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Activating effective functional 
hand movements in individuals 
with complete tetraplegia 
through neural stimulation
Christine Azevedo Coste1*, Lucie William1, Lucas Fonseca1, Arthur Hiairrassary1,2, 
David Andreu2,3, Antoine Geffrier4, Jacques Teissier5, Charles Fattal1,6 & David Guiraud  1,2*

Individuals with complete cervical spinal cord injury suffer from a permanent paralysis of upper 
limbs which prevents them from achieving most of the activities of daily living. We developed a 
neuroprosthetic solution to restore hand motor function. Electrical stimulation of the radial and 
median nerves by means of two epineural electrodes enabled functional movements of paralyzed 
hands. We demonstrated in two participants with complete tetraplegia that selective stimulation 
of nerve fascicles by means of optimized spreading of the current over the active contacts of the 
multicontact epineural electrodes induced functional and powerful grasping movements which 
remained stable over the 28 days of implantation. We also showed that participants were able to 
trigger the activation of movements of their paralyzed limb using an intuitive interface controlled by 
voluntary actions and that they were able to perform useful functional movements such as holding a 
can and drinking through a straw.

The incidence of spinal cord injuries (SCIs) in Western Europe and the United States is estimated at 16 and 40 
cases per million, respectively1. SCIs can have a devastating impact on patient health, autonomy and quality of life. 
Technical aids (e.g., motorized wheelchairs, orthoses, medical electric beds, transfer boards, home automation, 
etc.) can restore some independence to people with tetraplegia, but recovering upper limb functions is still the 
priority for functional recovery expressed by patients2–6. Indeed, most of the activities of daily living are per-
formed via hand movements and therefore the restoration of active motor skills in the forearm, hand and wrist 
would allow for greater autonomy and thus increased quality of life. In the absence of spinal cord repair solutions, 
only partial answers are available today. We thus proposed a breakthrough innovation based on selective neural 
stimulation which, to date, is the first one to induce synergic hand movements with only one electrode on the 
median nerve and one electrode on the radial nerve. Indeed, other approaches provide either partial or much 
more cumbersome solutions. Functional surgery is commonly used7,8 and more recently, nerve transfers have 
been attempted to re-innervate paralyzed muscles to regain voluntary control of the hand9,10. However, both 
methods require a sufficient number of muscles or nerves that are still under voluntary control. The transferred 
muscles and the remaining agonist muscles must also be strong enough to ensure effective recovery11,12. A part 
of the tetraplegic population is therefore not eligible for conventional functional surgery. The alternative is to 
use technical aids based on functional electrical stimulation (FES) or orthoses13.

FES alone, implanted or external, can be used efficiently, provided that the sub-lesional paralyzed muscles 
are still innervated by intact motoneurons14. One of the first applications of FES to recover hand motion was 
reported by Catton and Backhouse in 1954. FES was subsequently used to recover grasping movements in patients 
with high tetraplegia as early as 196315–17. These devices used intramuscular or epimysial electrodes, requiring 
one electrode for each muscle involved in the target movement. Noninvasive surface FES can also provide hand 
movements but with limited access to deep muscles or to muscles dedicated to the thumb (e.g. Abductor Policis 
Brevis). Surface electrodes need for an accurate placement from day to day to achieve a reliable functional move-
ments without recalibration. Finally the surface electrode’s placement are subject to skin relative movements. To 
overcome partly these problems, fixing the electrodes on the garment was proposed14. However most of external 
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FES devices failed to be used at a large scale due to the garment rigidity, lack of personalization or limitation 
to groups that either incomplete or with wrist control18. So these devices are rather used for rehabilitation and 
reinforcement14 without new devices as reported in a very recent review19. Surface electrode arrays20,21 can pro-
vide a more flexible and larger set of functional movements but they are clearly limited, in their current form, 
to a laboratory use as it demands for a day to day calibration under the supervision of a skilled physiotherapist. 
Ajiboye et al.22 also provided a rich set of movements but through a highly invasive percutaneous set of electrodes 
(#36) that could hardly be translated into a wide clinical practice. Both, external or percutaneous devices are very 
limited in terms of acceptability, safety and efficiency and thus are not used by patients in a daily-living context 
even though a rich repertoire of movements can be achieved. The only widely used successful device that has 
been proposed was the FreeHand®: more than 250 patients23 have had it successfully implanted with clear ben-
efits, proving the interest of such a technological solution for recovering hand movements24. Up to 12 muscular 
electrodes have been implanted to activate various hand tasks. A research version attempted to replace several 
muscle electrodes with a single neural 4-contact electrode25. During an intraoperative acute testing within a 
scheduled surgery, the results on selectivity remained limited, due to the adopted approach which was based on 
a monopolar scanning of the different electrode contacts. The same team tried on 2 patients to use epineural elec-
trodes to activate a greater number of movements in the whole upper limb. Indeed, 6 epineural electrodes were 
added to the intramuscular electrodes (14 on patient 1 and 15 on patient 2) leading to a very cumbersome setup 
with 2 Implanted Pulse Generators26. However, they further tested a simplified steering current paradigm with 
the epineural electrode and showed stability and increased selectivity compared to intramuscular stimulation27.

A step further would be to activate muscle groups via a limited number of epineural electrodes. Selective 
multicontact neural stimulation has the advantage of activating a large number of muscles via a limited number 
of electrodes, while requiring much less energy than epimysial or intramuscular stimulation and, by far compared 
to surface stimulation.

Human trials have already demonstrated the feasibility of this approach for restoring hand movements25,28 
but, as it combines multisite neuromuscular stimulation, it is very complex to set up and is therefore no more 
advantageous than the original FreeHand system. The limited effectiveness of nerve stimulation is due both to 
the limited selectivity of the electrode used and to the simplicity of the stimulation paradigm: four contacts with a 
global reference away from the electrode, with only one of the four contacts being used during stimulation. More 
complex multi contact electrodes have been used successfully in the human upper limb, namely the FINE29,30 and 
the TIME31,32 electrodes. Very recently, fine hand movements were obtained in primate with TIME electrodes 
leading to a promising alternative yet to be proved in humans33. However, the stimulation paradigms remained 
limited to bipolar-like stimulation where a single active contact was used toward a global ground.

In previous theoretical and preclinical studies34, we have shown that optimized complex current distributions 
over multicontact epineural electrode poles lead to higher selectivity within target nerves. We have therefore 
successfully applied this approach to the human forearm in trials35 during which we performed intraoperative 
sessions by stimulating the median or radial nerve in eight subjects with tetraplegia during scheduled surgeries. 
We demonstrated that it was possible to obtain isolated muscle contractions for flexors or extensors (fingers, 
wrist, thumb) in most subjects. We also obtained compound movements that could be used to produce key grip, 
hook and palmar grips. However, the patients were under general anesthesia and only one nerve was evaluated 
in each surgery. In addition, the scanning of the intensities were limited to predefined values with a coarse step 
to limit the needed time. It prevented a fine exploration of the stimulation parameters.

The present work goes a step further through a short term clinical trial: on 2 participants with complete 
tetraplegia, we show for the first time that with only 2 multicontact epineural electrode cuffs associated with an 
intuitive user control interface, the participants were able to autonomously activate a functional grasping. These 
preliminary results are all the more encouraging since the performance was obtained in approximately 3 weeks.

Results
Both participants had complete C4 AIS A tetraplegia. Two multicontact, self-adjusting epineural electrodes 
(CorTeC Gmbh, Freiburg, Germany) were wrapped around the target nerves above the elbow during a surgery 
under general anesthesia. The electrodes consisted of 2 outer rings and a central ring composed of equally spaced 
contacts (see “Materials” section). Depending on the electrode diameter, up to 6 (radial nerve) or 9 (median 
diameter) central contacts are available. The electrodes’ diameters are self-sizing so that depending on the actual 
diameter of the nerve, the winding is more or less large. Given the diameter of the nerves, the number of use-
ful contacts was eventually limited to 8 for the median nerve and 6 for the radial nerve for both patients. This 
original and tailored design of the electrode is based on our previous preclinical and simulations studies34,36.

Each participant followed 3 experimental sessions per week, during 28 days. The first session was dedicated 
to electrode configuration and stimulation parameters tuning, the second session was dedicated to user interface 
adjustment and the last session was focused on functional tests of the optimized setup. The movements sought for 
gripping were the key grip, the palmar grip with the thumb and the opening of the hand. Concerning the selective 
configurations used, we tested 3 different current distributions: (1) Tripolar Longitudinal (TLR) configuration 
composed of a central contact as cathode and the two rings as anodes, (2) Steering Current (STR) for which a 
third anode was used on the opposite to the selected cathode, (3) Transverse Tripolar (TTR) for which 2 anodes 
were added to the TLR on each side of the selected cathode. Previous studies35,36 proved that the focus area of the 
activation under the cathode is the largest with TLR and the smallest with TTR. STR provides an intermediate 
focus. The Supplementary Material “Electrode’s configurations” section gives the detailed procedure.

Selection of functional movements based on the synergistic muscles’ responses can be 
obtained.  The selectivity search consists in exploring the muscles’ responses of the obtained movements 
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while changing the cathodic contact and the configuration. This search is completed by an assessment performed 
with surface EMG. Indeed, recruitment curves are obtained varying the intensity in isometric conditions; the 
resulting M-waves allow us to objectively quantify these responses. The median nerve innervates predominantly 
the flexor muscles of the forearm and the hand. Surface EMG electrodes were placed on: the flexor carpi radialis 
(FCR) responsible for the wrist flexion, the pronator teres (PT) responsible for pronation of the forearm and the 
wrist, the flexor digitorum superficialis (FDS) responsible for the digit (except thumb) flexion, the flexor pollicis 
longus (FPL) responsible for the thumb flexion and the abductor pollicis brevis (APB) responsible for the thumb 
abduction. The radial nerve provides motor innervation to muscles in the arm and forearm that are mostly 
extensors. Surface EMG electrodes were placed on: the extensor carpi radialis (ECR) responsible for the wrist 
extension, the extensor pollicis longus (EPL) responsible for the thumb extension and the extensor digitorum 
communis (EDC) responsible for the fingers extension.

Considering the large set of possibilities—for the median nerve 8 contacts for 3 configurations would lead 
to 24 sessions while varying the intensity, the pulse-width and eventually the frequency—it was necessary to 
sort the configurations in order to select the more appropriate one for each desired movement. There were two 
options: (i) using low current intensities to activate isolated muscle contractions but with a limited strength and 
combine these individual activations, (ii) selecting the configurations that induce synergistic muscle activations 
producing global functional movements. Even though the first approach was first envisioned, the second one 
was the only feasible way to achieve optimal configurations. For the grasping movements, we tried to favor FDS/
FPL/APB contractions, to avoid wrist flexion/pronation, so a relevant subgroup of contacts was selected using 
TLR configuration explorations only with a fixed pulse width (150 µs) and a fixed frequency (24 Hz). This search 
was performed once a day during 3 days the first and second week. The refinement was then studied with STR 
then TTR with this subgroup to further obtain stronger contractions of the 3 targeted muscles while limiting 
contractions of PT (Supplementary Material “Electrode’s configuration” section). The same approach was used 
for the radial nerve. Then, the configurations used were fixed and only the intensity was adjusted if necessary.

This semi-empirical search, based on the actual outcomes of the stimulation, finalized the selection of the 
configurations and their associated current that induced the best functional key grip or palmar grip with the 
highest strength and the lowest wrist flexion/pronation which was then assessed. Concerning each patient, the 
selected configurations that generated the desired functional movement were the following:

•	 Participant P1 for the median nerve TLR1 induced palmar grip without PT and a weak FCR. TLR7 induced 
a key grip without FCR and a weak PT. For the radial nerve, TLR2 induced all muscles’ contractions for a 
full opening of the hand with wrist extension.

•	 Participant P2 for the median nerve TLR1 induced palmar grip, STR5 induced key grip. For the radial nerve, 
STR2 induced a full opening of the hand with wrist extension.

Recruitment curves confirm the relevance of the empirically selected configurations.  Based 
on the detailed normalized recruitment curves obtained during the last week of the participants’ follow up, we 
computed the Index of Recruitment Order (IRO, see “Methods” section) representing the recruitment order 
among monitored muscles combined with the amplitude of the intensity needed to reach a given threshold for 
each (0.1 and 0.7)34,37. This index is relative to the electrode configuration and the targeted threshold leading to 
12 figures per patient (Fig. 1). For each configuration (TLR, STR, TTR), the IRO varies from 0 (threshold not 
reached) to 1 (threshold reached with the lowest current’s intensity). It was computed for median and radial 
nerve responses.

IROs diagram gives information, for a considered electrode configuration, about the selectivity and the syn-
ergic sequence of activation of the different muscles. The level of recruitment of 0.1 targets a weak contraction 
whereas the level of recruitment of 0.7 targets a strong functional contraction37. Results exhibit the following 
statements:

•	 TLR => STR => TTR differences: diagrams confirm that the selectivity increases from TLR to TTR (less 
overlapping of polygons). Moreover, as demonstrated in simulations, intensities (Imin) are higher with TTR 
(Supplementary Fig. 4, Fig. 1). Within a selected cathode, the increment of intensity to activate an additional 
muscle increases meaning that TTR (resp. TLR) gives the highest (resp. the lowest) discrimination between 
muscle’s activations (Supplementary Fig. 7). It is due to a smaller extension of the activated nerve’s area in 
deeper regions when the intensity increases when using more selective configurations36.

•	 First activated muscle: a selective stimulation of a subgroup of muscles is possible with a consistent distribu-
tion over the contacts. For instance, for a 0.7 level of recruitment and TLR, a given muscle is predominantly 
activated by a set of adjacent contacts:

–	 For the median nerve, for P1, FDS (contacts 1–2) PT (contact 4), APB (contacts 5–6) FPL (contacts 
7–8)

–	 For the radial nerve for P1 EPL (contact 3), ECR contacts (5–6)
–	 For the median nerve for P2 FDS (contacts 7–8-1), APB (contacts 3–4-5)
–	 For the radial nerve for P2 EDC (contacts 5) EPL (contacts 6)

For the median, it allows to select different sequences of flexions and thus types of grasping while limiting 
unwanted movements such as wrist flexion and pronation. For the radial nerve, results are less selective even 
though it is interesting to note that for P1 a pure extension of the wrist could be obtained using contact 5 or 
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Figure 1.   IRO of the muscles for the 3 configurations (TLR, STR, TTR) and for 2 recruitment levels (0.1 and 
0.7). From top to bottom: P1, P2 median nerve—P1, P2 radial nerve—Imin values. Each vertex of one colored 
polygon corresponds to the IRO values for the selected cathode of the considered muscle. The smaller the 
polygon surface is, the higher the current needed to obtain a recruitment level of 0.1 resp. 0.7 is. A vertex on 
the circle edge means that Imin, the minimum current amplitude for this configuration, is needed to obtain 
the given level of recruitment whereas a vertex tied to the center means that the level of recruitment cannot be 
obtained. In between, along a radius, the sequence of activation with increasing intensities for a given level of 
recruitment can be seen from edge to center.
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Figure 1.   (continued)
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6. However, the sequences of activation of subsequent muscles differ and allow for different types of opening 
without the need of accurate individual muscle’s activations. The sequences of activations can be seen in the 
Fig. 1 for a given contact in a given configuration from the periphery (the first activated muscle) to the center 
(the last activated muscle). Comparing with the results obtained empirically for the median nerve, we can have 
a detailed sequences:

•	 Participant P1: TLR1 (recruitment order FDS > FPL > APB > FCR > PT at 0.1 FDS > FPL at 0.7). TLR7 
(recruitment order FPL > FDS > PT > APB > FCR at 0.1 FPL > APB at 0.7), further confirming weak PT 
contraction in both cases and at low and high recruitment levels.

•	 Participant P2: TLR1 (recruitment order FDS > FCR > FPL > APB at 0.1 FDS at 0.7), STR5 (recruitment order 
FCR > APB > FDS > FPL at 0.1 APB > FCR > FPL at 0.7).

Thereby, the cathode selection allows choosing the order of the sequence of activated muscles linked to 
the proximity between the selected cathode and the muscles’ group corresponding fascicle (Supplementary 
Figs. 5, 7). Figure 1 (Imin values) shows that participant P1, for both nerves and all configurations, has smaller 
Imin values variations to reach 0.1 and then 0.7 than participant P2. Besides, for a targeted level of recruitment 
(0.1 or 0.7) Imin values are consistently associated to the same pair of inner contact-muscle (except two TLR 
IROs for P2, Fig. 1): P1-median (0.1 => 7/FPL, 0.7 => 4/PT), P2-median (0.1 => 1/FDS, 0.7 => 5/APB), P1-radial 
(0.1 => 2/ECR, 0.7 => 3/EPL), P2-radial (0.1 => 2/ECR, 0.7 => 3/ECR). Finally, Imin values are lower for radial 
nerve.

Table 1 shows that the level of individual muscle contractions strongly depends on the patient and on the 
neural selectivity. Indeed, to get an efficient and functional movement, the biomechanical conditions (muscle 
strength, joint stiffness, rest position) lead to very different stimulation tunings that cannot be a priori set upon 
general hand biomechanics considerations.

The recruitment curves presented in Fig. 2 lead to several interesting observations. The recruitment order is 
depending on the intensity so the sequential recruitment based on an arbitrary threshold (0.1) is only indicative. 
For instance, for P2 on the median nerve, the relative levels of the recruitment between muscles are changing 
while the intensity is increasing leading to a different recruitment order: for STR5, FCR is the first recruited 
muscle but APB raises the highest plateau (0.81). It means that an objective selection of the configurations and 
the contacts based on recruitment curves only is almost impossible as a unique relationship between a desired 
outcome and a configuration/contact/recruitment level cannot be established.

Functional assessments of the selected movements.  As explained above, the recruitment curves are 
not sufficient to describe the functional outcomes. Indeed, the gripping function only makes sense in relation to 
the manipulated object. It is the interaction between the hand and the object that makes it possible to objectify 
the grasping function. Thus, the extension of the fingers and the wrist must be adapted to the volume of the 
object to be grasped and the flexion of the fingers and the wrist must be adapted to the object volume and weight 
to allow grasping and moving it.

Figure 1.   (continued)

Table 1.   Normalized recruitment levels of the muscles for the 3 electrode configurations and current 
intensities selected to evoke the 3 functional movements. The common stimulation parameters are: frequency 
24 Hz and pulse width 150 µs.

Radial nerve Median nerve

Hand opening Palmar grip Key grip

P1

TLR2, 80 µA TLR1, 460 µA TLR7, 500 µA

EPL ECR EDC APB FDS FPL PT FCR APB FDS FPL PT FCR

0.13 0.62 0.14 0.6 0.72 0.69 0.08 0.11 0.09 0.36 0.84 0.11 0.04

P2

STR2, 240 µA TLR1, 360 µA STR5, 440 µA

EPL ECR EDC APB FDS FPL PT FCR APB FDS FPL PT FCR

0.48 0.32 0.3 0.1 0.9 0.11 – 0.33 0.81 0.53 0.6 – 0.56
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Figure 2.   Recruitment curves of the 3 selected configurations evoking functional movements: Participant P1: 
TLR2 for hand opening (radial nerve), TLR1 for palmar grip, TLR7 for key grip (median nerve). Participant P2: 
STR2 for hand opening (radial nerve), TLR1 for palmar grip, STR5 for key grip (median nerve). The green areas 
show the ranges of usable intensity settings that allow modulating the force while keeping a similar muscles’ 
synergy.
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Video recording and kinematic data acquired with the Leap Motion corresponding to the selected stimulation 
configurations were processed and synthesized in Figs. 3 and 4 to illustrate the obtained movements. The selected 
configurations and intensities provided an efficient and wide opening of the hand allowing the patient to approach 
objects before grasping and finally releasing objects. The quality of the opening motion can be assessed by the 
fact that the fingers and the thumb are extended sufficiently to approach and surround an object such as a can 
of 70 mm diameter. Depending on the object size, the amplitude of the extension can be adjusted by increasing 
current intensity. In the chosen examples (Fig. 3), participant P1 was wearing a wrist brace and a thumb splint 
while participant P2 was only wearing a thumb splint. The wrist brace kept the wrist in an appropriate position, 
i.e., dorsiflexion, while activating the finger flexors (Fig. 3).

Grasping movements were assessed by the data provided by Leap Motion device and the corresponding 
videos. We must highlight the importance of the initial posture: depending on the initial joint angles, applying 
a stimulation pattern leads to a different final posture. We have therefore equipped the participants with a wrist 
brace to start from a neutral resting posture for the wrist. In Fig. 4, the two main grasping postures obtained 
with the two participants are described. The so-called palmar grip with the thumb corresponds to a flexion of 
the fingers with the thumb over the fingers. In the key grip, the pulp of the thumb is applied to the radial edge of 
the index finger at the second phalanx. In the functional tests with manipulation of an object, the closing of the 
hand was preceded by an opening of the hand and an object constrained the finger paths.

The quality of the grasping is difficult to predict without the interaction with objects. Therefore, the assessment 
was further completed with instrumented objects allowing to estimate the contact forces exerted by the fingers. 
A bar (similar in thickness to a chocolate bar) was instrumented for the key grip and a can (similar in size to a 
soda can) for the palmar grip (see “Method” section). The forces induced by the stimulation were sufficient to 
maintain the object firmly over time. Forces are computed over 3 averaged trials.

The Table 2 shows that the kinematics without object is very difficult to interpret as similar positions are 
obtained for a given patient except the pinky not supposed to be activated (but mechanically constrained) and the 
thumb that shows a larger flexion for key grip over palmar grip. Concerning recruitment level, FDS recruitment 
is higher for palmar grip whereas FPL recruitment is higher for key grip. APB recruitment seems counterpro-
ductive concerning the produced force and not linked to the obtained grasping.

Over the 28-days trial a large number of grasping tasks have been achieved with different objects to assess 
functional outcomes. In Fig. 5 we have reported the most representative tasks that were realized i.e. chocolate bar 
(250 g) pick and place, fork with food intake, pen with lines drawing, half a liter bottle (500 g) manipulation and 
drinking with a straw, 330 ml can (330 g) manipulation. To control the triggering of the 3 pre-programmed stimu-
lation configurations: (1) hand opening (object approaching or releasing), (2) digito palmar grip with thumb, 
(3) key grip, according to the state machine described (“Material and Methods” section), participant P1 used the 
voluntary contraction of the platysma and upper trapezius muscles, participant P2 used two occipital buttons.

Discussion
Variability of the settings.  The results show that the inter individual settings are completely different 
even though the ranges of the values remain in the same order of magnitude. It means that the technology can 
have generic specifications but needs to be personalized: the selected contact, the configuration, and the used 
intensity ranges reflect this variability. The obtained movements are also quite different (wrist position, force), 
due to participant biomechanical conditions that are drastically different, but the functional outcome is similar 
showing that functional tasks are the final, thus important assessments to be considered.

On the contrary, intra-individual variabilities are extraordinarily low, further confirming the interest of 
implanted technology. The optimal configurations (TLR vs. STR vs. TTR) did not change during the first phase 
of blind evaluation and stimulation settings remained identical over time: the frequency, the pulse width were 
never changed, and the intensity slightly adjusted no more than one step up or down (± 20 µA). This means that 
the settings remained the same from session to session, showing stable muscles’ response and selectivity. These 

Figure 3.   Kinematics data of hand opening. Left: participant P1—Radial nerve stimulation TLR2 (Wrist 
brace + Thumb splint). Right: participant P2—Radial nerve stimulation STR2 (Thumb splint). Video snapshots 
and posture reconstruction based on Leap Motion data. The diagrams represent the excursions of the 5 angles.
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Figure 4.   Kinematics data of palmar grip with thumb and key grip. Top: Participant P1 (Left: Configuration 
TLR1, Right: Configuration TLR7). Middle: Participant P2 (Left: Configuration TLR1, Right: Configuration 
STR5). Video snapshots and posture reconstruction based on Leap Motion data. The diagrams represent 
the excursions of the 5 angles. Bottom: Normal forces recorded for Palmar (instrumented can) and Key grip 
(instrumented tablet) for P1 and P2, 3 trials per condition.

Table 2.   Combined assessment of grasping movements. Significant values are in bold.

Muscle recruitments APB-FDS-FPL Force Kinematics (final angle) Thumb-Index-Middle-Ring-Pinky

P1 Key Grip 0.09 0.36 0.84 9.6 N (± 1.8 N) 96° 24° 19° 22° 26°

Palmar Grip 0.6 0.72 0.69 4.9 N (± 0.9 N) 105° 29° 22° 20° 22°

P2 Key Grip 0.81 0.53 0.6 4.9 N (± 1.1 N) 61° 21° 15° 16° 50°

Palmar Grip 0.1 0.9 0.11 9 N (± 2.2 N) 78° 18° 22° 27° 32°
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results are sustained by highly stable impedance measurements and thresholds over time (Supplementary Figs. 3, 
4). We obtained very low current intensity thresholds (median nerve P1 260 µA (± 62 µA), P2 184 µA (± 33 µA) 
and radial nerve P1 80 µA (± 0 µA), P2 100 µA (± 20 µA)) for muscle activation (the lowest thresholds obtained 
for each muscles over all the configurations). The values are similar to the thresholds reported in the literature25,27 
but lower than those obtained in our own previous clinical trial35. In addition, we observed only small variations 
in these thresholds over the 28 days of follow up (no more than one step of current i.e. 20 µA). Moreover, the set-
tings for the 6 functional configurations described in Figs. 3 and 4 were followed up and showed stabilized tuning 
during the last week of the clinical trial (Supplementary Fig. 5). We had frozen the stimulator characteristics to 
conform to the state-of-the-art reported values which forced us to use a too high intensity step (20 µA) prevent-
ing us from getting more accurate settings and smoother recruitment curves. This was partially compensated 
by pulse width modulation, but a higher resolution would benefit future tests. While removing electrodes, no 
fibrosis was detected between the electrode contacts and the nerve tissues38, the self-adapting epineural electrode 
gently and intimately surrounding the nerve. A thin fibrotic tissue encapsulated the whole electrode increasing 
the mechanical adherence to the nerve without stressing the tissues. It may explain these high stability.

Contributions and limitations of the proposed approach.  The first contribution is that we succeeded, 
for the first time, in repeatedly generating 3 functional movements of the hand during the 28 days of implanta-
tion with solely 2 epineural multicontact cuff electrodes. We validated the concept that we had primarily studied 
through simulations and theoretical optimization followed by an original design of both the electrodes and the 
stimulator. Indeed, two multi-contact epineural electrode cuffs were implanted around the radial and median 
nerves of two participants with complete C4 spinal lesion. The electrodes were in place for 28 days during which 
the participants were involved in various sessions to tune the stimulation configuration parameters, to adjust the 
piloting interface and to perform functional tests38. Both participants were able to trigger 3 movements using 
their own voluntary actions (activating muscle contractions or occipital buttons)38: hand opening, key grip and 
palmar grip. Different objects were seized and handled by the participants. The produced torque for both grasps 
is high enough (> 4 N) so that the majority of daily activities can be safely performed12.

The second important contribution to the generation of movements was to show, through the search for 
muscle synergies, i.e. the activation of several muscles at different levels with a single pulse, a very efficient and 
new way of tuning such a neuroprothesis compared to classical tuning muscle by muscle. Indeed, scanning con-
figurations is equivalent to looking for the synergic movements search as median, resp. radial nerve, innervate 
essentially synergic muscles. Searching for highly selective, individual muscle activation that should be further 
combined to provide functional movements appeared to be much more complex and less efficient.

However some limitations also appeared. First, surface EMG is known to include crosstalk between muscles. 
Our method allows to extract separate M-waves (see Supplementary Material and William et al.39) but needs to 
be further confirmed; however the matching between sorted M-waves and individual muscle contraction was 
assessed by the consistency between recruitment, EMG electrode’s location over targeted muscles and visual 

Figure 5.   Video snapshots illustrating different grasping performances. Left: participant P1. Right: participant 
P2.
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inspection of induced movements. Wired EMG, or High Density EMG as a non-invasive method, could be used 
to consolidate our approach in a future work40. Concerning recruitment curves, it should be further confirmed 
that they are stable over time. We recorded them only once at the end of the protocol to assess the link between 
the chosen configurations and the recruitments, but the stability of the settings were checked only through 
thresholds, impedances and intensity settings (see Supplementary Material).

A second limitation concerns the obtained movements that were insufficient to provide stable grasping with 
an object without using a wrist brace. This is because an extension of the wrist while performing the grasping 
function is necessary to secure and provide a reliable functional movement. The wrist position drastically changes 
the resulting torques generated by a constant stimulation current. This is due to the complex biomechanics of the 
hand together with the properties of the muscles, in particular the force–length relationship. In addition, as in 
all other approaches based on FES to restore grasping, we used open loop stimulation which makes the tuning 
to obtain an effective grasping very challenging as it depends on hand-wrist posture. We solved these problems 
with a wrist brace to allow for a neutral resting posture of the hand which facilitates stimulation parameters 
tuning. Thus, the orthosis blocks the wrist flexion so that the fingers and thumb flexions are reliable and more 
importantly, reproducible. In the absence of the brace, the fingers’ flexion can induce wrist flexion that further 
decreases the efficacy of the grasp. However, our approach allows for a combination of a pure wrist extension via 
selective radial nerve stimulation together with median nerve stimulation in order to stabilize the wrist by co-
contraction without the need for a splint. Preliminary tests in this way with P1 were encouraging with a successful 
co-contraction of wrist extension and fingers flexion (Supplementary Material “Advanced posture management 
with co-contraction” section). Nevertheless, in this study, we decided to focus on the reproducibility of evoked 
movements over 28 days rather than exploring new stimulation combinations: the developed device achieved 
the goal of providing an autonomous hand that opens, grasps and releases everyday objects in less than 3 weeks 
of adjustments, adaptations and rehabilitation.

Another important lesson learned in this study concerns pronation-supination movements. We did not 
attempt to control these movements, which were considered undesirable. In this case, selectivity is used to avoid 
PT activation. These movements depend not only on muscle activation but also on wrist joint stiffness. This 
was specifically the case for participant P2. Despite our attempts to control the pronation by means of braces, in 

Figure 6.   Setup description. An experimental platform was developed to control the stimulation delivered 
to 2 neural epineural electrodes implanted around the median and radial nerves. Evoked electromyography, 
video, evoked movement kinematics and grasping forces were recorded. The participants used voluntary muscle 
contractions or occipital buttons to trigger different stimulation configurations.
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the end we decided to adapt the objects to allow an approach and grasping of can-type objects (Fig. 6). This is 
a usual practice of occupational therapists who adapt everyday objects to the motor abilities of patients. In this 
case, we have succeeded in proposing a functional grasp by means of an accessory (3D printed handle) allow-
ing a grasp at 90°. The solution is simple and effective and raises the question of the balance between the use 
of complex stimulation paradigms and the use of adaptive tools or even light passive orthoses. Of course, the 
grasping/releasing of objects itself remains under the exclusive control of the FES since it is an active movement.

Another limitation of this protocol is that all-or-nothing stimulation paradigms without the ability to modu-
late the stimulation during execution was used. For the opening of the hand, it does not seem necessary to go 
further in the complexity for the approach or the release of objects. In contrast, for grasping, a progressive clo-
sure of the fingers around the object could help the patient to obtain a more reliable grip by avoiding the use of 
an immediate strong contraction which could lead to an incorrect positioning of the fingers around the object.

Guided tuning procedures.  Tuning stimulation parameters procedures were based on a mixed approach. 
The simulations studies gave a reduced set of relevant selective configurations (TLR, STR, TTR) that allows to 
study selectivity. The first systematic scan of all inner contacts (as cathode), with and without holding an object, 
was then possible in a limited time as only the intensity needed to be adjusted. Assessment of the selectivity 
(which muscle is activated alone over which range) and synergies were then very simplified. Among the subset 
of inner contacts using TLR configurations that provide functional movements, the guided search continued 
through testing more selective configurations (STR then TTR). For instance, we succeeded to increase the selec-
tivity in such a way that undesired movement, i.e. wrist flexion or pronation, was further limited while keeping 
the desired synergic activations. It finally showed that highly selective configurations were not the best ones 
(TTR) confirming that synergies (obtained with TLR eventually STR) are better than isolated then combined 
muscle’s activation. This is a strong advantage of our approach versus epimysial/intramuscular stimulation for 
which synergies must be found through multiple muscle’s activations and so current settings. Eventually, the fact 
that obtained synergies differ depending on the inner contact used confirms that a functional fascicularisation 
exists in the human’s upper limb, as previously suggested41–43, and can be exploited.

However, our guided approach limitation concerns the use of the recruitment curves. These were long but 
necessary sessions to assess the recruitment logic i.e. a progressive and selective activation of muscles’ groups 
with a similar recruitment order on a specific inner contact whatever the configuration is (TLR, STR, TTR). The 
more selective configurations allowed smoother transitions, more isolated muscle’s contractions, and slightly 
different recruitment orders to possibly increase the accuracy of the tuning, but a direct link between recruit-
ment curves and functional outcome is still not obtained so these curves cannot be used as a first step of tuning. 
The concept of selective stimulation and tuning should be revisited in a clinical context to limit the duration of 
sessions and to get closer to an objective and quantified tuning. These curves can rather be used to finalize the 
tuning through the fine tuning of the intensity or possibly to switch from a configuration to another that have 
a similar recruitment order (same synergy) but not the same recruitment levels. We did not go into this step as 
it would have need further sessions. To do so, both the scanning procedures and the assessment tools should 
be improved. Clearly, an efficient grasp cannot be obtained automatically. The fact that the hand biomechan-
ics complexity, the shape and the weight of the object to grasp all have a strong influence on the quality of the 
grasping makes it impossible to make predictions from recruitment curves, or even from a complete movement 
without any objects. A tool to quantify objectively the grasping while scanning the configuration is paramount. 
There is no solution to date and it will be considered as a central topic for the next trials.

As a whole, the minimally invasive approach we propose is well fitted to clinical transfer as the surgery is 
limited compared to epimysial approaches, very stable and energy efficient and thus easy to use from day to day 
compared to external stimulation approaches with an efficient guided empirical search.

Further improvements concern the elbow flexion extension that could be addressed by either a more proximal 
radial stimulation or the musculocutaneous nerve stimulation. It would extend the eligible group of patients 
with still at most 3 neural cuff electrodes. However the selectivity challenge would be greater to obtain pure 
elbow movements and should be proved. Besides, the control by the patient is different in nature as it concerns 
the object’s approach and not the gripping itself. Combined approaches with functional surgery may be also a 
solution, in particular for elbow flexion recovery8. Further researches are necessary to keep the solution simple 
with hidden complexity of the technology and richer interfaces44,45.

Conclusion
This clinical trial is a proof of concept of the ability of the selective neural stimulation to provide synergic and 
functional hand movements. It further confirms, for the first time, that with only 2 epineural electrodes the 
essential hand movements, i.e. opening, key grip and palmar grip, can be obtained with reliable and reproducible 
stimulation settings. Finally, contrary to most of the previous approaches, we further demonstrate that a synergic 
muscle activation is easier to set compared to the individual setting of each muscle contribution. Rather than 
using selectivity to isolate each muscle’s contraction, it allows to select a set of muscle synergies.

Materials and methods
Subject recruitment and surgery.  Two male participants with a traumatic SCI C4 AIS A were included 
in the study (Supplementary Table 1). Participants provided written informed consent before participating in 
accordance with the Declaration of Helsinki. The protocol was approved by the French Ethics Committee (CPP 
Ouest IV Nantes, France, ID-RCB #2019-A00808-49) and French Health Agency (ANSM). The study was reg-
istered on ClinicalTrials.gov (registration number: NCT04306328 first registered 12/03/2020). Patients gave 
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informed consent to publish photographs and videos acquired during the protocol and included in the present 
paper.

The participants underwent a first surgical procedure to implant the median and radial nerves epineural 
electrodes located above the elbow. After 28 days the electrodes were explanted during a second surgical inter-
vention. During 28 days the participants were hospitalized and underwent 3 weekly trials for the adjustment of 
stimulation patterns, as well as daily rehabilitation sessions and clinical tests. The 28-day duration is below the 
30-days limit that allows a clinical trial to be legally classified as a short term trial (Online Annex IX, Section 1, 
EU directive 93/42). A long-term trial will be the next step with an implanted stimulator and thus without per-
cutaneous wires. Detailed surgical procedures and clinical scores are presented in Azevedo et al.38.

Figure 6 presents the setup used to explore and evaluate the functional movements obtained with all the tested 
configurations on both nerves. Next sections detail the different parts of this setup.

Electrodes.  2 electrode cuffs were used, both composed of 2 external rings and a number of inner contacts 
that depends on the targeted nerve: (i) 3–4.5 mm diameter (self-adjusting), 2 cm length epineural electrode was 
used for the radial nerve (6 inner contacts, Cortec Gmbh, Freiburg, Germany) and a 4.5–6.75 mm diameter 
(self-adjusting), 2 cm length epineural electrode was used for the median nerve (9 inner contacts, Cortec GmbH, 
Freiburg, Germany). The epineural electrode inner contacts sizes are 2.4 × 0.8 mm2, 2.4 mm spacing between two 
adjacent contacts (center to center) and made of 90/10 Pt/Ir alloy embedded with silicone. The distance between 
each external ring and each inner contact is 0.8 mm (center to center).

Electrode integrity was checked all along the 28-days by an impedance measurement before each working 
session i.e. 12 times. The impedance was estimated by the ratio between the voltage and the current at the end 
of the cathodic phase of a bipolar balanced stimulation between each contact and the proximal ring. The stimu-
lation parameters were set to 60 µA, 300 µs, 4 Hz, 5 pulses. The first pulse was discarded and the 4 remaining 
were averaged.

Stimulation protocol.  The stimulator architecture is described in46. It can distribute the current over the 9 
inner contacts on the median (respectively 6 on the radial) and the 2 rings of each electrode with a ratio between 
1/15 and 15/15 of the total injected current. This makes it possible to drive independently the amplitude of 
multiple current sources in synchrony for each of the 8 or 11 contacts of each epineural electrode: this provides 
a unique and innovative way of shaping the current in 3D within the cuff electrode. Each contact can be further 
configured as anode or cathode during the active phase of the stimulus. The current intensity (up to 5 mA, 8-bit 
resolution), pulse width (up to 510 µs, step 2 µs) and frequency (up to 50 Hz) are configurable and the compli-
ance voltage is 20 V. The stimulator follows the essential safety requirements concerning both the embedded 
software and the hardware. The stimulator was fully insulated from the control PC. The waveform stimulation 
was biphasic, symmetric and charge balanced with a delay of 100 µs between the active phase and the recovery 
phase47. To evaluate the selectivity of the multicontact electrode, we selected up to 3 configurations that we com-
pared with the conventional bipolar ring configuration (Supplementary Table 2) based on a previous simulation 
study and validated in preclinical studies34,36. The stimulation scanning is initiated with the threshold value that 
induces a visible contraction with the Ring configuration. Then, an automatic scanning with increased steps of 
20 µA is performed until obtaining a plateau (EMG recordings) or a contraction that is too strong, at which point 
the procedure was stopped upon the medical doctor request. The configurations and intensities were increased 
every 1 s (0.5 s ON–0.5 s OFF) to limit fatigue.

The pulse width and frequency were fixed to 24 Hz and 150 µs. With 24 Hz we checked that no muscle tremor 
was induced.

Patient control.  3 command modalities have been proposed to participants to control the triggering of 
hand opening and 2 different grasping: (1) they could perform different movements with their contralateral 
shoulder that were captured with inertial sensors (IMU)44; (2) they could use two different muscles voluntary 
contractions, again from the contralateral side, that were captured by electromyography (EMG) sensors; or (3) 
they could push buttons attached to the wheelchair headrest with head movements. P1 chose to use small vol-
untary contractions of the supralesional platysma and upper trapezius muscles (of the contralateral side of the 
stimulated hand) detected by surface EMG (Trigno™ Delsys, Natick, MA). EMG was rectified and low pass 
filtered (6 Hz low-pass Butterworth, 4th order) to extract the envelope and a threshold was set for each EMG 
sensor on each muscle so that P1 could clearly activate the command when desired, but not by accident when 
speaking or laughing for instance. P2 used the head command (2 push buttons) as he was not able to contract his 
muscles in a reliable manner to allow using EMG detection modality. Besides, controlling contralateral move-
ments, although possible, was inducing rapid fatigue onset leading the participant not selecting IMU modality.

A finite state machine (FSM) was defined to associate the user’s commands (detection of EMG threshold tran-
sitions or occipital buttons’ pressing) to actions depending on the current FSM state. The actions were associated 
with predefined stimulation configurations. Once the system was turned on, the first user command received was 
always decoded into triggering “open hand” stimulation configuration. Then, the participants could choose one 
of the two preset grasping (key grip or palmar grip). The next action was always “open hand” again, regardless of 
the command received. Finally the next command, whichever it was, would deactivate the stimulation. The FSM 
was customizable so that each participant could choose which command would trigger which stimulation action.

Evoked‑EMG processing.  The muscle response to electrostimulation was characterized by recruitment 
curves obtained from EMG recordings. Surface EMG was preferred to intramuscular EMG to limit the risk of 
infection and bruises. Moreover, the higher selectivity of intramuscular electrodes was mitigated by the fact that 
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neural stimulation induces M-waves on a limited and known subset of muscles. Besides, we developed a robust 
post processing able to rebuild individual M-waves39. EMG were recorded with a sampling frequency of 2222 Hz 
(Quattro™ Delsys, Natick, MA). EMG data are then filtered to eliminate residual DC (High pass, order 1, Cutoff 
frequency 1.5 Hz) and high frequency noise (Low pass Butterworth, order 4, Cutoff frequency 400 Hz). EMG are 
synchronized with the stimulator so that for each stimulus resulting compound evoked EMG are recorded and 
then averaged for each intensity step. The period is 42 ms with a 500 ms Onset, therefore about 13 evoked-EMG 
responses are averaged for each intensity level. Even though each EMG sensor was targeting a single muscle, 
almost all EMG channels were capturing more than one muscle due to the proximity of each other (Supplemen-
tary Fig. 9). To separate the different muscles’ contributions we used crosstalk cancellation when a channel pro-
vides a single M-wave followed by Meyer wavelet analysis because of its bounded frequency content, to extract 
each component through the determination of their specific, non-overlapping time–frequency expansion39. The 
recruitment curves are computed using the RMS value of this time–frequency area for each identified muscle 
(see Supplementary Material “Recruitment curve’s details” section).

Sufficiently non-overlapping time–frequency areas for ECR, EPL, EDC of participant P1 (radial nerve stimu-
lation) was not identified to avoid crosstalk. Probably due to the fact that the patient had a thin forearm, muscles 
were very close to each other. M-waves could be recorded on all channels but with similar time–frequency 
components. In this complex case we developed an original method, out of the scope of the present paper. In 
brief, our approach consists in searching for the mixture of up to 3 parametrized synthetic Action Potentials 
modeled by piecewise gaussian-like curves. This powerful method leads to the clean separation of M-waves but 
with a more demanding computation time compared to wavelet analysis and a quite complex parametrization 
of the synthetic Action Potentials.

The recruitment curves were then normalized to the maximum evoked-EMG for each muscle and each 
patient over the whole session (all configurations, all intensities). For patient P2 the PT EMG for the following 
configurations: Ring, TLR1, TLR3, TLR4, TLR5 and TLR6 data was corrupted and therefore the PT tracking 
was discarded for P2.

Eventually, so-called Index of Recruitment Order (IRO) is computed as follows: for a given configuration 
(TLR, STR or TTR), and a given recruitment level (0.1 or 0.7):

•	 For each muscle ‘m’ and for a given inner contact ‘c’ the intensity Im,c needed to reach the given level of 
recruitment is determined.

•	 For a given inner contact, muscle’s responses are ranked and weighted Wm,c . This value decreases linearly 
from 1 (for the muscle that reaches the level of recruitment first) to 0 if the muscle does not reach the level 
of recruitment). For instance if 3 muscles for a given contact reach the level of recruitment among 5 muscles 
Wm,c = [1, 0.8, 0.6, 0, 0].

•	 To normalize the value within a given configuration, Imin = min
m,c

(

Im,c

)

.
•	 IROm,conf ,c for each muscle, each contact, each configuration is then computed as follows: 

IROm,c = Wm,c ∗ Imin/Im,c . A value of 1, for a given configuration, is thus always attributed to the muscle 
for which the recruitment reaches the given level of recruitment with the lowest intensity whatever the con-
tact.

This computation is then repeated 2 nerves × 3 (configurations) × 2 (levels of recruitment) × 2 (patients) times 
represented in Fig. 1.

Figure 7.   For each finger, the angle between the metacarpal segment (yellow arrow) and the extremity of the 
last phalanx is computed (red arrow). For the thumb the first phalanx is taken into consideration instead of the 
metacarpal segment.
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Evoked movements kinematics analysis.  A video camera and a Leap Motion Controller (Leap Motion, 
San Francisco, CA, USA) were synchronized with the stimulator and Delsys system. Leap Motion provides the 
3D positions and orientations of the bones and joints of the recorded hand. The data is processed (Fig. 7) using 
a time window of 1 s before stimulation is ON (to get the average position at rest) and after the stimulation is 
ON (to get the averaged final position with the desired movement). 180° describes a full extended finger while 
0° describes a full flexed one.

Instrumented Objects.  Two objects were 3D printed and equipped with Force Resistive Sensors (FSR, 
Ohmite Manufacturing, Warrenville, IL, USA) in order to get an estimation of the strength applied by the fin-
gers: (1) a 125 g and 70 mm diameter can equipped with 5 FSR02CE (10 mm strips cut to fit the can) located 
under the 4 fingers and 1 FSR01CE (40 × 40mm squares) located under the thumb for palmar grip condition 
and (2) a 55 g tablet of 15 mm height equipped on each side with one FSR01CE for key grip condition. Data was 
recorded via the Delsys system. The sensors were calibrated with weights (50, 100, 200, 500, 1000 g) before being 
mounted on the objects. The obtained curves for each sensor type were approximated with second order polyno-
mials (one for FSR01CE and one for FSR02CE). These relationships were used to convert the measurements into 
forces. The examiner directed the fingers during the movements in order to position them in front of the sensors.

Clinical trial ethics committee approval, registration, regulation and guidelines.  The proto-
col was approved by the French Ethics Committee (CPP Ouest IV Nantes, France, ID-RCB #2019-A00808-
49) and French Health Agency (ANSM). The study was registered on ClinicalTrials.gov (Registration Number: 
NCT04306328 first registered 12/03/2020). It follows Helsinki declaration. The EU Directive 93/42 applied and 
ISO 14155:2011 (Clinical trial good practice) was followed.

Data availability
All data analyzed during this study are included in this published article and its supplementary information files. 
The raw datasets generated during the current study are not publicly available due to their clinical status and 
their link to a restricted set of patients but are available from the corresponding author on reasonable request.
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