at 2 and 4 hours post-treatment (n=5), **p<0.01 by Sidak’s multiple comparisons 

test). (B) NMU infused into the DRN reduces consumption of a LFD at 2 hours, 4 hours, 

and 24 hours post-treatment (n=6, **p<0.01 by Sidak’s multiple comparisons test). (C) 
NMU infused into the PVN reduces consumption of a high-fat diet (HFD) at 2 and 4 hours 
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post-treatment (n=5, *p<0.05, **p<0.01 by Sidak’s multiple comparisons test). (D) NMU 

infused into the DRN reduces consumption of a HFD at 2 hours, 4 hours, and 24 hours post-

treatment (n=6, **p<0.01 by Sidak’s multiple comparisons test). (E) NMU infused into the 

PVN decreases motivated responding for high-fat food (n=6, *p<0.05 by unpaired t-test). (F) 
NMU infused into the DRN decreases motivated responding for high-fat food (n=8, 

**p<0.01 by unpaired t-test). Error bars represent standard error of the mean.
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Figure 6. 
Neuromedin U (NMU)-containing neurons in the lateral hypothalamus (LH) project to the 

paraventricular nucleus of the hypothalamus (PVN) and dorsal raphe nucleus (DRN). (A) 
Attenuated, replication-incompetent Rb-ΔG-B19-GFP is injected into the PVN, and traces to 

the LH and the arcuate nucleus (ARC). (B) Rb-ΔG-B19-GFP is injected into the DRN, and 

traces to the prefrontal cortex (PFC) and the LH. 20× magnification.
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