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Abstract: Despite the immense therapeutic advances in the field of health sciences, cancer is still to
be found among the global leading causes of morbidity and mortality. Ethnomedicinally, natural
bioactive compounds isolated from various plant sources have been used for the treatment of
several cancer types and have gained notable attention. Ferulic acid, a natural compound derived
from various seeds, nuts, leaves, and fruits, exhibits a variety of pharmacological effects in cancer,
including its proapoptotic, cell-cycle-arresting, anti-metastatic, and anti-inflammatory activities. This
review study presents a thorough overview of the molecular targets and cellular signaling pathways
modulated by ferulic acid in diverse malignancies, showing high potential for this phenolic acid to be
developed as a candidate agent for novel anticancer therapeutics. In addition, current investigations
to develop promising synergistic formulations are also discussed.

Keywords: ferulic acid; apoptosis and cell cycle arrest; anti-angiogenesis; anti-metastasis; synergism

1. Introduction

Over the past few decades, it has become more and more popular to study the role of
natural plant-derived compounds in a wide range of models for chronic diseases, especially
against different types of human cancers [1]. One reason for this is the continuously raising
incidence of these aging-related disorders all over the world [2]. On the other hand, as
there are no curative treatment options frequently available, findings regarding new safe
and efficient therapeutics are increasingly genuine. It is indeed well known that plants are
able to synthesize a large spectrum of structurally unrelated molecules, many of which
have been demonstrated to reveal diverse bioactivities in human experimental systems [3].
As a result, some specific compounds, such as alkaloids vincristine and vinblastine and
terpenoid paclitaxel, have been developed in chemotherapeutics, commonly used in the
clinical settings today, whereas several others are currently under clinical trials as adjunctive
therapies against different cancer types [3].

The most widespread class of compounds among the huge diversity of phytochemicals
constitutes phenolic agents, further divided into polyphenols with flavonoids and tannins,
and simple phenols, including phenolic acids [4]. Ferulic acid is a hydroxycinnamic acid
ubiquitously occurring in the plant kingdom and is derived from various vegetable sources,
such as leaves, fruits, seeds, and nuts [5]. A number of studies have described the diverse
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bioactivities of this phenolic acid, and especially its anticancer potential. This natural
compound can exert anti-inflammatory, antiproliferative, proapoptotic, antiangiogenic,
and/or antimetastatic effects in various experimental models of malignancies, including
lung cancer [6], colorectal cancer [7], liver cancer [8], breast cancer [9], cervical cancer [10],
osteosarcoma [11] and glioblastoma [12]. In doing so, ferulic acid is able to attack multiple
molecular targets and alter several cellular signaling pathways, which ultimately results in
the inhibition of malignant development and tumor growth [13].

In this review article, the current knowledge regarding the anticancer potential of fer-
ulic acid is compiled and systematically presented, and it is then analyzed in addition to the
role of this phytochemical on the resistance mechanisms of conventional chemotherapeutic
drugs. Moreover, the co-effects of ferulic acid, along with other therapeutic modalities, are
discussed, presenting synergistic combinations that are most valuable for further studies.
Considering the generally low bioavailability characteristic for natural phenolics, nanotech-
nological possibilities to improve the targeted delivery of ferulic acid to the tumoral sites are
discussed. In this way, relying on the complex picture, further steps can be readily planned
for applications of the anticancer properties of ferulic acid in the fight against cancer.

2. Sources, Chemistry, and Structural Activity Relationship of Ferulic Acid

Chemically, ferulic acid is 4-hydroxy-3-methoxycinnamic acid or (E)-3-(4-hydroxy-3-
methoxyphenyl) acrylic acid, occurring in two isomeric forms, i.e., cis and trans. It is found
naturally in various plants such as citrus fruits, wheat, spinach, sugar beets, cereals, sugar-
cane bagasse, neem, and pineapples [14]. It has also been reported in Chinese medicine
herbs, including Angelica sinensis, Cimicifuga heracleifolia, and Lignsticum chuangxiong. Fer-
ulic acid can be synthesized in a laboratory through the condensation of vanillin with
malonic acid in the presence of piperidine. However, this reaction takes three weeks to
complete, but the yield is found to be high with a mixture of trans- and cis-isomers. Never-
theless, Da and Xu successfully reduced this reaction time to 2 h by utilizing benzylamine
as a catalyst and methylbenzene as the solvent at 85–95 ◦C [15].

It has been reported that the biological activity of ferulic acid can be altered by creating
its derivatives. A series of such derivatives of ferulic acid with β-amino alcohol has been
previously reported (Figure 1) [16]. The chemical structure of ferulic acid has the presence
of benzene rings with a carboxylic group. Hydroxyl groups present at C1 and C9 are
considered to be the main sources of antioxidant character. The double bond presented
between C2-C3 is known to be responsible for effective bio-activity [17]. Furthermore, the
carboxylic group of ferulic acid provides an easily made ester, which is in turn responsible
for cholesterol-lowering activity [15].
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Figure 1. Chemical structure of ferulic acid and synthetic routes of its derivatives.

3. In Vivo Pharmacokinetics of Ferulic Acid

In rodents and humans, the absorption and metabolism of ferulic acid has been widely
studied and reported. Polyphenolic compounds are mostly consumed as simple phenolic
acids. It has been reported that, in the stomach, the rate of absorption of ferulic acid is
relatively faster than other phenolic compounds, and that it can be absorbed along the
entire gastrointestinal tract [18]. The metabolism of ferulic acid mainly occurs in the liver,
and forms conjugated products with glucuronides, sulfate, and sulfoglucuronide [19]. In
humans, ferulic acid is excreted in urine as 3-hydroxyphenyl and 3-methoxy-4-hydroxy
phenyl derivatives of phenyl propionic acid, hydracrylic acid, and glycine conjugates after
metabolism. In rats, ferulic acid itself is partly excreted as glucuronide, as revealed in
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feeding studies. However, 3-hydroxy phenylpropionic acid is excreted by rats as a major
urinary metabolite after the intraperitoneal administration of ferulic acid [20]. After a single
administration, the distribution of ferulic acid in the body is substantial. For example,
distribution of ferulic acid is ~4% in the gastric mucosa after oral administration; it is 10%
in the blood pool, kidney, and liver, and distribution in other tissues is 53% [18]. Due to
the low toxicity of ferulic acid, it has been reported to be a relatively safer molecule. The
LD50 value is lower for female rats (2113 mg kg−1 body weight) in comparison to male rats
(2445 mg kg−1 body weight) [21].

4. Cellular Mechanism of Ferulic Acid in Cancer
4.1. Induction of Apoptosis and Cell Cycle Arrest

Programed cell death, apoptosis, is one of the most preferred target pathways for inhi-
bition of proliferation and growth of the tumor by anticancer therapies. Chemo-preventive
phytochemicals are known to mediate apoptosis either via intrinsic (mitochondrial) or
extrinsic mechanisms (death receptor). It has been discovered that these compounds upreg-
ulate apoptotic protein and downregulate anti-apoptotic protein (Figure 2). For instance,
by upregulating the tumor suppressor and apoptotic genes Bcl-2-associated X protein
(BAX), BCL-2 interacting killer (BIK), tumor suppressor p53 (p53), and cytochrome complex
(CYCS) and downregulating the expression of the antiapoptotic protein B-cell lymphoma 2
(Bcl-2), ferulic acid causes apoptosis in prostate cancer cells [22]. Furthermore, Luo et al.
observed that reduced levels of Myeloid cell leukemia 1 (Mcl-1) and Bcl-2, and increased
Bax levels after ferulic acid treatment resulted in apoptosis in human cervical cancer cell
lines (HeLa and Caski) [23]. Caspase (CASP)-8, Fas-ligand (FASL), and Poly (ADP-ribose)
polymerase (PARP) are three extrinsic mechanisms of apoptotic cell death that are associ-
ated with the expression of molecular proteins. According to Kampa et al., FAS/FASLG
caused the human breast cancer cell line (T47D) to undergo apoptosis [24]. Ferulic acid
treatment leads to the induction of apoptosis via elevated expressions of the apoptotic pro-
teins CASP1, CASP2, CASP8, FASLG, FAS, and TNFR-associated death domain (TRADD)
in the prostate cancer cell line (LNCaP) [25]. Through regulation of p53, Bax, caspase-3, and
growth arrest and DNA-damage (GADD45), treatment with ferulic acid has been shown to
begin apoptosis in non-small cell lung cancer cells (NCI-H460) [26]. According to Grasso
et al., free ferulic acid significantly reduced the levels of Bcl-2 and Master Regulator of Cell
Cycle proteins (c-Myc) expression along with caspase-3 and PARP-1 cleavage, which acti-
vated the apoptotic pathway [27]. DNA fragmentation, which is the hallmark of apoptosis,
was determined in Caski cells after ferulic acid treatment [28]. Ferulic acid reduced the
phosphorylation of protein kinase B (Akt) and Phosphoinositide 3-kinase (PI3K) in Caski
cells. In osteosarcoma cells, ferulic acid augmented the Bax expression, decreased the Bcl-2
expression, and then increased the activity of caspase-3, and induced death by blocking the
PI3K/Akt pathway [28].

Cyclins (CCN), cyclin-dependent kinase (CDKI) inhibitors, and cyclin-dependent
kinases (CDK) are known to arrest cell cycle progression. By upregulating CDKN1A
(P21) protein expression and downregulating CCND1 and phosphorylated retinoblastoma
protein (RB) levels in the endothelial cells (ECV304), ferulic acid produced cell cycle
arrest in the G0/G1 phase [29]. Ferulic acid treatment inhibited PI3K/Akt pathway and
induced G0/G1 phase arrest via downregulation of expression of cell cycle-related proteins
CDK2, CDK4, and CDK6 in osteosarcoma cells [30]. In HeLa and Caski cells, Gao et al.
demonstrated that ferulic acid caused cell death and G0/G1 phase arrest by increasing the
cell cycle-related proteins, such as p53 and p21 expression, and by lowering CCND1 and
CCNE levels [31]. According to Janick et al., ferulic acid led to an arrest of the cell cycle in
the S phase and had an antiproliferative effect on colon cancer cells (Caco-2) [32]. Due to
the decreased expression of genes that were crucial for cell cycle arrest in the G1/S phase
in prostate cancer cells, ferulic acid may prevent cell cycle progression. The Transcription
Factor 4 (E2F4) gene expression that was much higher in the ferulic acid-treated cells
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caused arrest of the cell cycle at the G0/G1 stages in prostate cancer cells (PC-3) due to
downregulation of transcription by creating a complex with RB1 [25].
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Figure 2. Molecular targets of ferulic acid in signaling processes leading to cell cycle arrest and
apoptosis. Bcl-2-associated X protein (BAX), BCL-2 antagonist/killer (BAK), tumor suppressor p53
(p53) and cytochrome complex (CYCS), B-cell lymphoma 2 (Bcl-2), Poly (ADP-ribose) polymerase
(PARP), Fas-ligand (FASL), and TNFR-associated death domain (TRADD).

In addition, ferulic acid is also known to induce autophagy in cancer cells. It is a
natural breakdown of the cell to eliminate malfunctioning components through a lysosome-
dependent controlled mechanism. For instance, using hepatocellular carcinoma (HepG2)
cells, Wang et al. in 2022 determined that proliferative ability was decreased by ferulic
acid by elevating the levels of the apoptosis and autophagy biomarkers, including beclin-1,
Light chain (LC3-I/LC3-II), PTEN-induced putative kinase 1 (PINK-1), and Parkin [33].
Similar to this, utilizing the ferulic acid derivative tributyltin(IV) ferulate (TBT-F) on colon
cancer cells (HCT116, HT-29 and Caco-2) led to an increase in autophagy-related proteins,
such as LC3-II, and receptors of autophagy (p62) [34]. Therefore, genes or proteins involved
in apoptosis and cell cycle regulation are significant in the development of anticancer drugs,
and research on these genes for cancer therapies has been constantly growing.

4.2. Antiangiogenic Action of Ferulic Acid

There are two main hallmarks of cancer progression: uninhibited angiogenesis and
development of vascular architecture [35]. Angiogenesis is the process of creating new
blood vessels from previous ones and is essential for transporting oxygen, nutrients, and
growth hormones to distant organs for the development of cells, playing an important role
in cancer progression [36]. Through the release of chemical signals that promote angiogene-
sis, tumors maintain blood supply by regulating both positive (angiogenic) and negative
(anti-angiogenic) endogenous factors, such as adult endothelial cells (ECs). Angiogenesis
is crucial for the development of numerous illnesses, as well as for regular physiological
processes like the formation of an embryo, the healing of wounds, and the menstrual cycle.
It is generally recognized that angiogenesis is dysregulated in a number of diseases, includ-
ing psoriasis, diabetic retinopathy, malignant tumors, rheumatoid arthritis, and age-related
macular degeneration (AMD). An unbalance between numerous pro-angiogenic and anti-
angiogenic factors is important for angiogenesis [37]. Angiogenesis process is initiated by
pro-angiogenic signals, inflammation, ischemia, hypoxia, and other variables that act on
cytokines, as well as angiogenic factors like vascular endothelial growth factor (VEGF) or
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fibroblast growth factor (FGF) in tumor cells, urokinase-type plasminogen activator (uPA),
and adrenomedullin (ADM) [38]. As a result, stopping angiogenesis is an effective therapeu-
tic strategy for the management of a number of illnesses, including cancer. Despite being
widely available, anti-angiogenic medications like bevacizumab, pegaptanib, ranibizumab,
sunitinib, sorafenib, regorafenib, and axitinib also have serious side effects, such as cardio-
vascular toxicity, bleeding risk, intraocular inflammation, ocular hemorrhage, and retinal
detachment [39]. In order to complement and integrate with current therapies, innovative
and efficient treatments that precisely target angiogenesis and have fewer side effects need
to be researched, developed, and tested [40]. Among the broad spectrum of botanicals,
ferulic acid is one of the potent constituents found in many vegetables and has numer-
ous pharmacological activities, such as anti-cancer, anti-inflammation, neuroprotective,
anti-coagulation, and anti-angiogenesis [41]. In a normal cellular microenvironment using
human umbilical vein endothelial cells (HUVECs), Lin et al. [42] determined that ferulic
acid significantly augmented angiogenesis by increasing VEGF, platelet-derived growth
factor (PDGF), and hypoxic-induced factor (HIF) 1α expression via mitogen-activated
protein kinase and PI3K pathways. Whereas, Yang et al., 2015 [43], reported that ferulic
acid reduced the growth of melanoma cells (A375, CHL-1 and SK-MEL-2) via suppressing
FGF1, leading to the activation of FGFR1 and PI3K-Akt signaling. In addition, ferulic
acid showed anticancer potential by suppressing angiogenesis and causing inhibition of
melanoma growth in a xenograft model [44]. Researchers have reported that ferulic acid
significantly revealed antiangiogenic properties in a chorioallantoic membrane (CAM)
model of chicken eggs through downregulation of VEGF-2 and cyclooxygenase (COX-2)
expression. Therefore, anti-angiogenic mechanisms can be considered promising for the
future design of novel therapeutics.

4.3. Inhibition of Metastasis and Invasion

Another main hallmark of malignant tumors is believed to be invasion and metastasis
that lead to clinical death [45]. Tumor invasion and metastasis mechanisms involve the de-
tachment of cancer cells from the main tumor, migration, angiogenesis, and proliferation to
distant tissues [46]. Beyond the boundaries of the healthy tissue from which they originate,
cancer cells can enter the bloodstream, travel to distant organs, and ultimately cause the de-
velopment of secondary tumors, known as metastases. Matrix metalloproteinases (MMPs)
play a significant role in the growth of malignancies by disrupting natural invasion barri-
ers [47]. The zinc-dependent endopeptidases MMP-2 and MMP-9 are associated with tumor
invasion and metastasis due to their capacity to remodel tissue by degrading the basement
membrane and extracellular matrix, thereby triggering angiogenesis (Figure 3) [48]. There-
fore, the largest problem in cancer chemotherapy has been preventing the phenomenon
of invasion and metastasis. Many natural constituents such as polyphenols, terpenoids,
flavonoids, alkaloids, steroids, and saponins have the potential to be anti-invasive and anti-
metastatic. Zhang et, 2016 [49], reported that ferulic acid showed antimetastatic potential
against breast cancer cells (MDA-MB-231) by upregulating caspase-3 and downregulating
epithelial-mesenchymal transition (EMT). Ferulic acid oral dose significantly reduced the
tumor volume in MDA-MB-231 xenografts in female BALB/c nude mice, and showed
no toxicity at a dose of 100 mg/kg body weight of animals. El-Gogary et al., 2022 [50],
investigated that nanoencapsulated ferulic acid exhibited anticancer potential in colorectal
cancer cell lines (HCT-116 and Caco2), and ferulic acid lipid encapsulated nanoparticles
showed significant antioxidant, apoptotic, anti-angiogenic, and anti-inflammatory prop-
erties in vivo through downregulation of cyclin D1, Insulin-like growth factor (IGF II),
and VEGF and modulation of BAX/Bcl-2. Therefore, inhibition of cancer migration from
one site to another can significantly increase patients’ survival rates, and researchers are
currently exploring anti-metastatic drugs from plant origins.
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Figure 3. Major signaling pathways targeted by ferulic acid in angiogenesis and metastasis processes.
Vascular endothelial growth factor (VEGF), Angiopoietin-1 (Ang1), Tyrosine-protein kinase (Tie-2),
Hypoxic-inducible factor (HIF) 1α, Protein kinase B (Akt), Phosphoinositide 3-kinase (PI3K), protein
kinase (PKC), Nuclear factor kappa light chain enhancer of activated B cells (NF-κB), Extracellular
signal-regulated kinase (ERK), Matrix metalloproteinases (MMPs).

4.4. Anti-Inflammatory Mechanisms

For the emergence and spread of chronic illnesses, inflammatory and immune re-
sponses act as key regulators. Activated inflammatory cells mediate chronic and acute
inflammation through a multi-step process [41]. In several in vitro and in vivo models, it
has been reported that ferulic acid possesses anti-inflammatory action. In vitro inflamma-
tion is widely studied in LPS-treated murine macrophages (Raw 264.7) [19] The overpro-
duction of inflammatory mediators (reactive oxygen species (ROS), nitric oxide (NO), pro-
inflammatory cytokines, and prostaglandin E2 (PGE2)) generated by activated inducible
nitric oxide synthase (iNOS) and COX is centrally managed by the macrophages generated
by the immune system [51]. Ferulic acid acts as an antioxidant and decreases macrophage
inflammatory protein-2 (MIP-2) production [52]. Ferulic acid and its derivatives also inhibit
the expression of inflammatory mediators, such as iNOS, NO production, prostaglandin
E2, and tumor necrosis factor-alpha (TNFα) in cells stimulated by the bacterial endotoxin
lipopolysaccharide [53–55]. A recent study showed that ferulic acid isolated from corn also
inhibited the iNOS expression and NO production in lipopolysaccharide (LPS)-stimulated
Raw 264.7 cells [56]. In addition to this, it has been reported that ferulic acid derivative
feruloyl-myo-inositol leads to the suppression of cyclooxygenase-2 promoter activity in
human colon cancer (DLD-1) cells via β-galactosidase reporter gene assay system [57]. In a
concentration-dependent manner, ferulic acid leads to the inhibition of chemokine super-
family member (murine MIP-2) as studied in LPS-stimulated macrophages (RAW 264.7)
cells. The anti-inflammatory response of ferulic acid (20 mg/kg) was studied in vivo also
in rats, showing reduction of the expression of cyclooxygenase-2 and nuclear factor kappa
light chain enhancer of activated B cells (NF-κB) in lung and liver, which was increased
by nicotine treatment [58]. These findings suggest that ferulic acid has anti-inflammatory
mechanisms against inflammatory diseases (Figure 4).
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5. Synergistic Interactions of Ferulic Acid in Cancer

The use of diverse synergistic chemo-preventive techniques with improved sensi-
tivity in combination with known chemotherapeutic medications has received a lot of
attention. Evidence has suggested that synergisms provide maximum therapeutic efficacy,
minimal side effects, and overcome drug resistance [59]. When given in combination with
δ-tocotrienol, ferulic acid was reported to synergistically inhibit telomerase activity in
human colorectal adenocarcinoma cells (DLD-1) by synergistically down-regulating the
expression of human telomerase reverse transcriptase (hTERT), the catalytic subunit of the
enzyme, suggesting that ferulic acid might augment the anti-cancer activity of δ-T3 [60].
Additionally, the combination of δ-tocotrienol and ferulic acid has also been investigated,
showing synergistic inhibitory effects and preventing the spread of different forms of cancer
cells, including prostate cancer (DU-145), breast cancer (MCF-7), and pancreatic cancer
(PANC-1) cells. Synergistic therapy has been found to be more effective and remarkably
reduced cell proliferation, as compared to δ-tocotrienol and ferulic acid alone [61]. More-
over, the compound has also been demonstrated to exert anti-proliferative/pro-apoptotic
effects and to decrease the metastatic or angiogenic properties of different cancer cells
when given in combination with unsaturated tocotrienols (TTs) [62]. Furthermore, recent
studies have shown the concerted pro-apoptotic effects of ferulic acid and nanostructured
lipid carrier in glioblastoma cells, thus increasing its bioavailability in the glioblastoma
cells by escalating the effects on protein expression levels and on the activation of the
apoptotic pathway more conspicuously when the cells were exposed to ferulic acid loaded
in nanostructured lipid carriers (NLCs), as compared to free ferulic acid [63]. In addition,
the combinatorial therapy of ferulic acid and cisplatin has also been reported to synergisti-
cally inhibit cellular proliferation in human leukemia cancer cell lines, and the synergized
growth inhibitory effect with cisplatin was shown to be probably associated with the G2/M
arrest in the cell cycle progression, thus indicating ferulic acid to be a better modulating
agent on human malignant cell lines [64]. Furthermore, the combined effect of ferulic acid
and gemcitabine on apoptosis and metastasis was also investigated, and the expression of
various genes involved in apoptosis and metastasis was found to be increased with a higher
fold change compared to the single treatment of gemcitabine in human prostate cancer cell
(PC-3) lines [65]. Additionally, ferulic acid in combination with PARP inhibitors has been
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reported to sensitize breast cancer cells, thus serving as an effective combination chemother-
apeutic agent as a natural bioactive compound [66]. Furthermore, the potential role of a
combination formula of ferulic acid and aspirin was also explored for pancreatic cancer
chemoprevention, utilizing a new chitosan-coated solid lipid nanoparticles (c-SLN) drug
delivery system encapsulating the natural compound and the drug; the results were found
to be promising [67]. Moreover, a study including two different polyphenols, curcumin,
and ferulic acid as adjuvant chemotherapeutics was carried out, evaluating chemoresis-
tance and cisplatin-induced ototoxicity against chemotherapeutic regimes, such as cisplatin,
for different types of cancers. The use of adjuvants was found to be an effective tool for
cancer therapy targeting ROS-modulated pathways [68]. Furthermore, a combination of
caffeic and ferulic acid lipophilic derivatives also showed increased cytotoxicity toward
human breast cancer cell lines, and thus could be applicable for chemopreventive and/or
chemotherapeutic purposes [69]. From the above discussion, it can be determined that
this bioactive natural substance has the potential to have synergistic effects on growth
inhibition, apoptosis induction, and anticarcinogenic properties, and it may prove to be a
promising alternative approach for boosting therapeutic potency and lowering systemic
toxicity of chemotherapeutic drugs [70].

6. Safety Studies

As a natural plant-derived compound, ferulic acid is considered to be generally safe.
Although several investigations have confirmed this assumption, systematic studies on its
safety are still required before the development of ferulic acid as a therapeutic tool [71].
Actually, trans-ferulic acid-4-β-glucoside revealed no apparent toxicity in mice models,
inducing no significant alterations in the body weight and blood biochemical parameters
of animals [72]. Additionally, topical applications of ferulic acid did not cause any skin
irritation in nude mice, representing an efficient and safe route for using ferulic acid against
photodamage [73]. However, a long-term treatment with ferulic acid was still demonstrated
to cause some nephrodamaging effects in the model of doxorubicin-induced chronic kidney
disease in rats [74], suggesting that further studies on the safety of this phenolic acid are
needed to determine the values of no-observed-adverse-effect-level (NOAEL) in health risk
assessments. Tables 1 and 2 represent an overview of ferulic acid anticancer effects.
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Table 1. Anticancer effects of ferulic acid based on in vitro studies.

Type of Cancer Cell Lines Effects Mechanisms Concentration References

Melanoma

Murine B16 - ↓melanin production, ↓ tyrosinase activity, ↓ casein kinase 2 (CK2),
↑ p- tyrosinase 25 and 50 µM [75]

A375, CHL-1,
SK-MEL-2, B16F10 Anti-angiogenic

↓ proliferation, migration and tube formation, ↓ fibroblast growth
factor 1 (FGF1), ↓ FGFR1, ↓ PI3K, ↓ protein kinase B (Akt)

signaling, ↓ PI3K-Akt pathway, ↑ (HUVEC) Growth, ↓ VEGF-A,
FGF1, FGF2, PDGF-α, PDGF-β and phosphatidylinositol-glycan

biosynthesis class f protein (PIGF)

0, 2.5, 5, 10, 20, 30, 40 µM [43]

Sarcoma S180 Ameliorating oxidative
stress injury

↓ diosbulbin B-induced liver injury, ↓ ALT and AST activities,
Ferulic acid reverses diosbulbin B-decreased CuZn-SOD and CAT

enzymatic activities and mRNA expression
- [76]

Osteosarcoma 143B and MG63 Induces apoptosis ↓ proliferation, ↑ G0/G1 phase arrest, ↓ CDK 2, CDK 4, CDK 6,
↑ Bax, ↓ Bcl-2, ↑ caspase-3 activity, ↓ PI3K/Akt activation 0,10,30,100 and 150 µM [77]

Thyroid TT cells Induces apoptosis

↓ invasion, migration and colony formation, ↓ URG4/URGCP
(upregulated gene-4/upregulator of cell proliferation), ↓ CCND1,

CDK4, CDK6, BCL2, MMP2, and MMP9, ↑ p53, PARP, PUMA,
NOXA, BAX, BID, CASP3, CASP9 and TIMP1

50, 75, 100, 150, 200, 300, 400,
500, 750 µM and 1 mM [78]

Breast

MDA-MB 231 Induces apoptosis ↓ proliferation, ↑ apoptotic cells, ↓ percentages of cells in G0/G1
phases by TQ, ↓ in %ages of cells in the S phase by FA

Thymoquinone (TQ) and
Ferulic Acid (FA) 25 µM TQ +
250 µM FA, 50 µM TQ + 350
µM FA, 50 µM TQ + 450 µM
FA, 100 µM TQ + 350 µM FA,

100 µM TQ + 450 µM FA)

[79]

MCF7 and 4T1 Induces apoptosis
↓ viability, structural changes in cancer cells as compared to

normal cells, ↑ apoptosis, ↑ lipid peroxidation, ↑mitochondrial
damage, ↑ cell death

FA-Nanosponges 5, 10, 20, 40,
80, 125, 250, 500, 750,

and 1000 µM
[80]

MDA-MB-231 - ↓ S phase, ↑ antiproliferative effects, ↑ sensitivity to UV treatment 0–10 µM [81]

MDA-MB-231 Induces apoptosis and
inhibits metastasis

↓ viability, ↑ apoptosis, ↓metastatic potential, reversal of
epithelial-mesenchymal transition (EMT), ↑ caspase-3, ↓ migration

across the wound edges, ↓migration, ↓ vimentin, ↑ E-cadherin
3, 10, 30 and 100 µM [49]

MCF-7, MDAMB-231
and HS578T Induces apoptosis ↓ proliferation, ↑ cytotoxicity, ↑ p53, ↑ Bax, ↑ caspase-9 0–75 µM [82]
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Table 1. Cont.

Type of Cancer Cell Lines Effects Mechanisms Concentration References

Lung

A549 Induces apoptosis

↓ proliferation, ↓ oxidative stress, ↓ GSH, ↑ Keap1, ↓ Nrf2 nuclear
level, ↑ apoptotic population, ↓ p-p38 MAPK level, ↓ activation of
Akt/MAPK, ↓ p-STAT3, ↓ Cox-2, ↓MMP-9 and VEGF, ↓ PECAM1,
↑ arrest at at G2/M phase, ↑ p53 and p21 protein, ↓ Cdc25C,
↑ active caspase 9,3, ↑ Bax, ↓ Bcl-2, ↑ radiation sensitivity

ferulic acid −10–400 µM,
Gamma radiation 5, 7.5, 10

and 15 Gy (60 Co)
[83]

A549 Inhibits metastasis

↓ Proliferation, ↑ G0/G1 phase (cell cycle arrest), ↓migration and
invasion, ↓ Bcl-2, ↑ Bax, ↑ Bax/Bcl-2 ratio, ↓MMP-2 and MMP-9,
↓p- ERK and p-p38, it increased JNK expression, ↓ p-AKT,

p-mTOR, p-MEK, and p-ERK

Ferulic acid derivative FXS-3
0.2–50 µM [84]

Hepatocellular

HepG2 Induces apoptosis

↓ proliferation, ↓ oxidative stress, ↓ GSH, ↑ Keap1, ↓ Nrf2 nuclear
level, ↑ apoptotic population, ↓ p-p38 MAPK level, ↓ activation of
Akt/MAPK, ↓ p-STAT3, ↓ Cox-2, ↓MMP-9 and VEGF, ↓ PECAM1,
↑ arrest at at G2/M phase, ↑ p53 and p21 protein, ↓ Cdc25C,
↑ active caspase 9,3, ↑ Bax, ↓ Bcl-2, ↑ radiation sensitivity

ferulic acid -10–400 µM,
Gamma radiation 5, 7.5, 10

and 15 Gy (60 Co)
[83]

Huh-7 and HepG2 Induces apoptosis
↓ viability, ↑ structural changes, ↑ROS, ↓MMP, ↑ DNA damage,
↓ percent of cells in G0/G and G2/M, ↑ S phase, ↑ γH2AX, ↑ Bax,

Bad, cleaved caspase 3

ZnONPs with ferulic acid
(ZnONPs-FAC) 0.05, 0.1, 1, 5,

10 and 20 µg/ml
[85]

Pancreatic MIA PaCa-2 Induces apoptosis ↓ cell viability and colony formation, ↑ p53, Bax, PTEN caspase
3 and 9

150 µM, 200 µM, 300 µM,
400 µM, 500 µM, 750 µM

and 1 mM
[86]

Cervical

HeLa and Caski Induces apoptosis
↓ viability, ↑ DNA condensation, ↑ apoptosis, ↑ pro-caspase-3,

pro-caspase-8, pro-caspase-9 and PARP, ↓ Bcl-2 and Mcl-1, ↑ Bax
and ROS, ↓p-Akt and p-PI3K

4–20 µM [28]

Hela and Caski Induction of cell cycle
arrest and autophagy

↓ invasion, ↓MMP-9, ↑ arrest in G0/G1 phase, ↑ p53 and p21,
↓ Cyclin D1 and Cyclin E, ↓ LC3-II, Beclin1 and Atg12-Atg5 0, 0.5, 1.0,1.5 and 2.0 mM [32]

HeLa - ↓ Cell viability ferulic acid nanohybrids 1, 5,
10, 20, 30, 40, and 50 µM [87]

HeLa and
ME-180

Enhances radiation effects
by increasing lipid

peroxidative markers

↓ viability ↓ GSH, ↑ TBARS, CD and LHO, ↓ SOD, CAT and GPx,
↑ DNA damage, ↑ intracellular ROS levels (results by ferulic acid +

irradiation in comparison with radiation or ferulic acid
treatment alone)

ferulic acid (1, 5, 10, 20, 30
and 40 µg/mL) + radiation (2,

4, 6, 8, 10, 12 and 15 Gy)
[88]
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Table 1. Cont.

Type of Cancer Cell Lines Effects Mechanisms Concentration References

Prostate

PC-3 Induces apoptosis

↓ proliferation, ↑ ATR, ATM, CDKN1A, CDKN1B, E2F4, RB1, and
TP53 (Gene expression), ↓ CCND1, CCND2, CCND3, CDK2,

CDK4, and CDK6 (gene expression) ↓ CDK4 and BCL2 (protein
expression), ↓ invasion and colony formation

20, 30, 50, 75, 100, 150, 200,
250, 300, 350, 500, 750,

900 µM, 1, 2 mM
[25]

LNCaP Induces apoptosis

↓ proliferation, ↑ CASP1, CASP2, CASP8, CYCS, FAS, FASLG, and
TRADD (gene expression), ↓ BCL2 and XIAP (gene expression),
↓CDK4 and BCL2 (protein expression), ↓ invasion and

colony formation

20, 30, 50, 75, 100, 150, 200,
250, 300, 350, 500, 750, 900,

1000 and 2000 µM
[25]

Colorectal

HCT- 116 and HT-29 Induces apoptosis ↑ antiproliferative effects, ↑ arrest at the G1 phase, ↓ S phase,
↑ Early apoptotic cells, ↑ Caspase 3, 8, and 9 activity 0,0.25,0.5,1.0 and 1.5 mM [89]

HCT116 Induces apoptosis ↓ proliferation, ↑ p15 (mRNA level)
Ferulic acid-bound

resveratrol- 0, 0.625, 1.25, 2.5,
5, 10 and 20 µM

[90]

Table 2. Representation of anticancer activities of ferulic acid in vivo models.

Type of Cancer Animal Models Effects Mechanisms Dosage Duration References

Melanoma
Female C57BL/6
mice xenografted
with B16F10 cells

Inhibited tumor
angiogenesis

↓ tumor volume and weight, ↓ p-FGFR1Y1 positive
cells, ↓ FGFR1, ↓p-Akt, ↓ p-PI3K 0, 10, 30, 50 mg/kg 30 days [91]

Sarcoma
ICR male mice

transplanted with
S180 cells

- ↑ diosbulbin B-induced anti-tumor activity ferulic acid 8 mg/kg +
DB 32 mg/kg - [92]

Colon
Male BALB/c mice

xenografted with CT
26 cells

Inhibited tumor growth

↑ tumor regression, ↑ cleaved caspase 3, ↑ tumor
shrinkage, ↑ damage in tumor cell parenchyma,
↑ shrinkage in tissues, ↑ nuclear fragmentation,
↑ apoptotic body formation at the neoplastic region

ferulic acid 50 mg/kg +
2 Gy dose of radiation 27 days [86]
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Table 2. Cont.

Type of Cancer Animal Models Effects Mechanisms Dosage Duration References

Breast
Female BALB/c

nude xenografted
with MDA-MB-231

Inhibited tumor
metastasis

↓ toxicity, ↓ tumor volumes and weights,
↓ proliferation (Ki67 staining), ↑ apoptosis (active

caspase-3 staining), ↓ tumor nodules on the surface of
the lungs and liver

100 mg/kg 28 days [84]

Lung
C57BL/6 mice

transplanted with
A549 cells

Inhibited tumor
metastasis

↓ tumor volume, ↓ pulmonary metastatic nodules,
↓ pulmonary tumor metastasis FXS-3 at 25–100 mg/kg 27 days [93]

Hepatocellular Wistar albino rat Inhibited tumor
metastasis

↓ nodular formation, ↓ GST-P + ive, ↓ Ki67 and
8-OHdG positivity, ↓ ALT, AST, ALP, γ-GT and TBARS

(liver marker enzymes)

ZnONPs with ferulic
acid (ZnONPs-FAC)
3.6 µg/mL µg/ml

- [88]

Pancreatic SCID mice Inhibited tumor growth
↓↑

↓ tumor volume, ↓ PCNA and MKI67, and ↑ p-RB,
↑ p21, ↑ p-ERK1/2 75 mg/kg 35 days [94]
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7. Conclusions and Future Perspectives

The evidence presented in this review study clearly suggests that ferulic acid can be
considered a possible option for the development of novel anticancer agents due to its
capacity to disrupt cancer cell signaling. Several studies have reported the anti-neoplastic
role of ferulic acid in various cancer cells, including brain cancer, breast cancer, gastric
cancer, prostate cancer, cervical cancer, and colorectal cancer. Together, it can be established
that this bioactive natural substance may have effects on tumor growth inhibition, apoptosis
induction, suppression of angiogenesis, and metastasis, and may prove to be one of the
most promising alternatives to current chemotherapeutic treatment methods for increasing
therapeutic potency and lowering systemic toxicity. However, ferulic acid stability and
limited solubility in aqueous media continue to be key obstacles to its bioavailability,
preclinical efficacy, and clinical use. In this context, ferulic acid-loaded nano-therapeutic
strategies, such as ionic gelation methods, can play an important role in overcoming these
problems. For instance, chitosan-based nano-formulations can improve the stability of
ferulic acid by modulating the hydrophobic interactions. Furthermore, investigations on
synergistic combinations between ferulic acid and conventional anticancer drugs must
be continued to find a more efficient dosage regimen for the treatment of diverse types
of malignancies, inducing lower adverse side effects. Overall, ferulic acid presents a
promising natural agent for supplementing the current anticancer arsenal with improved
life expectancy and quality of life for patients.
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