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Abstract

Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was recently reported to inhibit
proliferation of various cancer cells significantly. Here we try to determine the effect and mechanism of EF24 on
hepatocellular carcinoma. 2 mM EF24 was found to inhibit the proliferation of PLC/PRF/5, Hep3B, HepG2, SK-HEP-1 and Huh
7 cell lines. However, even 8 mM EF24 treatment did not affect the proliferation of normal liver LO2 cells. Accordingly,
20 mg/kg/d EF24 inhibited the growth of the tumor xenografts conspicuously while causing no apparent change in liver,
spleen or body weight. In addition, significant apoptosis and G2/M phase cell cycle arrest were found using flow cytometry.
Besides, caspases and PARP activation and features typical of apoptosis including fragmented nuclei with condensed
chromatin were also observed. Furthermore, the mechanism was targeted at the reduction of nuclear factor kappa b (NF-
kB) pathway and the NF-kB–regulated gene products Bcl-2, COX-2, Cyclin B1. Our study has offered a strategy that EF24
being a therapeutic agent for hepatocellular carcinoma.
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Introduction

Hepatocellular carcinoma (HCC) is a common solid organ

malignancy worldwide, with about 600,000 new cases diagnosed

each year [1,2,3,4]. Surgical resection, in the form of partial

hepatectomy or total hepatectomy followed by liver transplanta-

tion may provide an occasional incidence of cure. However, it can

be performed only in selected patients whose tumors are small and

away from major vessels and have not metastasized to extrahepatic

organs [5,6,7]. In general, patients with unresectable HCC have a

dismal prognosis, and actually, these patients do not benefit much

from nonsurgical treatments, such as systematic chemotherapy or

chemoembolization [8,9,10,11,12,13].

Systemic chemotherapy has been tested and shown to be

minimally effective in HCC treatment due to toxicity to normal

cells and chemoresistance [14]. Based on data from previous

studies [15], Doxorubicin is generally considered to be the first-

line treatment for HCC, however this drug used alone has shown a

response rate only between 20 to 30% [16] and is associated with

multiple adverse events and drug resistance. As a result, the search

for more effective chemotherapeutic agents is still ongoing, and

new regimens are under active investigation. Previously, lots of

studies have examined the anticarcinogenic activity of curcumin in

HCC. Curcumin has been found to interrupt the cell cycle, have

cytotoxic effects, and have a role in antiproliferation and induction

of apoptosis in many hepatocellular carcinoma cell lines [17]. One

proposed mechanism for curcumin’s inhibition of tumor growth in

HCC is the induction of apoptosis via a caspase cascade [18].

Another proposed mechanism of curcumin is through the

inhibition of hypoxia-inducible factor-1 by degrading the aryl

hydrocarbon receptor nuclear translocator [19,20]. Further, it has

been shown that mitochondrial hyperpolarization is a prerequisite

for curcumin induced apoptosis and DNA damage is the initial

event in a chain leading to apoptosis in HepG2 cells [21].

Moreover, curcumin could prevent the induction of hepatic hyper

plastic nodules, body weight loss, and hypoproteinemia in

carcinogen induced as well as xenograft hepatic cancer models.

A considerable number of reports have also described the

anticancer effects of curcumin on HCC in vivo. One of these

studies suggested that curcumin had anticarcinogenic effects

mediated through the reduction of COX-2 and VEGF [22].

However, one potential problem with the clinical use of curcumin

is its low potency and poor absorption characteristics[23]. In an

attempt to retain curcumin’s favorable medicinal properties and

safety profile while increasing its potency, one analog of curcumin

(EF24) (Fig. 1A) was synthesized and applied to many cancer cell

types. Sun et al. found that the cytotoxic effect of EF24 against

MDA-MB-231 human breast cancer, RPMI-7951 human mela-

noma and DU-145 human prostate cancer cells arises, at least in

part, from the induction of cell cycle arrest and subsequent
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apoptosis by means of a redox-dependent mechanism and EF24-

tripeptide chloromethyl ketone drug delivery system could increase

the effect of EF24 [24]. Thomas et al. found that treatment of

MDA-MB231 breast and PC3 prostate cancer cells with EF24

could lead to inhibition of HIF transcriptional activity [25]. The

studies of Dharmalingam et al. showed that EF24 treatment of

HCT-116 and HT-29 colon and AGS gastric adenocarcinoma

cells could result in growth inhibition without affecting the

proliferation of normal human fibroblasts [26]. Thomas et al.

have found that EF24-induced decease of lung cancer cell viability

was accompanied by upregulated mitogen-activated protein

kinases (MAPK) as evidenced by increased phosphorylation of

ERK1/2, JNK, and p38 [27]. These results suggested that the

novel curcumin-related compound EF24 is a potent antitumor

agent [24,28,29]. Furthermore, the fact that the feasibility of using

this drug in HCC treatment yet has not been studied drew our

attention. Therefore, the objective of the current study is to

investigate the in vivo and in vitro anticancer potential of EF24

and delineate the underlying mechanisms.

In this article, the results of our experiments indicated that EF24

could potently inhibit HCC cell proliferation and induce apoptosis

in vitro and vivo. In addition, G2/M arrest of liver cancer cells was

also observed. More importantly, we provide evidences that the

molecular mechanisms of the action of EF24 are possibly by

inhibiting the nuclear factor kappa b (NF-kB) pathway, coupled

with the reduction of the expression of NF-kB regulated genes,

including Bcl-2, cyclooxygenase-2(COX-2) and CyclinB1. In vivo

study has also shown that tumor growth was significantly

suppressed after EF24 treatment.

Results

EF24 inhibits liver cancer cell proliferation
First, we determined the effects of EF24 on cell proliferation of

liver cancer cell lines. We used five HCC cell lines with different

p53 status (HepG2 and SK-HEP-1 with wt p53; PLC/PRF/5 and

Huh 7 with p53 mutation; Hep3B with null p53) which are widely

used in the liver cancer research to investigate the effects of EF24

on HCC. We also use a LO2 cell line to see whether EF24 has the

same effects on normal liver cells. Our data presented here show

that EF24 significantly suppressed proliferation of all the liver

cancer cell lines within a 48 h period, which continues to 72 h

(Fig. 1B). More importantly, the effects were observed at a dose of

nearly 2 mmol/L, a dose at which curcumin had no significant

effect on cancer cell proliferation [26].

EF24 induces G2/M cell cycle arrest in liver cancer cells
To determine whether the growth inhibition of liver cancer cells

by EF24 was caused by cell cycle arrest or apoptosis, the cells were

treated with 2 mmol/L EF24 for 48 h. The cells were then fixed,

and cell cycle populations were determined by flow cytometry.

The results showed that EF24 induced G2/M arrest significantly

(Fig. 2A, 2B). The western blot results indicated that the expression

of G2/M cell cycle regulating factors Cyclin B1 and Tyr15

Figure 1. EF24 inhibited liver cancer cell proliferation. (A). The topological structures of curcumin (diferuloylmethane) and EF24 (diphenyl
difluoroketone). (B). EF24 treatment on proliferation of PLC/PRF/5, SK-HEP-1, Hep3B, HepG2, Huh 7 and LO2 cells. These cells were incubated with
increasing doses of EF24 (0.5–8 mmol/L) for 48-h and 72-h periods and analyzed for cell proliferation using cell counting kit-8 assay.
doi:10.1371/journal.pone.0023908.g001
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phosphorylation of cdc2 showed a time-dependent decrease with

increasing dose of EF24. On the other side, increases of Thr161

phosphorylation of cdc2 were observed in the same conditions

(Fig. 2C). These data suggests that the inhibition of cell

proliferation by EF24 is associated with the induction of G2/M

phase arrest.

EF24 potently suppresses the NF-kB signaling pathway
and down-regulates the expression of NF-kB regulated
gene products in vitro and vivo

Previous reports demonstrated that curcumin could inhibit

many tumors’ growth by targeting the nuclear factor-kB pathway

[30], hereby, we investigated whether the effect of EF24 on cancer

cells is associated with the inhibition of NF-kB activation. NF-kB

DNA-binding activity was examined by EMSA. As shown in

Fig. 2D, EF24 markedly reduced NF-kB DNA-binding activity

compared to control in all liver cancer cell lines. Furthermore, the

western blotting data showed an obvious down-regulation of

nuclear p65 activation after exposed to different concentration of

EF24 (2 mM, 4 mM) as shown in Fig. 2E. NF-kB is known to

regulate the expression of COX-2 (involved in proliferation).

Western blotting (Fig. 2E) revealed significant reductions in the

expression of COX-2 in the three cell lines from the EF24-treated

groups compared with those from the control group. We also

assessed the expression of other NF-kB–regulated genes Bcl-2, Bax

and Cyclin B1, the overexpression of which have been linked to

tumor survival, apoptosis and cell cycle arrest [31,32,33,34].

Western blotting revealed that all the HCC cells exposed to 4 mM

EF24 have shown a reduction of Bcl-2 and Cyclin B1, and a

concomitant increase of Bax compared with the control cells

(Fig. 2E).

EF24 Induces Apoptosis in liver cancer cells
To further investigate the underlying mechanism of decreased

cell proliferation observed in the CCK-8 assay, we examined the

apoptosis effect on liver cancer cells induced by EF24 using

Annexin V/propidium iodide assay as described in materials and

methods section. As shown in Fig. 3A and 3B, all of the five liver

cancer cell lines have shown a concentration-dependent apoptosis,

including early as well as late apoptotic cell death. The analysis

demonstrated .45% of the Hep3B cells apoptosis within 48 h

after initiation of EF24 treatment (4 mM), whereas .60% of the

cancer cells in PLC/PRF/5. Then we further determined the

levels of apoptosis-related proteins in cells treated with EF24. As

shown in Fig. 2E, the PLC/PRF/5, Hep3B and SK-Hep-1 cells

exposed to EF24 have shown a concentration-dependent reduc-

tion of Bcl-2 and a concomitant increase of Bax compared with the

control cells. The contribution of cell death pathway in EF24-

treated liver cancer cells was also investigated. The expression

levels of caspases were also examined by Western analysis. The

analysis demonstrated that caspase-3 was cleaved into fragments

after exposure to EF24, and cleavage of caspase-3 became more

Figure 2. EF24 induced cell cycle arrest and inhibited the NF-kB pathway. (A). DNA content (propidium iodide) and cell cycle analysis of
EF24-treated cells. The five HCC cells were incubated with 0, 2 mmol/L EF24 for 48 h. The numbers of cells in G0/G1 phase, S phase and G2/M phase
was determined via flow cytometry. (B). Representative histograms from cytometrically analyzed the five cell lines treated with control and EF24.
Assay was done in triplicate and p,0.05 is denoted by ‘‘*’’. (C). Expression of G2/M cell cycle relative proteins Tyr15 and Thr161 phosphorylation of
cdc2 and Cyclin B1 were determined via western blot after treatment with 2 and 4 mmol/L EF24 for 24 h. b-actin was used as the internal control. (D).
Nuclear extracts were prepared and subjected to EMSA to measure NF-kB DNA-binding activity. (E). Expression of p65, Bcl-2, Bax and COX-2 via
western blot.
doi:10.1371/journal.pone.0023908.g002
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intense with increased concentrations of EF24. A similar tendency

was observed for caspase-9. Activation of caspase-3 was further

confirmed by poly (ADP-Ribose) polymerase (PARP) cleavage, a

typical feature of caspase-dependent apoptosis. PARP activation

was also found as is shown in Figure 3C. These results suggest that

EF24 induced the apoptosis of HCC cells at least partly by

activating caspases and promoting PARP cleavage. The selective

pan-caspase inhibitor z-VAD-fmk was used to determine whether

EF24-induced apoptosis of liver cancer cells was caspase-

dependent. As is shown in Fig. 3D, EF24–induced apoptosis was

partly inhibited by the pan-caspase inhibitor (z-VAD-fmk) in

PLC/PRF/5, Hep3B and Sk-Hep-1 cell lines.

Morphological changes in PLC/PRF/5 cells analyzed by
electron microscopy

PLC/PRF/5 cells without EF24 treatment exhibited innumer-

able microvilli and well-developed filopodia on the cell surface

with intact nuclei (Fig. 3Ea). However, cancer cells treated with

EF24 at a concentration of 2 mM demonstrated distinct changes

on the cell surface with decreased filopodias and microvilli

accompanied by secretory vesicle formation. Furthermore, 2 mM

EF24 induced features typical of apoptosis including fragmented

nuclei with condensed chromatin (Fig. 3Eb).

EF24 inhibits in vivo tumor growth and induces
apoptosis

To evaluate the role of EF24 in tumor proliferation in vivo, we

examined the ability of EF24 to suppress the growth of PLC/

PRF/5 xenografts in nude mice. PLC/PRF/5 HCC cell derived

xenograft tumors were allowed to develop and grow to a size of

100 mm3, following which EF24 was given i.p. for 3 weeks daily.

Results suggested that EF24 could inhibit the growth of the tumor

xenografts to a large extent (Fig. 4A, 4B). The time course of

tumor growth (Vt/V0) is shown in Figure 4C. In general, the

tumors in control group grew continuously during the experimen-

tal period whereas the tumor growth in the EF24-treated mice was

suppressed significantly. However, there was no apparent change

in liver weight, spleen weight, or body weight in the animals

implying that EF24 is a potential therapeutic agent for treatment

of liver cancers and it is relatively nontoxic to mice (Fig. 4C, D).

Ki-67 staining for cell proliferation was performed in tumors

removed from the animals on day 21. The relative number of ki-

67 positive tumor cells was substantially less in tumors from mice

treated with EF24, when compared with control tumors (Fig. 4E,

F). In case of apoptosis, as shown in the representative

photographs, tumor xenografts from the EF24-treated groups

showed a marked increase in TUNEL-positive cells compared

with the control group. Quantification of TUNEL-stained samples

showed two to three fold increases (P,0.05) in the number of

TUNEL-positive cells in the EF24-treated groups compared with

the control group (Fig. 4E, F). The expression of p65 and NF-kB

regulated gene products in liver tumor issues was also assessed by

western blot, and the results revealed that EF24 decreased the

expression of p65, COX-2, Cyclin B1, p-cdc2 (Tyr15), PCNA and

increased the expression of p-cdc2 (Thr161) and Bax to Bcl-2

ratios (Fig. 4G).

Discussion

HCC is a major cause of cancer death in Asia and worldwide.

Most patients have inoperable disease at the time of diagnosis and

need systemic therapy at some point of their disease [1,2]. To our

disappointment, no chemotherapy agent has shown reproducible

benefit in controlled clinical trials and treatment outcome has

remained poor due to different kinds of reasons including drug

resistance and toxicity to normal cells [3,4]. In the current study,

our results presented here show that EF24 potently inhibits the

proliferation of liver cancer cells, induces cell cycle arrest and

apoptosis in vitro and vivo. What is more, it does not affect the

proliferation of normal liver LO2 cells when treated with even a

concentration at 8 mM. Besides, we report a mechanism by which

EF24 potently suppresses the growth of liver cancer cells through

directly down-regulating of NF-kB pathway.

Adams et al. showed that EF24 caused G2/M phase cell cycle

arrest in both MDA-MB-231 human breast cancer cells and DU-

145 human prostate cancer cells [28], and Selvendiran et al

reported that the inhibitory effect of EF24 on cisplatin-

resistant(CR) human ovarian cancer cell proliferation is associated

with G2/M phase cell cycle arrest and increased G2/M

checkpoint protein (pp53, p53, and p21) levels [35]. The results

of our studies here have demonstrated that 2 mM EF24 could

induce G2/M phase cell cycle arrest in all the five selected liver

cancer cell lines. Besides, the observation of the cell cycle related

protein levels suggested that, after 2 mM EF24 treatment, the

cyclin B1 remained relatively unchanged. However, a decrease in

the Tyr15 phosphorylation and an increase in the Thr161

phosphorylation, both of which were previously a prerequisite

for the activation of cdc2 kinase at the G2/M phase, were detected

along with the increase of G2/M cells. Since the cyclin B1/cdc2

kinase plays a critical role as M-phase promoting factor (MPF) in

the G2/M transition, our results suggested that the unchanged

cyclin B1 and the alteration in the phosphorylation status of cdc2

might render the cdc/cyclin B1 kinase active and thus, prevent the

cells from completing the M phase after being treated with 2 mM

EF24. However, after 4 mM EF24 treatment, the cyclin B1 protein

decreased, this may suggest that different dose of EF24 may exert

different effect on the G2/M cell cycle related proteins, but the

cellular and molecular bases of this phenomenon remains to be

clearly defined. Although most antineoplastic agents induce

apoptosis in cancer cells, the mechanism by which they do so

remains unclear. Previous studies have suggested that EF24 could

activate caspase 3 in DU-145 and MDA-MB-231 cells[28], while

Thomas et al. observed EF24-induced cleavage of PARP (substrate

of caspase) in A549 lung cancer cells and they proposed a caspase

mediated cell death/apoptosis [27]. In this study, we also showed

that the activation of caspase and PARP were involved in the

EF24-induced apoptosis and the general caspase inhibitor z-VAD-

fmk partially blocked the EF24-induced cell death. However, even

treatment with up to 50 mM z-VAD-fmk did not completely block

the EF24-induced cell death, indicating that there were multiple

mechanisms involving both caspase dependent and caspase-

independent pathways. The data here was consistent with the

results of Thomas et al, which suggested that EF24 could induce

cell death in part through an potentially caspase independent

mechanism, namely p38 activition [27].

In our study, we observed marked suppression of tumor growth

in mice xenograft with EF24 treatment. There was a significant

reduction in relative tumor volume in EF24-treated animals

compared with untreated controls. In addition, a conspicuous

suppression of proliferation was observed from the results of Ki-67

and the immunostaining for TUNEL showed that there were an

increasing number of apoptosis cells in the EF24-treated animals.

However, further studies are needed to confirm and extend the

present study to use EF24 as an effective therapy for HCC.

Absorption and pharmacokinetic properties of EF24 in particular

still need to be identified in future studies, whereas the results of

our preliminary studies indicate that EF24 seems to have low

A New Agent for Liver Cancer Treatment
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toxicity in liver, spleen and allows mice treated with EF24 to

maintain normal weight gain [28].

Previously, Kasinski et al. reported a mechanism by which EF24

suppressed the NF-kB signaling pathway through direct action on

the I-kB kinase (IKK) in many cancer cell types including human

epithelial cervical (HeLa), breast (MDA-MB-231), human prostate

(PC3), colon (HT29), human lung (A549, A460, Calu-1), non-

small cell lung (H157, H358) and ovarian (1A9) cells[30]. Our

results also indicate that NF-kB is constitutively active in all the

human HCC cell lines examined. Besides, EF24 down-regulated

the nuclear pool, or active form, of NF-kB and changed the

expression of the NF-kB–regulated gene products Cyclin B1,

Figure 3. EF24 induced cancer cell apoptosis. (A). Five liver cancer cells were treated with 0, 2 and 4 mmol/L EF24 for 48 h and harvested. Flow
cytometry was performed to observe apoptosis rates. (B). Representative histograms from cytometrically analyzed the five cell lines treated with
control (DMSO) and EF24. Assay was done in triplicate. *p,0.05; **p,0.01. (C).The target proteins were detected by Western blot analyses. (D).
Histograms from three cell lines treated with EF24 and EF24 in combination with pan-caspase inhibitor (z-VAD-fmk). (E). Electron microscopic findings
in PLC/PRF/5 cancer cells treated with EF24. Cancer cells without treatment exhibited innumerable microvilli and well developed filopodia on the cell
surface with intact nuclei (a). In contrast, EF24 induced distinct changes on the cell surface with decreased filopodias and microvilli, and changes in
nuclei (b). Original magnification: 66,000 in a; 68,000 in b.
doi:10.1371/journal.pone.0023908.g003
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COX-2 and Bcl-2. Moreover, EF24 could also induce apoptosis as

indicated by activating caspases and PARP. The amount of

required EF24 for suppressing liver cancer cell growth has been

correlated with its ability to prevent the NF-kB from successfully

translocating into the nucleus to exert its downstream transcription

events. The EMSA results show that EF24 effectively inhibit the

activition of NF-kB pathway in PLC/PRF/5, SK-HEP-1 and

Hep3B cell lines with an estimated average IC50 of 2 mM. On the

other hand, curcumin shows a much weaker effect on NF-kB

suppression with an apparent IC50 of above 20 mM [30]. It is

clear that the structural change of curcumin to EF24 drastically

enhanced its anti-tumor effect as to inhibit the proliferation of liver

cancer cells with an average IC50 of 2 mM. Cao et al. have found

that the growth inhibition by curcumin in HepG2 cells was

concentration and time dependent. The IC50 value for 48 h was

22.36 mg/ml (60.7 mM) [36]. Subramaniam et al. also provided

evidence that EF24 could significantly suppress proliferation of

colon cancer cell lines HCT-116 and HT-29 and a gastric cancer

cell line (AGS) within a 24 h period, which continues to 72 h.

More importantly, the effects were observed at a dose of 1 mM, a

dose at which curcumin had no significant effect on HCT-116 cell

proliferation [26]. All these results suggested that EF24 exhibited a

more potent activity than curcumin both in HCC and other

cancers. Besides, researches have pointed that the average IC50

values of adriamycin (ADM), 49-epidoxorubicin (EDR), mitomycin

C (MMC), cisplatin and vepesid (VP-16) for achieving the same

NF-kB suppression on liver cancer cells were 0.96, 0.74, 2.81, 7.27

and 26.66 mM respectively[37]. It seems that EF24 is more potent

than ADM, EDR, MMC, cisplatin and VP-16 against HCC in

vitro. In addition, EF24 does not inhibit the proliferation of normal

liver cell line LO2 and the 100 mg/kg dose did not have harmful

effects. This dose was below the maximum tolerated dose (MTD)

of 200 mg/kg iv (400 mg/kg ip) determined by the NCI. Besides,

no liver or spleen toxicity was seen, and all of the treated mice

demonstrated normal weight gain.

NF-kB activation, which is a result of underlying inflammation

or the consequence of formation of an inflammatory microenvi-

ronment during malignant progression, has been observed in

many solid tumors, including HCC. Most importantly, through its

ability to up-regulate the expression of tumor promoting cytokines,

Figure 4. EF24 inhibits liver cancer tumor xenograft growth in vivo. (A) and (B). PLC/PRF/5 cells were injected to the flanks of nude mice and
palpable tumors were allowed to develop for 7 d. Subsequently, 20 mg/kg/d of EF24 was injected daily i.p. for up to 21 d. On day 22, tumors were
excised and subjected to further analyses. Tumor volumes in EF24 given mice were smaller than that of control mice. (C). Tumor size was measured
every two days. There was a significant reduction in relative tumor volume from EF24-treated animals when compared with untreated controls. (D).
Liver and spleen weight of the nude mice in EF24 treated and control group. (E) Tumor sections were stained with an anti-Ki-67 Ab to detect
proliferating cells, or TUNEL agent to visualize apoptotic cells. (F). Cells expressing Ki-67 were counted to calculate the proliferation index, or TUNEL-
positive cells. Assay was done in triplicate and p,0.05 is denoted by ‘‘*’’. (G). Western blot analysis on the expressions of p65, Cyclin B1, p-cdc2
(Thr161), p-cdc2 (Tyr15), Bcl-2, Bax, PCNA, pro-caspase-3 and pro-caspase-9 from respective tumoral homogenate, with b-actin as protein loading
control.
doi:10.1371/journal.pone.0023908.g004
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such as IL-6 or TNF-a, and survival genes, such as Bcl-XL, NF-kB

provides a critical link between inflammation and cancer [38].

HCC, which most commonly develops in the context of chronic

viral hepatitis caused by either HBV or HCV infection, is

considered to be a well accepted example of inflammation-linked

cancer. Therefore, these evidences enlighten us to make a

hypothesis that EF24 might interrupt the process of hepatocar-

cinogenesis through down-regulate the NF-kB pathway and

further to be an agent of special therapeutic effect for hepatitis

caused HCC. Besides, NF-kB plays a pivotal role in promoting

chemoresistance in many solid tumors [39]. Together, these

evidences suggest that EF24 might reduce the chemoresistance of

HCC to some other antineoplastic agents and perhaps be used

alone or in combination as a novel therapeutic regimen for HCC.

In conclusion, we might be the first to evaluate that EF24 has

significant anticancer effects against human HCC. Our in vitro and

in vivo studies in combination with the observation that EF24 does

not affect proliferation of normal human liver cells strongly suggest

that EF24 has promising potential for use as a therapeutic or

chemopreventative agent for liver cancer. Similar to curcumin,

EF24 also seems to have multiple molecular targets and its

enhanced potency in cancer cell lines and xenograft tumors

renders it is a candidate for therapeutic applications for liver

cancer as well as other cancers.

Materials and Methods

Cell lines and reagents
EF24 was synthesized as reported by Adams et al [40]. PLC/

PRF/5, Hep3B, HepG2, SK-HEP-1, Huh 7 and LO2 cell lines

were purchased from the American Type Culture Collection

(ATCC, Manassas, VA). Cell lines were grown as monolayers in

DMEM containing 10% heat-inactivated fetal bovine serum

(Gibco) and 1% antibiotic-antimycotic solution (Gibco) at 37uC
in a humidified atmosphere of 5% CO2.

Cell viability assays
To assess cell viability PLC/PRF/5, Hep3B, HepG2, SK-HEP-

1, Huh 7 and LO2 cells were seeded onto 96-well plates at a density

of 46103 per well and allowed to adhere and grow overnight in 10%

heat-inactivated FBS containing DMEM. The cells were then

treated with increasing doses of EF24 for 48 and 72 hours. Cell

viability was measured with Cell Counting Kit-8 (CCK-8, Dojindo

Molecular Technologies, Japan) according to the instruction of the

manufacturer. Cell viability was expressed as a percentage of

absorbance in treated wells relative to that of untreated (control)

wells. Three independent experiments were done.

Apoptosis assay
PLC/PRF/5, Hep3B, HepG2, SK-HEP-1 and Huh 7 cells

treated with EF24 (2 mM, 4 mM) were harvested, washed twice with

pre-chilled PBS and suspended in 16binding buffer at a

concentration of 16106 cells/mL. One hundred microliters of such

solution (16105 cells) was mixed with 5 mL of Annexin V-FITC and

5 mL of Propidium Iodide (BD Biosciences, San Jose, CA, USA)

according to the manufacturer’s instruction. The mixed solution

was gently vortexed and incubated in the dark at room temperature

(25uC) for 15 min. Four hundreds microliters of 16dilution buffer

were then added to each tube and cell apoptosis analysis was

performed by flow cytometry (BD FACS Calibur) within 1 h.

Electron microscopic analysis
For electron microscopic observation, the PLC/PRF/5 cells

were incubated with EF24 at the concentration (2 mM) for

48 hours. The cells cultured without treatment served as controls.

We harvested floating cells together with adherent cells and

centrifuged them at 2,000 rpm for 5 minutes. The cell pellets were

fixed overnight at 4uC in a 0.2 M sodium cacodylate buffer

containing a 2% solution of glutaraldehyde. Samples were then

postfixed in cacodylate-buffered 1% osmium tetroxide, dehydrat-

ed, and embedded in Epon 812 (Nacalai Tesque, Osaka, Japan)

for ultrathin sectioning. We stained the ultrathin sections with

uranyl acetate and lead citrate and viewed them with an electron

microscope.

Cell Cycle Analysis
PLC/PRF/5, Hep3B, HepG2, Sk-HEP-1 and Huh 7 cells were

plated at a density of 56105 per well on six-well plates. After

treatment with EF24 for the indicated period, both floating and

attached cells were collected into flow cytometry tubes and

centrifuged at 1,000 rpm for 5 min to obtain cell pellets. The

supernatant was discarded, and the cells were washed with PBS

and then recentrifuged. The cells were resuspended in 100 mL

PBS, 3 mL of 220uC ice-cold 70% ethanol was added, and the

cells were then incubated for 1 h at 4uC. The cells were washed

twice with PBS and 10 mg/mL RNase A was added. Propidium

iodide was added to the tubes at a final concentration of 0.05 mg/

mL and incubated at 4uC for 30 min in the dark. Cell cycle

analysis was performed with a Becton Dickinson FACScan using

an FL2 detector with a bandpass filter at specifications of 585 F

21 nm. In each analysis, 10,000 events were recorded. Results

were analyzed with ModFit LT software (Verity Software House).

Electrophoretic mobility shift assay (EMSA)
Nuclear extracts were obtained as for Western blotting

described above. EMSAs were carried out with a 32P-labeled

NF-kB using a Gel Shift Assay Core System kit (Promega),

according to the manufacturer’s instructions. After electrophoresis,

gels were fixed in 10% acetic acid-30% ethanol buffer during

15 mins, and then dried under vacuum and exposed to X-ray film

for three days. In some cases, a competition assay to determine

sequence-specificity of protein-DNA interactions was performed

by using 25-fold excess of unlabeled NF-kB -probe. For supershift

analysis, anti-p65 antibodies were incubated with the nuclear

extracts for 15 mins prior to the addition of the radiolabeled

probe.

Western blotting
SDS-PAGE and western blots were performed as previously

described. Primary antibodies used are as follows: NF-kB (p65),

Bcl-2, Bax and b-actin were purchased from Santa Cruz

Biotechnology. Caspase-3, Cyclin B1, Caspase-9, PARP and

cdc2 were purchased from Cell Signaling Technology. The

secondary antibodies, anti-mouse IgG-HRP and anti-rabbit IgG-

HRP were also purchased from Santa Cruz Biotechnology.

Tumor Xenograft Experiments
PLC/PRF/5 hepatoma cells (26I07) were transplanted into 5-

week-old athymic mice. For the treatment group, EF24 was

dissolved in sodium chloride containing 1% dimethyl sulfoxide and

administered by daily i.p. injection of 20 mg/kg/d for 20 days.

The mice in both the treatment and control groups (n = 15 in each

group) were sacrificed when snap-frozen and paraffin-embedded

tumor tissue blocks had been obtained for further analysis. The

body weight was recorded starting from the day of treatment, and

tumor volumes were also calculated at the same time points using

the following equation: tumor volume = length 6 (width)2 6p/6
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and subsequently transformed into relative values (V) (V = Vt/V0,

where V0 is the tumor volume at initiation of treatment, whereas

Vt is the tumor volume at any given day during entire treatment

period). The study was approved by the Committee on the Use of

Live Animals in Teaching and Research of the Harbin Medical

University, Harbin, China. SYSK 2010-012.

Ki-67 immunohistochemistry
Formalin-fixed, paraffin-embedded sections (5 mm) were stained

with anti-Ki-67 (rabbit monoclonal clone SP6; NeoMarkers,

Fremont, CA) antibody as described previously [12]. Results were

expressed as percentage of Ki-67+6SE per640 magnification. A

total of 10640 fields was examined and counted from three tumors

of each of the treatment groups. The values were initially subjected

to one-way ANOVA and then later compared among groups

using unpaired Student’s t test.

In situ detection of apoptotic cells
Apoptotic cells were detected by terminal deoxynucleotidyl

transferase–mediating dUTP nick end labeling (TUNEL) staining

following the vendor’s protocol. The apoptosis was evaluated by

counting TUNEL-positive cells (brown-stained) as well as the total

number of cells in five randomly selected fields in each sample at

4006magnification.

Statistical analysis
All data were presented as mean 6 SD of three independent

experiments. Statistical significance was determined using Stu-

dent’s t-test or ANOVA. A P value of less than 0.05 was

considered statistically significant.
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