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Important progress has beenmade in understandingmany aspects of insulin action in the last 10 years. Attention
will be focused here on the physical protein interaction network of the internalized insulin receptor (IR) and its
relationships with the genetic architecture of type 2 diabetes mellitus (T2D). The IR recognizes signals from the
outside (circulating insulin) and engages the insulin signaling response.Within seconds, the IR is also involved in
insulin internalization and its subsequent degradation in endosomes (physiological clearance of insulin). A T2D
diseasemodule sharing functional similaritieswith insulin secretion in pancreatic isletswas recently identified in
the close neighborhood of the internalized IR in liver. Thismodule brought a new light on the apparent functional
heterogeneity of numerous genes at risk to T2D by linking them to a few noncanonical layers of signaling feed-
back loops. Thesefindings should be translated into a better understanding of the primarymechanismsof the dis-
ease and consequently a more precise sub-classification of T2D, ultimately leading to precision medicine and the
development of new therapeutical drugs.
org (M. Boutchueng

arch Institute, Tam

en access article un
© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Type 2 diabetes
Type 2 diabetes disease module
Contents
1. The insulin receptor: Tyrosine-kinase activation and trafficking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2. The endosomal IR protein-proteins interaction network (PPIN) forms a T2D disease module . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. The endosomal T2D disease module connects signaling with trafficking and metabolism and shares functional similarities with the islets secretory pathway 16
4. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1. The insulin receptor: Tyrosine-kinase activation and trafficking

Insulin elicits all of its known physiological effects by binding to the
insulin receptor (IR) at the cell surface of target cells [1]. Themature IR is
a heterotetramer composed of two extracellularα-subunits involved in
insulin binding and two cytosolic-oriented β-subunits that contain the
tyrosine kinase domain. Crystallographic studies have revealed that
the extracellular domain adopts an inverse V shape in a folded-over,
compact conformation [2,3]. The juxta-membrane region of the β-
subunit contains three tyrosine residues, Tyr-965, Tyr-972 and Tyr-
984. Tyr-965 and Tyr-972 are involved in insulin-mediated endocytosis
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and the recruitment of signaling proteins. The remaining part of the in-
tracellular domain is formed by an N-terminal lobe linked with a large
C-terminal lobe. The C-terminal lobe contains the catalytic loop (resi-
dues 1130–1138) and the activation segment. The catalytic loop con-
tains the kinase activation RD motif conserved between a majority of
kinases and the three regulatory tyrosine residues Tyr-1158, Tyr-1162
and Tyr-1163 [1–3]. The phosphorylated kinase domains of IR and
IGF1R form a specific dimeric arrangement involving an exchange of
the juxtamembrane region proximal to the kinase domain [4].Studies
on the whole molecular complexes, and using the single-particle cryo-
electron microscopy method, recently revealed an intramolecular
mechanism of activation similar to the epidermal growth factor (EGF)
receptor (EGFR) [5].

Following insulin binding at the cell surface, there is also internaliza-
tion of the tyrosine kinase-activated complexes into the endosomal ap-
paratus [1,6]. Here, a decision is made either to recycle back the
tyrosine-dephosphorylated and ligand-free receptor to the cell surface,
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. A module-based approach to identify type 2 diabetes-relevant diagnostic and
therapeutic candidate genes that tend to co-localize in the endosomal interactome.
Disease-associated genes tend to co-localize in the human physical-protein interaction
network (PPIN), forming a proto-module (blue oval). The proto-module expands
physically in the IR-containing endosomes PPIN (IREN, 88% of the nodes associated with
the type 2 diabetes genetic risk). Proteins having at least three interactions are
considered as high candidates (blue nodes) and are validated by experimental methods
(adapted from Boutchueng et al. PLoS One 2018;13:e0205180).
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preparing for another cycle of insulin binding and kinase activation, or
to a transport in late compartments for eventual late recycling or, ulti-
mately, degradation of the active complexes within lysosomal compart-
ments [6]. While the fate of internalized insulin has been well
characterized, particularly in liver parenchyma, which is the main site
of insulin clearance in physiological concentrations of circulating insulin
[6,7], themolecularmechanisms underlying IR routing and signaling are
relatively unknown when compared with the EGFR [6,8]. The original
experimental repertoire including morphological analysis on fixed he-
patocytes and in vitro assays has shown that the internalized IR-
insulin complexes are distributed through prelysosomal sorting centers
that are sensitive to acidotropic and microtubule-disrupting agents [9,
10]. A slower recycling route originating from late compartments with-
out apparent involvement of multivesicular bodies was also depicted in
cultured hepatocytes [11]. Concomitant biochemical characterization of
insulin and EGF revealed the presence of signaling molecules in mixed
hepatic Golgi/endosome (G/E) fractions suggesting the presence of a
signaling activity [6]. Studies mainly done on the EGFR in cell lines fa-
vored [12–16], or challenged [17–19], the concept of endosomal signal-
ing. These different results are now explained by the diversity and
plasticity of endosomes [20,21], which are also perceived as quantal sig-
nal decoding devices [22,23].

As for the EGFR, IR tyrosine kinase activity appears to be the crucial
regulator selecting ligand-dependent movements [1,6]. A system in
which each receptor-tyrosine kinase (RTK) is able to induce its own
structure for internalization seems unrealistic, unless the different re-
ceptors share common elements. While the topology of the endosomal
apparatus may be subjected to large variations between one experi-
mental model and another, sorting is apparently achieved with large
tubulovesicular compartments whose contents are continuously modi-
fied by the entry and exit of small 70–80 nm vesicles [24,25]. These
sorting compartments enable the continuous transport of cargos and re-
ceptors separately resolving security problems inherent to complexity
and energy. This is analogous to a cellular version of the AldrinMars Cy-
cler (AMC), where large spaceships perpetually cycle back and forth be-
tween the orbits of Earth and Mars with only minor trajectory
adjustments on each cycle, without requiring a significant amount of
propellant. The spaceship does not stopwhen it flies by a planet. The as-
tronauts have to board a small but speedy space taxi that catches up
with the cycler. The system thus enables the transport of cargos and
humans, separately resolving the costs inherent to security problems
when cargo and astronauts are mixed, as experienced with the past
shuttle program [26].

2. The endosomal IR protein-proteins interaction network (PPIN)
forms a T2D disease module

A PPIN (named GEN), constructed from a G/E fractions proteome,
not only reproduced the general topology of endosomes, but also
contained an IR subnetwork (named IRGEN) that is characterized by a
marked enrichment in elements associated with T2D risk [27]. To
date, genetic studies, including genome-wide association studies
(GWAS), have identified a number of functionally heterogeneous com-
mon variants spread across the whole genome and explaining
approximatively 10–20% of the T2D heritability [28–30]. The concept
of networkmedicine based on the notion of preferential attachment in-
herent to scale-free networks implies that behind each cellular function
there is a network consisting of genes, transcription factors, RNAs, pro-
teins and metabolites. This understanding forces us to view diseases as
the breakdown of a given module, that is also sensitive to societal fac-
tors (e.g., modern chronic overnutrition state), rather than a single or
large group of genes [31]. It has rarely been possible, however, to trans-
late such amassive amount of information onmutations and their asso-
ciationswith disease into primarymechanisms and therapeutic insights
as well as the mechanisms underlying genotype–phenotype relation-
ships [32]. For T2D,most of the common associated variants are located
at enhancers in pancreatic islets [28], suggesting that this is a preferred
location to search for a disease module. This marked enrichment in
genes associated with T2D risk in IRGEN [27] suggested however that
such a regulated network exists in the liver and that it is cofunctional
in islets. These results prompted to ask to what extent new gene candi-
dates linked to the known disease genes through the physical
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association of their products can be dynamically identified by diffusion
[31], in the more specific environment of IR-containing endosomes. To
accomplish this task, IR-containing vesicles were captured from the
same insulin-stimulatedG/E fractions and a local physical PPIN covering
early and later events of IR routing at a 50% insulin saturating dose was
constructed. By integrating a highly confident T2D protomodule (OMIM
andGWAS), a T2D diseasemodulewas thus identified (named IREN) by
diffusion. Proteins physically linked to “diseased” proteins were vali-
dated as candidates on the basis of at least three interactions (instead
of a filter of one interaction), intracellular colocalisation, coexpression
and localisation on genomic risk areas [33] (Fig. 1). The obtained
hypothesis-free IREN topology is remarkably robust and organized
around a few major central hubs, including the cell cycle kinase Cdk2,
the IR itself (an internal control), PTPLAD1, Rab5c, and the V-ATPase
components (Fig. 2). Of interest, the T2D-protomodule functional spe-
cialization expands in IREN (to include cell cycle, trafficking, signaling
components, reactive oxygen species components) [33]. “Hub
bottlenicity” (also named centrality) is also thought to dictate essential-
ity and constitutes the dynamic component of a regulated network [34,
35]. This is particularly the case for IREN, given its responsivity to acute
insulin stimulation. Cdk2, which displays the highest centrality and is a
high-confidence candidate associated with T2D genetic risk, indeed
readily associates with key elements including the IR, PTPLAD1, Rab5c,
tubulin and actin cytoskeletons all containing appropriate phosphoryla-
tion sites. In such a network, PTPLAD1, in the same incoherent input,
controls IR tyrosine phosphorylation and other key interactions [33]
(Fig. 2). Insulin-dependent Cdk2/cyclinE complexeswere previously re-
ported, and they were functionally related with a capacity to decrease
vesicle fusion events in vitro [36]. Cdk2 was also mechanistically linked
with candidate proteins controlling insulin clearance, including
CEACAM1, SHP-1 (PTPN6) and β-catenin [37,38]. On the other hand,
targeted Cdk2 deletion in the pancreas was reported as inducing glu-
cose intolerance primarily by affecting glucose-stimulated insulin secre-
tion [39]. Similar to the secretory pathway, the endosomal apparatus
consists of multiple compartments linked via anterograde and retro-
grade transport [40,41]. The endocytic and secretory pathways thus
share regulatory elements of the cell division machinery either in a
pause to decide strategy (similar to checkpoints of the cell division
cycle) for appropriate routing or, alternatively, for regulated relief of
the continuous braking action of Cdk2 in fusion events.

PTPLAD1 itself is particularly sensitive to insulin as it translocates
readily from a yet-to-be-fully characterized intracellular compartment
to the plasma membrane following insulin stimulation, and then it in-
ternalizes along with the IR [27]. Insulin-regulated PTPLAD1 also has
an interesting consequence for signaling, as formation of ligand-
dependent quanta (clusters of less than 100 p-RTK) with short delay
in endosomal vesicles is considered an emergent property of
endosomes [22]. In addition to the presence of a number of confidently
known substrates for Cdk2 and AMPK in IREN, the IR appears to be a
pleiotropic tyrosine kinase with the presence of high-confidence tyro-
sine phosphorylation sites found in PTPLAD1, ATP6V1E1, AMPK, ATIC,
and Rab5c. In addition, the tyrosine phosphorylation of the candidate
ANXA2 at Y24 by IR would be a key component of IR traffic through
CEACAM1/β-catenin and actin [42]. As a result, the overlay with delay
of Cdk2, Rabs (Rab5C, Rab11A), actin and microtubules dependent
Fig. 2. A representation of the T2D disease module and associated layers of feedback loops in
surface of target cells. Following insulin binding there is also, within seconds, internalization
physical protein interaction network (PPIN) forming the disease module (IREN). The general t
centrality. Candidates (yellow and blue colors and black characters) and DAGs (diabetes assoc
94 nodes (33% of IREN nodes) with 330 interactions (28,7% of IREN interactions). An expans
(88% of nodes) covering 92% of interactions (1070 out of 1147 I.E. interactions). The function
During its travel in the endosomal compartment (blue color, lower inset), the IR meet with i)
cargos ii) These mechanisms linking signaling with metabolism and trafficking are highly as
clearance (liver) and action (insulin targets).
feedback would convert insulin inputs into robust oscillations consis-
tent with simulation models of signaling [43–46]. PTPLAD1 would
thus be the insulin-dependent eraser in the same insulin input (Fig. 2).

3. The endosomal T2D disease module connects signaling with traf-
ficking and metabolism and shares functional similarities with the
islets secretory pathway

Following insulin stimulation, the proteins ATIC, PTPLAD1 and
AMPK associate within seconds with the tyrosine kinase-activated IR
as well as control its tyrosine kinase activity and traffic [27]. ATIC is a
key rate-limitingmetabolic enzyme involved in the de novo production
of purines, which are building blocks of DNA and RNA (biomass) but are
also found in ATP, GTP, ADP, AMP, cyclic AMP, NADP, SAM and
coenzyme A and thus are not only a source of energy for living cells
but also the cofactors for numerous metabolic and signaling enzymes.
AMPK is the energy sensor (adenylates) engaging catabolic versus ana-
bolic processes in response to decreases in the ATP/AMP ratio [47].
AMPK activation also results in the phosphorylation of the cargo-
binding kinesin light chain, KCL2, of Kif5 and in the disruption of Kif5 as-
sociationwith PI3K andAkt [48]whichwould benecessary for early and
late endocytosis events [49]. Kif5 is involved in the Rab5-dependent
movement of vesicles towards either the plus or the minus end of mi-
crotubules [50]. Hence, an insulin-sensitive module formed minimally
by the apparently unrelated proteins ATIC and AMPK is aware of the
state of activation of the IR and acts locally in a concerted manner
with PTPLAD1 (IR tyrosine dephosphorylation), Rab5 and kinesins (traf-
ficking) [27]. A concrete problem for the cell concerns its energy
sources, and it seems that the cell has found an efficient way to link in
a safe and economic manner the continuous local energy demand to a
manufacturing center. ATP is the source of energy for the cell, and its
level is controlled in part by ATIC (synthesis). The fact that the ATIC sub-
strate, and antidiabetic, AICAR can activate AMPK [51] emphasizes the
idea that all the conditions are present to autoregulate the IR module
in concert with insulin inputs. This ATIC circuitry linking signaling
with metabolism (Fig. 3) suggests the presence of a morpheeic mecha-
nism [52]wherebyATICmonomers, in equilibriumwith dimers [53], in-
teract physically in the node, and ATIC dimers support the two last steps
of the de novo purine biosynthetic metabolic pathway. Suchmorpheeic
activity linking signaling with metabolismwas already reported for the
embryonic isoform rate-limiting glycolytic enzyme PKM2 [54].

The ATP-consuming proton pumping activity, mediated by V-
ATPase, is key for appropriate insulin clearance in physiological concen-
trations of insulin [6,7]. By contrast with ligands such as EGF and prolac-
tin, insulin readily dissociates from the IR in the acidic lumenal pH
environment and is subsequently degradedby a lumenal protease activ-
ity that is nowmore related to the acidic cathepsinD [6] than to theneu-
tral insulin-degrading enzyme (IDE) [55]. Amylin, a peptidewhich is co-
secretedwith insulinwas, however, reported as a good substrate for IDE
[56]. V-ATPase was found connected with ATIC and AMPK [33] and the
widely used anti-diabetic drug metformin, targeting the mitochondrial
production of ATP [51], was recently shown to act also on the
endolysosomal system through V-ATPase and AMPK [57,58], indicating
the presence of connections between the T2D disease module and drug
therapy. Additional layers of feedback loops are anticipated as a robust
endosomes. The action of insulin occurs via a receptor tyrosine kinase (IR) located at the
of the tyrosine kinase-activated complexes into the endosomal apparatus. Shown is the
opology of IREN is based on few major hubs, with the kinase Cdk2 displaying the highest
iated genes, pink color and black characters) form a single-connected disease module of
ion to the first level of adjacent nodes results in a connected subnetwork of 272 nodes
al groups are represented according to the colors of the borders indicated in the legends.
proteins having heteregenous functions in signaling, metabolism, membrane transport,
sociated with the T2D genetic risk and can be cofunctional for insulin secretion (islets),
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phosphorylation signal that was readily abolished by V-ATPase inhibi-
tion was reconstituted in endosomes, suggesting the presence of an
endosomal homeostatic pathway, informing the cell that the lumenal
acidification process is optimized [33].
4. Perspectives

We now know that hyperglycemia can be caused by a combination of
genetic and environmental factors that affect circulating insulin



Fig. 3.A representation of the IR/ATIC/PTPLAD1/AMPK circuitery. Insulin inputs in a double incoherentmode: IR autophosphorylation plus PTPLAD1 recruitment at the cell surface (1, blue
color) are converted into robust oscillations in output through the overlay of two positive feedback systems driven by the metabolic enzyme ATIC. (2, red color), a local interacting loop
counteracting the action of PTPLAD1. (3, red color), adenylates production. Variations in ATIC levels or in adenylates synthesis or a decline in ATP levels independent of de novo purine
biosynthesis increase the AMPK activity and IR endocytosis (adapted from Boutchueng et al. Mol Cell Proteomics 2015;14:1079–92).
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concentration or action [59,60]. The liver is amajor organ that controls in-
sulin action on metabolic homeostasis. Circulating glucose availability is
regulated through the insulin dependent reversible storage of glucose
and glycogen as well as increased lipogenesis with canonical insulin sig-
naling pathways [60]. Since approximately 50% of the insulin secreted
by the pancreas is removed after its first pass by the liver before reaching
the peripheral circulation [7], hepatic extraction through insulin-
mediated endocytosis is also viewed as an adaptive mechanism that
could relieve the stress on pancreatic β-cells imposed by insulin resis-
tance [61–64]. Alternatively or in addition, a moderate chronic
hyperinsulinemia due to a reduction in insulin clearance may be the pri-
marymechanism resulting in insulin resistance [65,66]. How the identifi-
cation of a T2D disease module hidden in the close neighborhood of the
internalized IR can be of importance for a better understanding of the pri-
mary mechanism of the disease, precision medicine and new drug ther-
apy? A priori, hepatic endosomes might not be the best place to find a
module as, consistent with a beta cell-centric classification model [67],
the T2D genetic risk is indeed more associated with reduced beta cell
function [28]. This suggests a disease model where T2D cases lie across
a continuous distributionwith regard to beta cell dysfunction versus insu-
lin resistance aetiologies. At the opposite end of the spectrum, obese cases
presumably need fewer diabetes risk variants to push them towards dia-
betes, as they are already under strain from themodern physiological im-
pact of obesity and insulin resistance. The T2D disease module clearly fits
in this model as it contains elements related with the T1D, islets physiol-
ogy, and also new signaling pathways that are more related with insulin
resistance, trafficking and metabolism. What is the relationship of these
noncanonical pathways found in the T2D diseasemodule and other path-
ways? Insulin resistancemay be viewed as an evolutionary conserved ho-
meostatic response favoring catabolism over anabolism in the conditions
of overnutrition. This is not favoredby the fact that the adipocyte becomes
also insulin resistant overtime leading to several late complication includ-
ing lipid accumulation elsewhere and subsequent insidious signaling con-
sequences including inflammatory processes [60]. Insulin resistance
could also result from pathological activated kinases that are unrelated
with the normal insulin response (e.g., PKCs, JNK) but similar enough to
the kinasesmediating normal negative feedback. This could only have oc-
curred if the actual overnutrition state rarely or never appeared in the
evolutionary history to not exert selective pressure against the use of un-
related signaling elements. Several evidence indicate the pathways
identified in the T2D disease module belong to the first category as
they are highly associated with the genetic disease risk [33]. Their evolu-
tionary conservation is reminiscent, for example, of the integrated stress
response (ISR), which is an organelle homeostatic response, that can be
modulated by a small interactor (ISRIB) with the potential for future
therapy of complex diseases [68,69]. Insulin resistance might be also an
essential endosomal response that limit anabolic processes to nutrient
oversupply.

The genetic architectures of human disorders are typically classified
into twomain categories: complex traits, such as T2D, displaying a poly-
genic architecture arising from numerous low-effect common variants,
and rare traits that tend to have high-effect monogenic variants
[70,71]. To date, genetic studies have identified a number of functionally
heterogeneous T2D common variants [28–30]. The presence of rare T2D
variants with high causalities [72], has not been well established by
GWAS yet [30,73], except in an homogeneous cohort of Latino patients
[74], and therefore there is still a necessity to understand the complex-
ity of GWAS data better, for example by stratifying more lean, predia-
betic and obese patients [75–77]. Variants frequently influence
multiple phenotypes, often in unexpected ways [78]. The notion of
inter-connected diseases also implies a knowledge of the comorbidities
that exist between complex andMendelian diseases [31]. As such, genes
that are disrupted in Mendelian disorders are dysregulated by noncod-
ing variants in complex traits [78,79] as exemplified by beta-
thalassemia and T2D [78]. The comorbidity between T2D and other
complex diseases such as cancer, neuropathies [31] and Mendelian dis-
eases [78] can be accurately examined with regard to the T2D disease
module. The hypothesis of phenotype-specific enrichment ofMendelian
disorders around GWAS variants should also allow a greater resolution
in identifying gene-phenotype relationships and achieve the goals of
precision medicine [78,79]. It finds a particular echo in T2D, where a
majority of variants are found in non-coding regions [73], and
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furthermore many variants identified in coding regions have been
reclassified as false leads [30].

Diabetes is presently classified into two main categories, type 1 and
type 2 diabetes, but type 2 diabetes is particularly heterogeneous in
terms of genetics, clinical presentation and outcomes. An important
goal for clinicians and researchers is to classify subtypes of diabetes
for lean and obese patients in order to more accurately select therapies
and predict clinical complications [80–82]. Given the complexity of such
a task, it would make sense to start from a class of well-defined interac-
tions, and this is exactly what the combination of hypothesis-free
methodswith hypothesis-driven approaches offerswith the description
and validation of a T2D diseasemodule. Recently, a soft clustering of ge-
netic loci associated with T2D allowed the identification of two groups
relatedwith insulin deficiency, and three relatedwith insulin resistance
[83]. A data-driven cluster analysis based on six additional variables
(glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, b-
cell function and insulin resistance) allowed the identification of five
overlapping clusters of patients within a cohort with different disease
progression and risk of complications, thus pointing out an avenue for
precision medicine [82]. Clustering can be refined with the integration
of a T2D disease module that helps to link to a primary mechanism for
each group of patients (insulin signaling response, clearance and pro-
duction). It would be then possible by using a T2D disease module
panel, containing minimally genes of the protomodule (e.g., HNF4A,
IR, IGF1, IGF1R) and highly confident candidates (e.g., Cdk2, ATIC,
Rab5C, PTPLAD1, ATP6V1A) (Fig. 1) [33], to subclassify smaller cohorts
(50–100) of patients to help diabetologists in their day-to-day practice.
Moreover, the T2D disease module can be used to explain how, in the
presence of high glucose, alteration of endosomal response is functional
to avoid excessive nutrient accumulation inside the cells.

Finally, a better knowledge of the T2D disease module will facilitate
the appropriate use of existing antidiabetic therapies and enable the de-
velopment of new drugs. Removing nodes would be a too drastic strat-
egy to study and rewire a network positively [84]. Instead, the use of
small surface interactors (edgetic approach) [85,86] seems relevant be-
cause gene essentiality in humans is more based on complexity and
haploinsufficiency as exemplified for components of the cell cycle
[87], PTPLAD1, which is physically connected to a Golgi essentialome
[88]; beta-catenin, a transcription factor also involved in the dynamics
of the actin cytoskelton [38], and ATIC itself, which is associated with
the severe AICAR-ribosiduria syndrome [89]. In this regard, it was re-
cently shown that the inhibition of ATIC homodimerization with a
small surface interactor induces the activation of AMPK and improves
glucose tolerance [90], supporting the idea that the T2D diseasemodule
can be positively rewired with edgetic molecules.
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