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Brain machine interfaces (BMIs), or brain computer interfaces (BCIs), are devices that
act as a medium for communications between the brain and the computer. It is an
emerging field with numerous applications in domains of prosthetic devices, robotics,
communication technology, gaming, education, and security. It is noted in such a
multidisciplinary field, many reviews have surveyed on various focused subfields of
interest, such as neural signaling, microelectrode fabrication, and signal classification
algorithms. A unified review is lacking to cover and link all the relevant areas in this
field. Herein, this review intends to connect on the relevant areas that circumscribe
BMIs to present a unified script that may help enhance our understanding of BMIs.
Specifically, this article discusses signal generation within the cortex, signal acquisition
using invasive, non-invasive, or hybrid techniques, and the signal processing domain.
The latest development is surveyed in this field, particularly in the last decade, with
discussions regarding the challenges and possible solutions to allow swift disruption of
BMI products in the commercial market.
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INTRODUCTION

Brain machine interfaces (BMIs) or brain computer interfaces (BCIs) are devices that connect
our brains directly to computers. These intelligent systems can decipher brain signals using five
consecutive stages: signal acquisition, pre-processing, feature extraction, classification, and control
interface as shown in Figure 1 (Nicolas-Alonso and Gomez-Gil, 2012). Furthermore, BMIs can be
either classified as motor, sensory, and sensorimotor, or they can be categorized as invasive or non-
invasive depending upon which part of the brain they tap into or which part they are implanted
in respectively. Today, an average computer processor can solve up to 1.8 billion calculations per
second (cps) (Moravec, 1998), while human brain (1000 trillion; Mead and Kurzweil, 2006) can
exceed this number by far and wide. It is noted the current interfaces being used to connect to the
digital world, such as typing or voice commands, have very low bandwidth and throughput which
hinders the market disruption of commercial BMI products. Hence there is a great need for better
interfaces with higher bandwidth for seamless data transfer between our brains and computers.

To understand the need of BMIs/BCIs research and development, let us brief on their relatively
young history and their initial development. For a detailed history of BMI, one may refer to the
article by Lebedev and Nicolelis (2017). The research in this area started as early as 1950s, when
Lilly (1956) implanted multielectrode array in a monkey’s cortical area for electrical stimulation.
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Later, Wyrwicka and Sterman (1968) recorded brain signals
in cats which they later translated into sensory feedback
for the same animals to increase the generation of those
brain signals (sensorimotor rhythms). Around the same time,
first electroencephalography (EEG) recording in humans were
made to monitor the human brain activity (Butts, 1978). The
term “Brain Computer Interface” was first coined by Vidal
(1973), who successfully converted brain signals into computer
controlled signals. By 1990s, Nicolelis and Chapin mastered one
dimensional neural control of robotic limbs using laboratory
rats (Chapin et al., 1999). The same group later worked on
robotic arm control and developed BMIs for locomotion patterns
and bimanual movement. Most recently, Donoghue et al. (2007)
implanted invasive multielectrode arrays on humans to show
BMI control of computer cursor (Hochberg et al., 2006) and
robotic manipulator (Hochberg et al., 2012).

The most coveted application of BMIs to this date centers
on developing assistive products for disabled people. It is
noted that BMIs have tremendous potential to solve a variety
of clinical disorders. Up till now more than 40,000 people
have been successfully implanted with cochlear implant, a
neuroprosthetic implant to restore audition in deaf people.
Development and implant of BMI products such as speech
synthesizers (Anumanchipalli et al., 2019), robotic prosthetics
(Hochberg et al., 2006), and neuroprosthetic devices (Hochberg
et al., 2012) have been successfully demonstrated by various
research groups and companies using a limited number of
neural electrodes. In the last 20 years, the interest in this field
has been ever rising as evidenced by the trends in journal
publications and patents as illustrated in Figure 2A. Currently,
more than 100 research groups are actively working in the field
of BMIs as compared to only three research groups 20 years
ago (Wolpaw, 2007b). In the meantime, many companies are
currently working in this field, such as Ni20, Neuracle, NeuroSky,
Brain Co., SOSO H&C Co., Multineurons, Nihon Kohden Co.,
Neurable, Neuralink, and Bit Brain Technologies. Figure 2B
shows an interesting trend of world leaders in the field, with
United States leading ahead.

Despite the huge number of research groups and companies
working in this field, surprisingly, very few BMI products are
making it to the commercial market as of now. This review
therefore is intended to shed some lights on those underlying
reasons and steps that could be taken to aid in the development of
efficient BMIs. In short, the field currently faces several challenges
including the accuracy and efficiency issues of BMI products,
among many others. For example, mental imagery based BMIs
have only an accuracy of up to 75%, which means the system is
mistaken once every four guesses (Allison and Neuper, 2010).
Channel capacity, throughput or in simple words information
transferred per unit time is still low for invasive BMIs and even
lower for non-invasive ones. The throughput is up to 0.5 bits/s
for non-invasive EEG based BMIs, whereas less than 3 bits/s for
invasive BMIs. To put things into perspective, a simple task such
as human tap (i.e., intentional finger tap on a surface) requires
10 bits/s of throughput (Baranauskas, 2014).

Meanwhile, the literature on BMIs is still very limited. There
are indeed many reviews on neuronal function (Boniface, 1998;

Dong and Benveniste, 2001; Del Bigio, 2010), neuronal
recordings (Cheung, 2007; Ghane-Motlagh and Sawan, 2013)
and processing of the extracted signal (Wolpaw, 2007b; Nicolas-
Alonso and Gomez-Gil, 2012) but they all focus on specific
parts of BMIs. Nevertheless, the intricacies and challenges would
be worth surveying specifically at the intersection of different
areas within the field. As such, the main purpose of this review
is neither to detail BMIs’ history nor to expound upon its
applications or products, instead intended to provide the readers
with two distinct perspectives. One is to analyze the bigger picture
as to how different areas within the field of BMIs amalgamate, and
the other to detail the specific challenges and bottlenecks in each
area and their possible solutions.

Figure 3 shows the basic outline of this review, which
includes three different sections, each describing and analyzing
a particular area and challenges associated with it. The first
section focuses on surveying the brain itself, how neurons work to
generate signals, and other types of important cells that perform
different functions within the brain. The second section details
BMI types, methods, microelectrodes, and their limitations.
Major microelectrode insertion problems are identified, such as
buckling, corrosion, motion induced injuries, with the possible
solutions to solve them discussed. The last section reviews signal
post-processing methods and their limitations. Issues like low
throughput and questionable data fidelity are also brought to
light, due to limited usage of statistical analyses techniques.

SIGNAL GENERATION

Our brains are enclosed by pia mater, arachnoid mater, and
dura mater beneath the skull, which are there to protect and
support the brain. Human brain can be divided into three main
parts based on function, i.e., the stem or cerebellum that deals
with vital bodily function, the limbic system that deals with
emotions, fight or flight response, and lastly the cortex that is
responsible for processing, critical thinking, and analysis. The
cortex can be further divided into frontal, parietal, occipital, and
temporal lobes. A few major functions of these lobes include
critical thinking, sensing and movement, memory storage, and
visual data processing (Boniface, 1998).

The first theory on how the nervous system works was given
by Camillo Golgi, who suggested in his reticular theory that there
exists a continuous nerve cell network or reticulum. The theory
was later rejected when Cajal and Sherrington proposed their
model of neurophysiology which is valid and widely accepted
till date (Cimino, 1999). The neurophysiology theory suggests
that the nerve cells are discrete entities which communicate
with each other using specialized contacts, so-called synapses.
Nervous system is divided into two parts function-wise, i.e.,
central nervous system (CNS) which includes the brain and the
spinal cord, and periphery nervous system (PNS) that includes
sensory neurons which links sensory receptors present within
the body at various locations (e.g., skin) to the CNS. Similarly,
nervous system cells can be divided into two categories, neurons
capable of electrical signaling, and the supporting glial cells,
although not capable of electrical signaling but performing many
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FIGURE 1 | Schematic illustration of a brain machine interface using five stages including signal acquisition, signal processing, feature extraction, data classification,
and the control interface.

of other necessary functions. A neuron is a specialized kind
of cell that differs in many ways to a normal cell despite
some similarities. There are many different types of neurons
found within the human brain that are dedicated for different
functions, still, a neuron primarily includes three parts namely
dendrites, cell body, and axon. The dendrites, also called dendritic
processes, often experience extensive arborizations which are the
primary input source from other neurons at the synapses. These
dendrites are equipped with high content of cytoskeletal protein
and ribosomes that help in information receiving and processing.
However, there exist a few types of neurons without dendritic
parts, thus with limited input capabilities accordingly (Wood,
1996; McCandless, 1997).

The synapse comprises of pre- and postsynaptic components
called presynaptic terminal and postsynaptic specialization,
respectively. However, there is no cellular continuity between
these elements for most of the synapses that occur. Instead,
an extracellular space exists in between called the synaptic cleft
that is used by the neurons to communicate using specialized
molecules called neurotransmitters. There can be as many as
100,000 synaptic inputs received by each neuron in human
brains. The integrated signal after passing through the cell body
is read out at the axon origin, which is the part of the cell
responsible for signal conduction. These axons can range from a
few microns in length, usually found in interneurons, to almost a
meter, found in spinal cord transmitting signals to distant regions
of the human body. The whole activity of this electrochemical
signaling within a neuron is called action potential (AP) (Buzsáki
et al., 2012). So basically, the dendrites, body, and axon
are responsible parts of a neuron for information receiving,
processing, and transferring, respectively (Purves et al., 2008).

Glial cells, on the other hand, do not directly take part in the
synaptic interactions, and outnumber neurons by three times.
The word glia is of a Greek origin which means “glue,” based

on the assumption that these cells hold the neurons together,
however, there is little evidence on that. Glial cells perform many
important functions such as maintaining the ionic balance within
the brain, supporting injury recovery, providing scaffold for
neural development, and controlling neurotransmitters around
synaptic cleft. There are primarily four types of glial cells found
in the CNS, namely, astrocytes, oligodendrocytes, microglia, and
ependymal cells. Astrocytes having star-like elaborate processes
are responsible for maintaining a suitable chemical environment
for neural signaling as shown in Figure 4A. Oligodendrocytes
do the job of axon myelination in the CNS to help in faster
signal transfer. The same job is done by Schwann cells in the
PNS. Microglia performs the function of cellular debris removal
from injury sites. They also secrete a variety of cytokines to
modulate local inflammation. In a way, their function is very
similar to immune cells or macrophages. Lastly, ependymal cells
are responsible for the production of cerebrospinal fluid (CSF).
Figure 4B depicts the optimum signal recording distance for
a single neuron (Buzsáki, 2004) while Figure 4C pictorially
represents the degradation of neurons upon foreign object
insertion in the brain.

Foreign Body Response
As mentioned in the introduction, understanding the functions of
different types of brain cells is crucially tied to the development of
efficient and long-lasting BMIs. Hence, it is necessary to discuss
here how these above-mentioned cells respond to a foreign object
such as a synthetic electrode in the context of BMIs. It is known
that human body actively responds to any foreign object/device
implanted in it, which is so called foreign body response (FBR).
Generally, the body responds in five stages including (i) initial
injury upon implantation, (ii) foreign body-tissue interaction,
(iii) acute inflammation, (iv) chronic inflammation, and (v)
foreign body enclosure in fibrous capsule (Morais et al., 2010).
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FIGURE 2 | (A) Yearly number of publications and number of patents in the field of brain machine interfaces since 2000. (B) Number of publications on brain
machine interfaces at different countries.

FIGURE 3 | Schematic outline of this review on the three main domains in the research and development of brain machine interfaces.
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FIGURE 4 | Illustrative summary of neuronal response toward signal recordings. (A) Depiction of foreign body response within the brain and initiation of reactive
gliosis due to local brain inflammation; (B) optimal distance for recording neuronal spikes with high signal to noise ratio, (C) localized neuronal degradation after
electrode insertion within brain tissue.

Nevertheless, the brain takes a slightly different approach for
tackling any foreign body mainly due to the presence of blood
brain barrier (BBB) and absence of immune cells that are
otherwise present everywhere in the human body. This does not
mean that the brain is incapable of responding against foreign
bodies. To address this issue, brain has glial cells that are assumed
to be almost ten times as abundant as neurons (Hilgetag and
Barbas, 2009), however some studies suggest the population of
neurons and glial cells is almost the same (Azevedo et al., 2009).
As mentioned earlier, microglia, astrocytes, oligodendrocytes,
and ependymal cells are the major types of glial cells present in
the CNS (Matthews, 1976). Together these cells are responsible
for many critical activities including protection against infection,
maintain homeostasis, axon myelination, and CSF secretion, etc.
(Baumann and Pham-Dinh, 2001; Dong and Benveniste, 2001;
Hanisch and Kettenmann, 2007; Del Bigio, 2010).

Upon electrode insertion in the brain, a severe damage to
surrounding tissues and BBB disruption occurs. This activates
microglia and astrocytes from a resting state to an active state to
initiate the healing process. The whole process is called reactive
gliosis. The active states of microglia and astrocytes enhance their
proliferation and begin secreting various chemokine attractants.
Studies suggest that within 30 min of electrode insertion,
microglial lamellipodia initiate implant encapsulation. In the
next 24 h, activated microglia completely encapsulates the
implant, while astrocytes begin migration toward the affected
site and commence astrogliosis and glial scaring (Stence et al.,
2001; Babcock et al., 2003; Sofroniew and Vinters, 2010; Kozai
et al., 2014). It takes almost 2–3 weeks for the astrocytic
encapsulation in contrast to the microglial encapsulation which
occurs within the first 24 h of implantation, while reorganization

of blood vessels follows glial scaring (Stichel and Müller, 1998;
Szarowski et al., 2003).

Figure 5A depicts how the brain responds upon the insertion
of an electrode. Figure 5A (i) shows in healthy brain tissue glial
cells provide neuronal modulation and neurotrophic support
by releasing GABAergic (GABA-gamma-aminobutyric acid) and
glutamatergic neurotransmitters. However, electrode insertion
sets forth a series of biochemical events near the injury site.
Due to electrode shank penetration, capillaries and cellular
processes are severed, extracellular matrix is disrupted, and
platelets and erythrocytes are released. Microglia, NG2 glia,
the only glial cells that receive direct synaptic input form
neurons, and astrocytes get activated experiencing behavioral
and morphological changes. Activated microglia migrates
toward the electrode surface to encapsulate it, while releasing
proinflammatory factors, such as cytokines and chemokines, at
the same time. Pericytes get detached from vasculature and rush
toward the injury site for repairing broken vasculature as shown
in Figure 5A (ii). Astrocytic encapsulation proceeds microglial
phagocytosis as depicted in Figure 5A (iii). The entire process
also causes neurodegeneration as well as demyelination of axons
due to the death of oligodendrocytes in the vicinity at the brain-
electrode interface (Jorfi et al., 2015; Wellman and Kozai, 2017;
Ferguson et al., 2019).

Moreover, under such inflammatory conditions, the release
of proinflammatory factors occurs and leads to production of
nitric oxide via inducible NO synthase enzyme and other reactive
oxygen species (ROS) like superoxide ions. Upregulation of ROS
has also been reported under proinflammatory conditions as
shown in Figure 5B (Chan, 2001). These reactive ions then react
to form peroxynitrite and other reactive nitrate species (RNS).
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FIGURE 5 | (A) Foreign body response upon electrode insertion. (i) Healthy brain tissue, (ii) acute response upon electrode insertion within 6–8 h, and (iii) chronic
response after injury persisting for months. Reprinted with permission from Wellman and Kozai (2017). Copyright (2017) American Chemical Society. (B) Effects of
proinflammatory factors on neuronal cells after electrode insertion. Proinflammatory factors activate inducible-nitric oxide synthase (iNOS) that produces nitric oxide
(NO) in excessive amounts, which later reacts with reactive oxidative species to form peroxynitrite (a known marker for cell damage).

Under these nitrosative and oxidative stress conditions, RNS
and ROS can interact with proteins, lipids, and mitochondrial
components which may lead to eventual cell damage (Choi, 1993;
Cherian et al., 2004).

The FBR is also especially important to study because
of its chronic nature. The initial acute response alleviates

within 6–8 days of electrode insertion. However, the prolonged
chronic response persists even after several months (Chan,
2001). Several studies prove that if the electrodes are inserted
and quickly removed, there are no signs of electrode tracks
after a few months, suggesting that the presence of electrode
within the brain exacerbate the proinflammatory conditions
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FIGURE 6 | Signal acquisition techniques and challenges. (A) Invasive vs. non-invasive BMI techniques; (B) electrode buckling upon intracortical insertion; (C)
damage to electrode due to corrosion, passivation layer degradation, and mechanical mismatch.

FIGURE 7 | Hierarchical classification of brain machine interfaces based on their spatial position and application.

probably due to FBR and micromotion (Polikov et al., 2005;
Griffith and Humphrey, 2006).

SIGNAL ACQUISITION

Based on invasiveness, BMIs can be divided into two main
categories, namely, invasive, and non-invasive BMIs as shown in
Figure 6A. The major difference between these two techniques

is that invasive techniques require surgery to implant electrodes
within the brain’s cortex while non-invasive techniques rely on
recordings over the skull. Generally non-invasive methods have
poor spatial resolution but show reasonable temporal resolution.
Also, signal attenuation is a big problem in such techniques due
to limited electrical conductivity of skull (Van Gerven et al.,
2009). Recently, another class of BMIs has also emerged, utilizing
the benefits of both invasive and non-invasive techniques,
appropriately called as hybrid BMIs (Pfurtscheller et al., 2010).
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Elaborated in below sections are the most common types of these
three techniques with a focus on the invasive techniques. Figure 7
gives a hierarchal classification of BMIs.

Non-invasive Techniques
One of the most used neural recording techniques is EEG,
in which electrodes are simply placed on the surface of scalp
at specific points to record averaged neuronal signals from
different intracortical regions (Schomer and da Silva, 2012).
EEG based systems are portable and are usually cheap. They
have good temporal resolution as they directly measure the
neural activity while it lacks in spatial resolution as the signal
has to pass through a number of physical barriers including
skull, scalp, and CSF (Wolpaw, 2007a; Babiloni et al., 2009).
Also EEG recordings are susceptible to artifacts that can be
mechanical, electromyographic, or electrooculographic in nature
(Fatourechi et al., 2007). Magnetoencephalography (MEG) is
another technique which records postsynaptic activity of neurons
using magnetic fields. Its spatial resolution is reasonably better
than EEG and has a high temporal resolution (Cohen and
Halgren, 2009). Functional magnetic resonance imaging (fMRI)
is a method used widely in medical science to create 3D maps of
brains. It basically detects the changes in magnetic field occurring
due to changes in oxygenation levels of hemoglobin due to
neuronal activity (Lee et al., 2009). The signal generated by fMRI
is also called “blood oxygen level dependence” (BOLD) (Ogawa
et al., 1990). It can be used to obtain full brain scans covering all
brain areas unlike EEG or MEG (Logothetis et al., 2001).

Other than using electrical signals, neural data can be
obtained using photons in the wavelength range of 650–900 nm
that can penetrate cortical areas and show contrasts based
on oxygenation/deoxygenation of hemoglobin. The method
is called near infrared spectroscopy (NIRS) (Owen-Reece
et al., 1999). Functional near infrared topography (fNIRT)
is another modification of NIRS that renders 3D images of
the brain (Limongi et al., 2009). Some other known methods
include positron emission tomography (PET), single positron
emission computed tomography (SPECT), and computer axial
tomography (Herman and Brouw, 1982; Lassen, 1987; Ollinger
and Fessler, 1997).

Several evoked or induced responses are being used to
obtain neural response via non-invasive techniques. These
include visually evoke potentials, slow cortical potentials,
sensorimotor rhythms, event related potentials, event related
synchronization/desynchronization (ERD), blood oxygenation

levels, and cerebral oxygenation levels, etc. (Coyle et al., 2003).
Table 1 show types of brain signals recorded using non-
invasive BMIs.

Non-invasive techniques are widely used and well established,
however, the major shortcomings of almost all the non-invasive
techniques are low signal specificity, low signal to noise ratio
(SNR), and signal distortion. The hindrance due to skull and
intermediate brain layers between the cortex and the electrodes
reduces the SNR of the recordings, leading to an average signal
of millions of neurons. Moreover, any of the above-mentioned
techniques cannot record a single or even a few hundred neurons,
which is highly critical for practical BMI applications. Hence, a
logical step forward for obtaining a specific high-resolution signal
is to put electrodes directly outside or inside the cortex.

Invasive Techniques
As mentioned earlier, non-invasive techniques have been used
in the past to develop neuroprosthesis but their signals are
distorted, nonspecific, and low-resolution (Stence et al., 2001;
Babcock et al., 2003). To precisely record neuronal data with a
higher degree of freedom for neuroprostheses, the development
of BMIs will require invasive recording techniques (Lebedev
and Nicolelis, 2006) such as electrocorticography (ECoG) and
intracortical electrodes. Figure 8 clearly depicts that the invasive
techniques have far better spatial and temporal resolutions than
non-invasive techniques.

To our advantage, the SNR is relatively higher in invasive
techniques. ECoG requires surgery to place electrodes in
extracortical areas either inside or outside dura mater, called
subdural ECoG, and epidural ECoG, respectively (Schalk et al.,
2007). This technique is like EEG but with a higher SNR as the
electrode grid is placed directly above the cortex surface avoiding
skull. ECoG records an average of thousands of neurons, it can
also be referred as local field potentials (LFPs) but is unqualified
to obtain deep brain signals (Kaiju et al., 2017). However, AP
readings from a group of functionally linked single neurons are
required for high precision and increased data fidelity (Yuste,
2015). To achieve this, microelectrodes are used to record single
unit activity (SUA) as well as multi-unit activity (MUA). Though
even with SUA, a specific number of neurons must be recorded
to derive some consistent and trustworthy meaning from the
readings. Opinions vary, but a good estimate for minimum
number of readings can be anywhere between 15 and 30 neurons
(Nicolelis and Lebedev, 2009). Hence, intracortical SUA and
MUA recordings using microelectrodes are very important.

TABLE 1 | Types of brain signals recorded using non-invasive BMIs.

Signal type Origin site Frequency (Hz) Time interval (s) Throughput (bits/min)

Slow cortical potential (SCP) (Birbaumer, 1999) Frontocentral region 0.5 0.5–10 5–12

Sensorimotor rhythms
(Pfurtscheller and Aranibar, 1979)

Somatosensory and motor
cortex region

8–13 0.25–0.5 3–35

P300 event related potential (P300-ERP)
(Rivet et al., 2009)

Parietal lobe >6 300 × 10−3 20–25

Steady state visually evoked potential (SSVEP)
(Lesenfants et al., 2014)

Occipital cortex 12–18 (Kuś et al., 2013) 500–1000 × 10−3 60–100
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FIGURE 8 | Spatial and temporal resolutions of various BMI techniques, with microelectrodes showing higher resolutions than other techniques.

Microelectrodes
This section proceeds with the discussion of microelectrodes,
including their types, materials for fabrication, and specific issues
related to such electrodes. Table 2 illustrates the importance
of reducing electrode size for BMIs. First, the size reduction
usually provides us with a higher SNR. To obtain good quality
signal, electrodes are required to have good charge transfer
characteristics, low impedance, and high selectivity (Keefer
et al., 2008). Macroscale electrodes have very low selectivity and
can cause severe damage to brain, which limits their use in
BMI applications.

Figure 9A qualitatively shows that as selectivity is increased
by reducing the size of the electrode, impedance also increases
(Rui et al., 2012), hence, microelectrodes give us the optimum
size range with high quality signal. Meanwhile, active species
transport is affected by the size of the electrode. Although
convergent diffusion increases as the electrodes get miniaturized,
non-fickian diffusion becomes competent due to the brownian
motion of molecules which in turn affect the steady state current.
Moreover, as the absolute current decreases proportionally with
the electrode size, it gets harder to separate signal from noise
if the current is too low as in the case of most nanoelectrodes.
In addition, electrode handling and implantation at nanoscale

TABLE 2 | Critical properties of different sized electrodes.

Macroelectrode Microelectrode Nanoelectrode

Area (mm2)
(Finot et al., 2003)

2 1.25 × 10−3 6.4 × 10−4

Peak current (µA) 5.1 7.5 × 10−3 45 × 10−3

Signal to noise
ratio (SNR)

2.5 6 70

is also a challenge. With a relatively optimum size range,
microelectrodes are of suitable features such as small capacitive
charge current, high current density, and low impedance
(Szunerits and Walt, 2002).

Figure 9B shows the classification of electrodes based on
their dimensions. Macroelectrodes are typically larger than
100 µm and in the millimeter range, while nanoelectrodes are
between 10 and 100 nm. In contrast, microelectrodes have
at least one dimension less than 100 µm (Compton et al.,
2008). Microelectrodes can be broadly classified into three types,
namely, microwires, micromachined electrodes, and flexible
electrodes depending upon the material used for their fabrication.

Microwires
Microwire electrodes are a type of microelectrodes that dates
back to 1940s when these electrodes were first used for
electrophysiological studies (Renshaw et al., 1940). They have
the capability to record highly localized extracellular potentials
of nearest neurons exposed to the tip of the electrodes, with the
rest of the electrodes insulated (Loeb et al., 1995). Metal wire
electrodes show high SNR due to low impedance and can be used
for single cell recordings, or as an array of microwires to record
a number of neurons (Low, 1976; Chapin, 2004). Three major
issues are associated with metal wire electrodes, including the
wire bending during implantation, limited recording duration,
and incompatibility with silicon-based electronics (Cheung,
2007; Prasad et al., 2014).

Renshaw et al. (1940) conducted one of the earliest
experiments that used Ag/AgCl electrode for direct recording
of electrical signals from single neurons. During the same time
period use of other metals such as platinum, tungsten, gold,
iridium, and stainless steel was also recorded (Grundfest and
Campbell, 1942). In the later years, electrolytic pointing was
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FIGURE 9 | (A) A qualitative electrode performance comparison based on size, horizontal axis shows a decreasing electrode size ranging from macroelectrodes on
left, microelectrodes in the middle and nanoelectrodes on far right. (B) Classification of electrodes based on size.

used to fabricate sharpened stainless steel microwires that in
turn reduced electrode variability and tissue damage (Grundfest
et al., 1950). Although these early microwire-based electrodes had
shorter recording spans, ranging from hours to a few days, they
proved to be extremely useful in the development of early BMIs
and helped scientists understand collective behavior and memory
forming patterns of neurons (Evarts, 1966). In 1968, a platinizing
process was used to coat electrode tips with spongy platinum
black which enhanced the active surface area of electrodes to
improve SNR (Robinson, 1968). Stainless steel provides good
signal quality but is fragile near the electrode tip, hence, tungsten
was used as a substitute, having higher strength and toughness
than stainless steel. But tungsten has its own drawbacks such
as signal distortion at low frequency range. Platinum is another
excellent candidate for wire electrodes, giving a high SNR, stable
signal, and low impedance. The only problem with platinum,
like stainless steel, is its mechanical fragility. Some studies have
shown that iridium is also a suitable material for microwires as
it is stiff, corrosion resistant, and provides a high charge density
(Grundfest et al., 1950; Hubel, 1957). During the last decade,
attempts have been made to coat microwire tips with carbon
nanotubes and polymers to enhance performance and reduce
impedance (Gross et al., 1985).

Microwires can be used to successfully record or stimulate
single neurons and an array of microwires can be used to
record a sizeable neuronal population. Hence, microwires can
be used for deep brain stimulation to treat epilepsy, paralysis,
and Parkinson’s disease (Chapin, 2004). Lastly, microelectrodes
have issues such as wire bending during implantation, short
recording spans, and sometimes incompatibility with silicon-
based electronics (Cheung, 2007).

Micromachined Electrodes
In 1959, the advent of lithographic techniques widened the
possibility window for neural recordings. Silicon, a biocompatible
material that is also suitable to etch integrated electronics
on it, proved useful to develop Michigan and Utah type
electrodes. The Michigan-type electrode was developed at

University of Michigan in 1980s and comprised of a penetrating
tine with a sharp tip exposed for recordings. Whereas, Utah-
type electrode is comprised of sharpened, conductive silicon
needles in a matrix (Wise et al., 1970; Campbell et al., 1991).
A typical 10 by 10 grid of Utah array electrodes is 4.2 mm
wide and 1.2 mm in length (Maynard et al., 1997). Unlike
microwires that can move apart after or during insertion in
the brain, micromachined electrodes stay fixed relative to each
other and relative spatial positions are determined during the
micromachining process. Another advantage of these electrodes
is their compatibility and integration with circuitry, signal
processing and wireless interfaces. Therefore, silicon is an
excellent material, for these electrodes, due to its strength,
biocompatibility, and integration feasibility with other circuitry
(Ghane-Motlagh and Sawan, 2013).

Microfabricated electrodes are made in a series of carefully
controlled steps. In Michigan-style electrode, a thermal oxide
mask is used to etch a boron stop on silicon wafer to define
substrate dimensions. Then, a dielectric layer is added for back
side insulation. Later, conduction traces are formed on the top
surface to connect bonds pads to recording sites. Recording sites
and bond pads are then formed using gold or other metals.
Conducting traces are finally insulated and the shanks are coated
with polymers like Parylene-C for enhanced protection during
in vivo recordings (Jorfi et al., 2015). Utah-type electrode uses a
different fabrication approach. Glass reflow, etching, and dicing
techniques are used to create a Utah electrode array (UEA).
UEA is widely used and approved by United States Food and
Drug Administration. The tips of silicon needles/tines in UEA
are further coated with platinum or iridium oxide while the rest
of the parts are insulated using a polymer. Individual channels
are further isolated using glass dielectric between bond pads
(Jorfi et al., 2015).

Flexible Electrodes
The most recent type of electrodes is based on flexile materials,
mostly polymers to address the strain and inflammation issues
in the stiff and rigid silicon and metal-based electrodes.
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Fabrication of such soft electrodes is very challenging to ensure
biocompatibility and high SNR. Especially the in vivo insertion
of such electrodes is quite difficult. Several techniques are used
to insert soft electrodes such as shuttles, insertion robots, and
self-degrading materials.

During the last decade, polyimide based flexible electrodes
have been developed with good biocompatibility, mechanical
flexibility, resistance to solvents, and a reasonable SNR (Cheung
et al., 2007). Another polymer, Parylene has been used as a
substrate to fabricate electrodes that are flexible and show a high
SNR with stable electrical contact (Metallo et al., 2011). Flexible
CNT based electrodes have also shown reduced impedance and
high charge transfer capability for neural recording applications
(Chen et al., 2011). SU-8, a negative photoresist, is another
mechanically and chemically stable material that has been used
for flexible electrode fabrication (Del Campo and Greiner, 2007).
Similarly, Polydimethylsiloxane (PDMS), an elastomer, can
also be used for flexible electrode microfabrication. Moreover,
Polypyrrole (PPy), Polythiophene (PTh), and Polyaniline (PANI)
are a few of the many conductive polymers being used in this
decade for flexible electrodes (Lee et al., 2016).

Recently, Neuralink has shown the successful synthesis of
highly flexible electrode arrays, with each array containing up to
96 threads and each thread containing 32 independent electrodes,
using polyimide as substrate and gold thin film traces. These
threads are 5–50 µm in width, 20 mm in length and up
to 6 µm thick. In order to reduce impedance and increase
charge carrying capacity of these miniaturized electrodes,
they are coated with poly-ethylenedioxythiophene doped with
polystyrene sulfonate (PEDOT:PSS) (Musk and Neuralink,
2019). With the advancement in coating and microfabrication
technologies, such flexible electrodes seem to be the future of
microelectrodes as they have considerable advantage over metal
and silicon-based electrodes.

Microelectrodes’ Implantation Issues
Now a fair base for microelectrode types and materials has
been established. It is fitting to detail some prominent issues
with the insertion of these microelectrodes in the cortex. As
described in the “Foreign Body Response” section of the article,
the brain reacts strongly to any foreign object that enters it.
Microelectrodes are no exception. Some of the specific issues with
microelectrodes insertion are discussed in this section.

Recording stability, signal quality deterioration and electrode
performance degradation over time are still the major hurdles
in neuronal recordings using microelectrodes. Delisle Burns
et al. (1974) showed an electrode dysfunction of as high as 92%
occurred in just 5 months of unit recording in a cat’s cerebral
cortex, as a result of the neuroinflammatory response of the brain
as described above. Efforts to alleviate brain cells inflammation
and injury to vasculature as well as cells can help in getting a
stable signal from electrodes for long durations. Many factors,
as discussed below, are responsible for early degradation of
neuronal signals.

Microelectrodes can face several issues during and after in vivo
implantation. These issues can range from purely mechanical in
nature, like stiffness mismatch and buckling, to chemical like

corrosion and passivation layer degradation (Barrese et al., 2013).
Also, after the implantation, the brain can suffer injury due
to micromotion of the electrode within the cortex, prolonging
neuroinflammation.

Stiffness Mismatch
A good estimate for the stiffness of a material can be Young’s
modulus which is a ratio of stress to strain. The lesser the
difference between the Young’s modulus of the material to that
of the brain tissues, the better it is. Silicon, for example, has
a modulus of 190 GPa, whereas the modulus for gray matter
in the brain is just ∼3 kPa (Elkin et al., 2007; Hopcroft et al.,
2010). Obviously metals, silicon or even glass based materials are
million times stiffer than the soft brain tissues and hence they
evoke vigorous inflammatory response in the brain. This very fact
propelled the development of softer flexible electrodes to reduce
stiffness mismatch. Several polymeric materials such as PDMS,
polyimide, Parylene C, and PTFE have Young’s modulus in the
range of a few MPa to a few GPa but still the difference of stifness
as compared to brian tissues is staggering, as shown in Table 3.
Morever, the softer the material, the harder it is to insert it in the
brain without buckling, avoiding the vasculature.

Figure 10 makes clear the difference between bending stiffness
and Young’s modulus of existing neural electrodes and brain
tissues (Fu et al., 2017). The silicon electrode is microfabricated
using lithography techniques while the microwire and flexible
electrodes are made from stainless steel 304 and polyimide,
respectively. Average bending stiffness and Young’s modulus
values are taken form literature to draw the graph.

Mechanical Damage
Although not a big concern, mechanical damage of electrodes,
shanks, tines, and other components of the implants still needs

TABLE 3 | Young’s moduli of different electrode materials in comparison
with brain tissues.

Material Young’s modulus

Brain tissues Collagen/gelatin 2–200 MPa

PEG 0.2–2 GPa

Silk 1.7–2.8 GPa

Brain’s gray matter
(Budday et al., 2015)

2.2 kPa

Brain’s white matter
(Elkin et al., 2007)

3.08 kPa

Candidate electrode
materials

Glass
(Hand and Tadjiev, 2010)

60–100 GPa

Tungsten (Qiu et al., 2002) 410 GPa

Silicon (Hopcroft et al., 2010) 190 GPa

Polycarbonate 2–2.4 GPa

Steel 200 GPa

PTFE 0.5 GPa

Rubber 0.01–0.1 GPa

LDPE 0.11–0.86 GPa

Polyimide 4 GPa

Parylene-C 2.8 GPa

Polydimethylsiloxane (PDMS)
(Sun et al., 2004)

∼1 MPa
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FIGURE 10 | Mechanical properties of brain tissue and three commonly used electrode materials.

FIGURE 11 | Signal processing schematics and challenges. (A) Schematics of signal processing steps involved in neural data decoding; (B) current BMIs having a
limited data transfer rate form brain to application; (C) neural data with high functional dimensionality need go through a rigorous statistical analysis to avoid false
positive results.
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FIGURE 12 | (A) Schematics of a brain machine interface’s electrical circuit. LNA, low noise amplifier; MUX, analog signal multiplexer; ADC, analog to digital
converter; Ch, channel. (B) Different types of BMI decoders used in signal post processing. (C) Information throughput over the years, blue dots represent the
throughputs of invasive and non-invasive BMIs as reported in different published articles over the years.

some attention. Recent reports show evidence of mechanical
damage to parts of the recording system during or after
implantation as shown in Figure 6C (Prasad et al., 2014; Fu
et al., 2017). Brittle materials show higher tendency toward failure
hence the use of tougher more flexible materials is recommended.

Buckling
Buckling is an issue more relevant to softer and flexible materials
including both polymers and metals. Buckling means the bending
or warping of the electrode during an intracortical insertion as
shown in Figure 6B. During electrode insertion, three types of
forces act on the microelectrode, i.e., an axial tip force, a frictional
force on electrode surface, and a compressive clamping force.
Together these forces can be called as total insertion force (TIF)
and it should be greater than 1000 µN to circumvent buckling
(Egert et al., 2011). Buckling force itself can be given by Euler’s
formula.

Fbuckling =
π2IxE
(KL)2 (1)

where Ix, E, K, and L represents moment of inertia, modulus
of elasticity, effective length factor, and length of the electrode,
respectively. The compressive force required for an electrode to
buckle is directly proportional to the product of Young’s modulus
and moment of inertia (i.e., second moment of area) and inversely
proportional to the length of the electrode. For a given material
Young’s modulus is constant. Hence, the only two parameters
that can be change are the cross-sectional area or the length
of the electrode.

Common materials currently being used, although having
high bending stiffnesses, still suffer from buckling problem. One
way to tackle this issue is to increase the width or thickness of
the electrodes but that will in turn increase the initial iatrogenic
injury and neuroinflammatory response (Wester et al., 2009).
Another approach is the use of reinforced polymers at the
expense of increased Young’s modulus as evident from the study
conducted by Lee et al. (2004). Some studies have shown the
use of shuttle to avoid buckling (Capadona et al., 2005; Ereifej
et al., 2013). Microfluidic channels with in the electrodes is
a novel methods used by Takeuchi et al. (2005). Dissolvable
PEG was filled in the channels to provide reinforcement. These
microfluidic channels can also be used for drug delivery and
other sensing operations. One innovative way to stop buckling
is to make electrodes in the form hollow tubes to increase the
moment of inertia and hence increase the force required for
buckling. But, if the thickness of the tube is very small, which is
desirable, the electrode will suffer from brazier buckling, a local
crumpling of the electrode at various points along the length
of the electrode. One last solution to buckling can be inspired
from nature, specifically bamboo trees which have nodes along
the length of the bamboo to provide structural integrity. Similar
techniques can be implied to synthesize electrode with nodes at
regular intervals to enhance structural integrity against buckling
(Gordon and Stewart, 1980).

Corrosion
Corrosion is a big problem for stimulating electrodes in which
electrochemical reactions can occur under applied electric field.
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But corrosion can also be observed in non-stimulating/recording
electrodes due to faradic charge transfer over time. Prasad
et al. (2012) reported structural changes in microelectrode over
time. Corrosion is strongly dependent on material. For example,
tungsten is a material that can easily be corroded in saline
solution under non stimulating conditions.

Moreover, the surrounding environment can also accelerate
the rate of corrosion. During brain’s inflammatory response,
ROS are produced surrounding the area of implant due to
FBR. ROS show a positive correlation with corrosion as an
increased corrosion was observed for tungsten surrounded
by oxidative oxygen species (Patrick et al., 2011). ROS also
facilitate neurodegeneration. Materials such as tungsten that
form a passivation layer to resist corrosion or platinum
that performs excellent in saline solution and also reduce
the concentration of reactive oxidative species, by converting
hydrogen peroxide species to water, are excellent contenders for
corrosion resistant microelectrodes (Ishigami, 1998; McCarthy
et al., 2011; Potter et al., 2014).

Passivation Layer Degradation
Microelectrodes are coated with different passivation layers for
insulation and corrosion resistance. However, these passivation
layers have the tendency to degrade over time which in turn
affects the performance of the electrode itself. Silicon oxide, one
of the materials used to fabricate microelectrodes, shows in vitro
stability for more than 21 months, it surely degrades in the in vivo
scenario (Winslow et al., 2010). A recent study showed that
silicon carbide offers no measurable dissolution at 30

◦

C. Use of
polymer-based insulation is a recent common practice although
whether it actually enhances recording longevity is still a topic
open for debate (Lecomte et al., 2018). Certain neuron adhesion
materials like poly-D-lysine or laminin in conjunction with anti-
inflammatory agents like dexamethasone or alpha-melanocyte
can block the production of nitric oxide to reduce inflammation
(Staii et al., 2009; Feng et al., 2018; Dey and Bishayi, 2019).
One study showed degradation of polyimide-based insulation
on tungsten electrodes as early as 42 days after implantation
(Prasad et al., 2012). Another study proclaimed that there was
no difference in the neuroinflammatory response of coated vs.
uncoated electrodes (Loeb et al., 1977).

Motion Induced Injury
One possible reason of prolonged neuroinflammation can be the
motion induced injury within the brain, pertaining to mechanical
mismatch of electrodes and brain tissues. In vitro studies support
the micromotion hypothesis, however, little to no in vivo data
is available in this domain. One factor further exacerbating the
strain on brain tissues is the tethering of microelectrode devices
to the skull. Tethered implants generates a much higher FBR than
the untethered ones, as shown in one study (Biran et al., 2007).

Recently, a collaboration in the fields of molecular genetics
and photonics has rendered a new field named optogenetics. This
is a highly researched field these days and it uses light activated
proteins called opsins, injected in target neurons, to stimulate the
neurons to modulate brain activity with the temporal accuracy of
milliseconds (Yizhar et al., 2011).

Researchers are trying to find novel and more effective ways
to develop more advanced BMI technologies. In this effort, Kim
et al. (2010) developed a silk based electrode mesh that can
be theoretically rolled up and inserted on top of the brain,
eventually adjusting itself to the gyrus and sulcus of the brain
surface (Kim et al., 2010). Yeo et al. (2013) used a similar
technique to print electrode array onto human skin and it is
expected to extend this technology to human brain too. Another
group has demonstrated the use of a neural mesh in which
electronics are encapsulated into a free standing conducting
polymeric mesh that can be inserted into the brain using a
syringe (Liu et al., 2015). Seo has demonstrated the design of a
novel concept for BMIs called neural dust. The design involves
very tiny silicon sensors (100 µm) spread inside the cortex
which communicate with a subdural transceiver placed above
pia meter to retriever brain signals using ultrasound technology
(Seo et al., 2013).

Hybrid BMIs
A hybrid BMI is comprised of one BMI and another system
(which could be another BMI). Utilizing more than one interfaces
usually helps in improvement of overall performance and
reduction of false positive. A qualifying condition for hybrid
BMIs is that at least one of the signals should directly be
recorded from the brain. A typical hybrid BMI has more than
one inputs, which could either be processed simultaneously
or sequentially.

Simultaneous hybrid BMIs can either use one brain signal
corresponding to two different mental strategies (e.g., EEG
signal from spatial visual attention and motor imagery), two
different brain signals (e.g., intracortical electrical signal and
hemodynamic response), or one brain signal and another
input that does not pertain to brain specifically. Foundational
work by Claude Bernard proves mutual action and reaction
between the brain and heart due to pneumogastric (vagus)
nerve. Tumati et al. (2021) and Pfurtscheller et al. (2021)
have also highlighted brain heart coupling by reporting
neurocardiac desynchronization in anxiety disorders and
change in vascular and neural BOLD oscillations due to
anxiety, respectively. Hence, an electrocardiogram (ECG)
based switch can act as an additional input for the hybrid
BMI with another brain signal based input (Thayer and
Lane, 2009). These additional input signal can also come
from electrooculogram (EOG) recording for eye gaze
tracking or electromyography (EMG) for muscle electrical
response tracking (Punsawad et al., 2010; Zander et al., 2010;
Leeb et al., 2011).

In sequential systems, one system can act as a switch for the
activation or inhibition of the other system. The purpose of such
a brain switch is to recognize a specific pattern in brain during
ongoing brain activity. Such a switch should not produce any false
positives without user intent or will. The first EEG based brain
switch was developed by Mason and Birch (2000). However, these
switches are not restricted to EEG and high amplitude threshold
SSVEPs or hemodynamic changes measured using NIRS can also
be incorporated to develop a brain switch (Cheng et al., 2002;
Coyle et al., 2007).
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SIGNAL PROCESSING

Figure 11 depicts the summary of this section. Independent of
the type of microelectrodes used, Figure 12A depicts the basic
electrical circuit used for electrical stimulation and recordings
for single neurons. First, the collected signal is passed through a
low noise amplifier (LNA) to allow noise reduction and increase
the SNR. The stack may also include (Coyle et al., 2007) a signal
multiplexing unit to reduce the cable requirements in tethered
systems. After the multiplexing signal is digitized using an analog
to digital converter (ADC), spike sorting may also be done in
the same stack to reduce wireless data transfer volume. This
preprocessed data is then sent to a computer wirelessly for neural
decoding (Chestek et al., 2009).

Brain’s electrical activity can be recorded intracellularly or
extracellularly depending upon the position of the electrode.
Extracellular activities of neurons that can also be called APs
are transmitted along the axon in a frequency range of 100 Hz
to 10 kHz, for a duration of a few milliseconds. The amplitude
of these APs can range anywhere between 50 and 500 µVpp
based on the proximity of the electrode tip to the recording
site (Mollazadeh et al., 2009b). As described earlier, the LFP
recordings record the averaged potential of several neurons in the
vicinity of electrode tip. The first step after recording neuronal
activities is to amplify it. The amplified signals are later passed
through low pass filter to get LFPs. Further, these can be high pass
filtered using sorting algorithms and spike detection to get SUAs.
For high resolution SUAs, electrodes should be located between
50 and 100 µm from the neurons of interest. Any neurons
between 100 and 150 µm can still be recorded but with a relatively
low SNR and are regarded as MUAs. Anything beyond that is
considered noise (Buzsáki, 2004; Leeb et al., 2011).

Different neural activity patterns can be observed in recorded
data which translates to different thinking activities. A very
challenging task is to extract meaning from these patterns
for which these patterns are categorized into classes based on
their features (Pesaran et al., 2018). Brain signals are generated
with in a highly noisy environment and APs of neurons of
particular interest are always overlapped in space and time
by other neurons firing at the same time within the same
domain due to several different brain activities. Brain signals
are inherently non-stationary and time dependent. Signals can
be sometimes divided into smaller segments to reduce power
and processing requirement but usually at the expense of
decreased accuracy. One way to avoid this is to apply dimensional
reduction techniques to the data thereby removing redundancy
and unimportant parts. Principal component analysis and
independent component analysis are two of the prominent
techniques for achieving this.

A BMI decoder is a system that applies a transform algorithm
to neuronal inputs to calculate output variables. BMI decoders
used for feature extraction and classification employ a variety
of statistical and machine learning techniques. These decoders
particularly fall under the class of multiple input multiple output
(MIMO) models (Kim et al., 2006).

Linear decoders are a type of decoders that use a weighted
average of neuronal rates to calculate output variables.

Georgopoulos, one of the few proponents of these kind of
decoders, proposed a population vector theory for neuronal
signal decoding. He suggested that neuronal activities can be
expressed as vectors with preferred direction being the one with
the maximal firing rate (Georgopoulos et al., 1986). Weiner
filter is another linear decoder that uses an approach based on
reducing the mean square error.

Another type of decoder very similar to Wiener filer is Kalman
filter (White et al., 2010; Gilja et al., 2012) that uses a discrete
time step approach to predict output variables. A variation of
Kalman filter is the unscented Kalman filter (UKF) to deal with
nonlinear data (Li et al., 2009). Some other point process models
apply a probabilistic function to predict neuronal spiking based
on certain known parameters (Lawhern et al., 2010). Artificial
neuronal networks is one of the most recent techniques for
neuronal data decoding (Chapin et al., 1999). Figure 12B lists
different types of BMI decoders used for BMI applications based
on their utility.

Furthermore, brain activity characterization can be done
either through classification or through regression. In regression,
extracted features are treated as independent variables to predict
user will, while classification methods use features as independent
variables to draw limiting boundaries for decision making.
Classifiers usually suffer from a dimensionality problem. The
number of training data sets needed for optimum results
increase exponentially with the dimensionality of the feature
vector. This is sometimes referred as the dimensionality curse.
Also, bias-variance tradeoff is another problem. Ideally, low
bias with low variance are desired but when one is lowered,
the other increases (Jain et al., 2000; McFarland and Wolpaw,
2005). Classifier overfitting is another issue that needs to be
dealt with.

Signal Processing Issues
Like electrode insertion related issues as discussed in the neural
recordings section, the methods and techniques used to process
the neural data also have some shortcomings. Some of the
problems can be avoided using better classification techniques
or sophisticated statistical analyses methods but quite more
than often a tradeoff needs to be made between one or the
other desired property as mentioned in the above section about
variance and bias.

Noise Removal
A high quality, low noise signal ultimately translates to a BMI
with high efficiency and accuracy. An archetypal brain signal can
be represented as (Semmlov, 2004; Kawala-Sterniuk et al., 2021);

B (t) = S (t)+ N (t) (2)

B(t), S(t), and N(t) are measured bio-signal, actual deterministic
signal, and additive noise, respectively. Signal noise is also
another issue that distorts the signal and needs to be eliminated
or reduced to obtain clear neuronal spikes. It is noted that
motion-induced artifacts such as blinking, eye movement, skull
movement can add to the distortion of recorded signal and
need be accounted for in the techniques used for signal filtering
(Zúquete et al., 2010).
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More specifically, the first step after fetching the signal
from brain is amplification. On average, neural signals acquired
from electrodes have amplitudes ranging from 50 to 500 µm.
Due to electrochemical effects at the electrode-tissue interfaces,
these signals suffer from DC offsets across different electrodes,
which have a magnitude of 1–2 V, significantly larger than the
signal itself. Extracellular APs have frequencies ranging from
300 Hz to 8 kHz. Hence, it is a difficult job to filter noise
while keeping the signal intact. A number of different groups
have reported LNAs but most of them have some limitations
that still need to be addressed (Mollazadeh et al., 2009a;
Waldert et al., 2009).

Information Throughput Limitation
In addition, information throughput is one of the biggest limiting
factors in the advancement of BMI applications. Typical EEG
based BMIs and commercial invasive BMIs have an information
transfer rate of up to 0.5 bits/s and <3 bits/s, respectively
(Semmlov, 2004; Klobassa et al., 2009; Kawala-Sterniuk et al.,
2021). To put things into perspective, a simple human tapping
task requires a transfer rate of∼10 bits/s (Fitts, 1954) while a slow
human speech would require∼7–15 bits/s (Brown et al., 1992). It
reflects that any complex human task will require an information
rate higher than 10 bits/s. Moreover, the unit of transfer rate, bit,
is defined on a logarithmic scale hence the difference between 10
and 3 bits/s is several orders of magnitude. Figure 11B displays
low information throughput from brain to application, while
Figure 12C shows reporting of throughput for BMIs over the
years by different research groups globally.

Data Fidelity
Lastly, with the availability of a plethora of signal processing
and data collection techniques at hand, risk of false positive also
increases. In fact, Bennett et al. (2009) published their results,
showing the perils of deriving erroneous results due to inapt
usage of statistical methods. The problem is prevalent in brain
signal data classification due to a high functional dimensionality
of neuronal data. It was shown that the probability of false
positive is quite high across 130,000 voxels in a typical fMRI
volume (Bennett et al., 2009). The publication also informs
us about the fact that a considerable portion of neuroimaging
articles do not use any statistical buffers to check the soundness
of their derived results.

Moreover, the accuracy of the acquired brain signal is
dependent upon a number of factors like dimensionality of the
data, signal noise, interference from other signals, information
transfer rate, etc. (Dornhege et al., 2007). Accuracy of signal is
highly important in functional BMI applications and is one of the
many bottlenecks in this field. Figure 11C represents the concept
of increasing the reliability of neuronal data by apply statistical
filters to the recorded data.

User Training
Most of the current classification methods require a lot of training
for class differentiation. User training is a time consuming
step and the efficiency of the classifier depends a lot on
these training sessions. A tradeoff is usually made between the

number of training sessions conducted and understanding the
complexity of brain signals. The most important parameters
that affect the trainings efficacy are the level of difficulty,
training duration, environment, instruction, open loop training
vs. closed loop (with online feedback), real or virtual, self-paced
vs. synchronous (system-paced) training, etc. (Roc et al., 2021).
A few articles mistakenly relate the limited reliability of BMIs to
user incompetency, labeling it as “BCI illiteracy” (Vidaurre et al.,
2011; Blankertz et al., 2010). However, it does not at all mean that
the users are the poor performers, it actually point toward the
fact that our current user training protocols are inappropriately
designed (Lotte et al., 2013; Thompson, 2019).

Brain machine interface training approaches can be briefly
critiqued at three different levels, namely, feedback, instructions
provided to user, and training tasks (Lotte et al., 2013). Feedbacks
should be supportive, non-evaluative, timely and specific, rather
than just indicating the correctness of a task (Shute, 2008).
Multimodality can also be introduced in feedbacks in comparison
to conventional unimodal feedbacks, however, its usefulness is
still debatable (Ainsworth, 2006; Merrill, 2007). Instructions
provided to the user for a specific task are hardly given any
importance, whereas, it is known that feedback tends to be more
effective with clearly defined instructions (Neuper et al., 2005;
Hattie and Timperley, 2007). Also, engaging and involving tasks,
as opposed to synchronous and repeated tasks, enhance the
efficiency of computer mediated learning (Reeves and Nass, 1996;
RRyan and Deci, 2000).

User training is a trivial obstruction that hinders the
disruption of BMIs in the market. This is a cumbersome step
that the user must go through before actual utilization of the
product. The smaller and easier the training step is, easier
the adoption of BMIs becomes. Most of the current BMI
signal decoding techniques treat frequency time and spatial
dimensions separately to predict the user intent. Models that deal
with interdependencies of these characteristics can significantly
improve BMIs’ functionality. Another very crucial thing that
will aid toward the commercialization of BMIs is unsupervised
adaption. Such adaptive classification algorithms are still in
nascent stages and are not at all fit to be employed for commercial
BMIs (Nicolas-Alonso and Gomez-Gil, 2012).

Moreover, user training especially plays a significant role
in mental task-based BMIs (MT-BMIs). Research efforts in
the field of MT-BMIs have led to improvement in signal
processing algorithms and machine learning approaches. These
approaches are mostly based on classifiers that are either
trained offline on collected user data or online for co-adaptive
MT-BMIs (Lotte et al., 2007). One of the advantages of this
co-adaption is the reduced user training time and flexibility
for user, as the user does not have to adapt to a fixed
system. Based on fixed learning rates, research also shows that
online classifier training produces better results than offline
classifier training (Millan, 2004). Monto et al. proved the
existence of a slow cortical excitability cycle, possibly controlled
from structures within brain stem, hence, presentation of
task (e.g., motor imagery) in such subject specific intervals
may help shorten the training time (Monto et al., 2008;
Pfurtscheller et al., 2020).
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DISCUSSION AND OUTLOOK

Brain machine interfaces, first developed in 1950s, have seen
tremendous improvements and breakthroughs in the last two
decades. This review highlights three major domains that
comprise BMIs, namely, signal generation, signal acquisition, and
signal processing. Fundamental concepts, major challenges, and
bottlenecks in these three domains have been delineated. We
believe that a large audience base can benefit from this review as
it is not specific to any one domain or field and gives a broader
outlook on BMIs and apt overarching layout of this field.

Deeper understanding of signal generation and transmission
within the brain can help in development of more efficient
BMIs. Complete understanding of FBR in brain is also
required to invent and modify existing electrode technology.
As detailed in this review, BMI development switched (Hattie
and Timperley, 2007) from metal microwires to silicon based
micromachined electrodes (Pfurtscheller et al., 2020) with the
advent of lithographic techniques. Recently, interest has shifted
toward flexible conductive polymer-based electrodes to better
match the mechanical properties of the brain and to limit the
neuroinflammatory response of the brain.

Further investigation is needed in invasive electrode
technologies to minimize tissue damage, increase long-term
stability, and lower the risk of infection. Specifically, two material
properties that dictates this mechanical behavior of electrodes
are Young’s modulus and bending stiffness. Electrodes with
relatively lower Young’s modulus and bending stiffness will
limit the iatrogenic injury and neuro-inflammation. Although
invasive signal recording technologies have advantage over non-
invasive BMIs, they still have limitation and drawbacks. Hybrid
BMIs can be one of the solutions incorporating the strength of
both technologies while largely avoiding their drawbacks. But
hybrid technology is still far from maturation and improvement
in hybrid BMIs involving three or more signals is needed.
Prominent issues related to hybrid BMIs like high cost, user
workload and system complexity also need to be dealt with, to
transition these hybrid devices to commercial market.

Furthermore, precise and more adaptable BMI signal
decoders/classifiers are required to accurately decode user intent
from the acquired signal. Understanding signal time, frequency,
and spatial dimensional interdependencies can play a crucial
role to achieve this goal. Most of the current BMIs are still
at lab scale and still needs improvement in all three above
mentioned domains to introduce them in commercial market.
Prominent factors hindering their commercial scale disruption
are low information throughput, low reliability, low accuracy,
steep learning curve, and fear of invasive electrode insertion.
Information throughput can be increased by adopting hybrid
technology while accuracy and reliability can be enhanced

through iterations in product development and incorporation
of statistical filters in signal processing stages. Unsupervised
learning could be the most significant step toward commercial
disruption of BMIs but there are still a lot of challenges that
should be tackled, as previously discussed in user training
section of this review.

Brain machine interfaces are not only limited to medical
application for disabled people but are widely applicable in
domains like education, entertainment, sports, neuroimaging,
behavioral understanding, etc. One of the main limitations of
this work is that it does not cover all the new findings and
relevant literature spanning all three domains. It is practically
impossible to do that due to plethora of ever-increasing available
literature. However, a broad, widely applicable account has been
presented showing relation between different domains and intra-
domain challenges with a reasonable focus on important details.
Research community is encouraged to take inspiration from this
work to address major challenges in their respective domains
while considering the bottlenecks and challenges in other relevant
domains discussed in this review.

Several private companies have come forward in this decade,
promising commercial products in the near future. The number
of research groups working on BMIs has also exponentially
increased in the past two decades. This might suggest that an
age of commercial BMI products is not far from realization. This
could significantly change the way we interact with computers
and machines marking the inception of a new era of human-
machine symbiosis that could eventually help humans achieve
insurmountable goals.
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