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Abstract

Original Article

Introduction

Stereotactic body radiation therapy  (SBRT) is commonly 
used for the treatment of liver cancers, where a high dose 
is delivered in a few fractions in contrast to conventional 
radiation treatments. Thus far, SBRT has shown promising 
results in the treatment of hepatocellular carcinoma (HCC).[1] 
Currently, volumetric modulated arc therapy  (VMAT) with 
image guidance is a better delivery technique for SBRT than the 
modified dynamic conformal arc.[2] VMAT is a novel technique 
in which nonuniformity of the fluence is achieved by varying the 
gantry speed, dose rate (DR), and multileaf collimator (MLC) 
movements.[3] The total treatment delivery time is generally 
less in VMAT compared to intensity‑modulated radiation 

therapy (IMRT) due to the treatment delivery using multiple 
static fields  (five or more) in IMRT, and as a result, the 
probability of intra‑fractional errors is also low.[4] The process 
of modulating the fluence using the aforementioned parameters 
increases the treatment plan complexity. Hence, uncertainty 
in treatment delivery is also increased. The uncertainties in 
dose delivery can be attributed to mechanical limitations of 

Purpose: The purpose of this study was to develop a predictive model to evaluate pretreatment patient‑specific quality assurance (QA) based on 
treatment planning parameters for stereotactic body radiation therapy (SBRT) for liver carcinoma. Materials and Methods: We retrospectively 
selected 180 cases of liver SBRT treated using the volumetric modulated arc therapy technique. Numerous parameters defining the plan 
complexity were calculated from the  DICOM-RP (Radiotherapy Plan)  file using an in‑house program developed in MATLAB. Patient‑specific 
QA was performed with global gamma evaluation criteria of 2%/2 mm and 3%/3 mm in a relative mode using the Octavius two‑dimensional 
detector array. Various statistical tests and multivariate predictive models were evaluated. Results: The leaf speed (MILS) and planning target 
volume size showed the highest correlation with the gamma criteria of 2%/2 mm and 3%/3 mm (P < 0.05). Degree of modulation (DoM), 
MCSSPORT, leaf speed (MILS), and gantry speed (MIGS) were predictors of global gamma pass rate (GPR) for 2%/2 mm (G22), whereas DoM, 
MCSSPORT, leaf speed (MILS) and robust decision making were predictors of the global GPR criterion of 3%/3 mm (G33). The variance inflation 
factor values of all predictors were <2, indicating that the data were not associated with each other. For the G22 prediction, the sensitivity and 
specificity of the model were 75.0% and 75.0%, respectively, whereas, for G33 prediction, the sensitivity and specificity of the model were 
74.9% and 85.7%%, respectively. Conclusions: The model was potentially beneficial as an easy alternative to pretreatment QA in predicting 
the uncertainty in plan deliverability at the planning stage and could help reduce resources in busy clinics.

Keywords: Gamma pass rate, hepatocellular carcinoma, modeling, pretreatment quality assurance, stereotactic body radiation therapy, 
volumetric modulated arc therapy

Address for correspondence: Dr. Rose Kamal, 
Department of Radiation Oncology, Amrita Institute of Medical Sciences and 

Research Centre, Faridabad ‑ 121 008, Haryana, India.  
E‑mail: rose.kamal22@gmail.com

Access this article online

Quick Response Code:
Website:  
www.jmp.org.in

DOI:  
10.4103/jmp.jmp_176_23

This is an open access journal, and articles are distributed under the terms of the Creative 
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to 
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit 
is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Kamal R, Thaper D, Singh G, Sharma S,   Navjeet, 
Oinam AS, et al. Modeling of gamma index for prediction of pretreatment 
quality assurance in stereotactic body radiation therapy of the liver. J Med 
Phys 2024;49:232-9.

Modeling of Gamma Index for Prediction of Pretreatment 
Quality Assurance in Stereotactic Body Radiation Therapy of 

the Liver
Rose Kamal1,2, Deepak Thaper1,2, Gaganpreet Singh3, Shambhavi Sharma2, Navjeet1,2, Arun Singh Oinam4, Vivek Kumar5

1Department of Radiation Oncology, Amrita Institute of Medical Sciences and Research Centre, Faridabad, Haryana, 2Department of Radiation Oncology, Institute 
of Liver and Biliary Sciences, New Delhi, 3Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, 4Department of Radiotherapy, Post 

Graduate Institute of Medical Education and Research, Regional Cancer Centre, 5Centre for Medical Physics, Panjab University, Chandigarh, India

Received on: 19‑12‑2023	 Review completed on: 29‑03‑2024	 Accepted on: 09‑04‑2024	 Published on: 25-06-2024



Kamal, et al.: Predictive model of pretreatment QA in liver SBRT

Journal of Medical Physics  ¦  Volume 49  ¦  Issue 2  ¦  April-June 2024 233

the delivery equipment and the dose calculation accuracy 
of the treatment planning system  (TPS).[5] In this regard, 
patient‑specific quality assurance (QA) is highly recommended 
to verify the plan delivery accuracy.[6] The gamma index is 
widely used for verification of either two‑dimensional (2D) 
or 3D dose verification.[7,8] Derivative‑based gamma has also 
been reported as a crucial pretreatment QA in addition to the 
conventional gamma for stereotactic treatment planning.[9] The 
use of linear accelerator (LINAC) treatment log files is also 
used for pretreatment QA.[10] However, these methods have 
both advantages and disadvantages.

Several previous studies have also demonstrated that the 
modulation complexity of the plan can be used to predict the 
deliverability (pretreatment QA) of a treatment plan as intended 
at the planning stage, and various parameters and formulas to 
evaluate the complexity of the plan have been reported.[4,11‑17] 
Li and Xing reported a modulation complexity (MISPORT) 
based on the movements of the MLC weighted by a segmental 
monitor unit  (MU) for VMAT.[11] Masi et  al. proposed a 
leaf travel modulation complexity score and modulation 
complexity score for VMAT.[4] Du et  al. studied many 
modulation indices for VMAT, including plan‑averaged beam 
modulation, plan‑averaged beam irregularity, plan‑averaged 
beam area, and plan‑normalized MU.[13] Park et al. suggested 
a modulation index (MI) that is based on the concept of Webb 
that incorporates MLC speed (LS), MLC acceleration, gantry 
acceleration, and DR for VMAT.[12,18] Park et al. also quoted 
the plan‑averaged beam irregularity complexity measure as a 
predictor of IMRT plan delivery accuracy.[14]

Nicolini et al. demonstrated a robust compensation mechanism 
between gantry speed and DR in VMAT and concluded 
that the most dominant modulating parameter influencing 
the plan deliverability of the VMAT technique is the MLC 
movement.[16] A noteworthy study of 758 patients from various 
sites was reported, which made use of the MI calculated by 
Park et al. and incorporated the effects of jaw tracking and 
aperture area. It is quoted that gamma pass rates (GPRs) are 
more affected by conventional treatments by MLC modulation, 
while MU and jaw tracking affect the treatment deliverability 
in SABR.[17] Shen et al. reported that the MU, segment area, 
and planning target volume  (PTV) size strongly affect the 
plan quality and deliverability of VMAT.[19] The degree of 
modulation (DoM) is also suggested as a measure of treatment 
plan complexity and considers the total MU delivered per 
unit fractional dose.[20] Another author compared the results 
of different TPS and concluded that TPS‑specific parameters 
should be carefully selected to calculate MI for the prediction 
of plan deliverability.[21] Furthermore, the machine learning 
approach to predict the GPRs is reported with acceptable 
accuracy.[22‑24]

None of the studies recommended a quantitative value and 
appropriate parameters to calculate the MI for its use as 
pretreatment QA specific to liver SBRT using Monaco TPS 
such that treatment delivery lies within a confidence interval. 

It is highly important in SBRT as the altered dose delivered 
due to a large MI may affect the mean liver dose, which is a 
critical constraint for liver SBRT. In this study, we presented 
a predictive model to evaluate pretreatment patient‑specific 
QA based on treatment planning parameters for SBRT of 
liver carcinoma, which is easy to use, at the planning stage. 
The most profound parameters were rendered from several 
modulation indices available in the literature, such that 
minimal multicollinearity exists, using multivariate Least 
Absolute Shrinkage and Selection Operator (LASSO) analysis. 
Furthermore, the receiver operating curve (ROC) analysis of 
the model was performed.

Materials and Methods

Patient selection
One hundred and eighty patients with HCC were randomly 
selected for this retrospective study. All patients were 
positioned with BlueBAG™  (Elekta AB, Stockholm, 
Sweden) in the supine position. The patients underwent 
either four‑dimensional or breath‑hold or free‑breathing 3D 
computed tomography (CT) scans, which were acquired using 
64 Slice Optima GE CT equipment  (GE Medical Systems, 
USA) integrated with a GE Discovery 710  time of flight 
positron emission tomography–CT scanner (GE Healthcare, 
Amersham, UK). A pressure sensor‑based load cell device of 
the Anzai Gating System (AZ‑733V; Anzai Medical System, 
Tokyo, Japan) using an elastic belt wrapped around the patient’s 
abdomen was used for 4D and breath‑hold scans to monitor 
the patient’s respiratory waveform. An abdominal compression 
belt was used to restrict the motion of the free‑breathing scans 
to reduce the internal target volume (ITV). To calculate the ITV, 
4D scans were used. The slice thickness used for the patient 
scan was 2.5 mm. All structures were contoured as mentioned 
in the RTOG 1112 protocol.[25] The PTV was generated by 
providing a population‑based 5 mm uniform margin around 
the ITV to incorporate setup uncertainties.

Treatment planning
All treatment plans were generated using Monaco TPS 
version  5.1  (Elekta CMS, Maryland Heights, MO, USA) 
for delivery with Versa HD  (Elekta, Stockholm, Sweden) 
equipped with Agility MLC 80 leaf pairs for VMAT delivery, 
with a maximum DR of 600 MU/min using 10MV photon 
energy. Segment shape optimization with a minimum segment 
width of ~ 0.5 cm and medium fluence smoothing was used 
for the optimization of VMAT plans using the Monte Carlo 
dose calculation algorithm with a 2  mm grid size and 3% 
Monte Carlo variance. Treatment planning was performed 
with a very tight margin of 0–1 mm around the target using 
automatic jaw tracking. All patients were planned using two 
partial arcs  (60°–180°; counter‑clockwise and 180°–60°: 
clockwise) complementary collimator angles of 30° and 
330° for prescription doses in the range of 4–10 Gy/fraction. 
The dose‑volume constraints of PTV and organs at risk, as 
mentioned in RTOG 1112, were achieved.[25]
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Modulation complexity indices
Various parameters that have been described in the literature, 
which predict the complexity of the treatment plans, were 
calculated, and are enumerated in Table 1. Few modulation 
indices were calculated using the formalism of Webb with 
a k‑value of 0.5 sigma  (MI_webb).[12,18,26] The resultant 

value was normalized to the total control points, except 
for the gantry travel, which was normalized to the total arc 
length. In addition, MCS_Masi, LT, LTMCS  (Masi et  al. 
2013), and MISPORT (Li and Xing 2013) were calculated. 
The DICOM‑RP file was exported and processed using 
an in‑house algorithm written in MATLAB® software 

Table 1: Modulation indices according to various parameters

Formula
DoM[20]

Total MU per fractionDoM =
Dose per fraction in cGy

LT_MU_webb (MILT) leaf travel at each control pointLT_MU =
MU at each control point

MI_webb (LT_MU)LT_MU_webb =
 total control points

JT_MU_webb (MIJT) Jaw travel at each control pointJT_MU =
MU at each control point

MI_webb (JT_MU)JT_MU_webb =
 total control points

GT_MU_webb (MIGT) Gantry travel at each control pointGT_MU =
MU at each control point

MI_webb (GT_MU)GT_MU_webb =
 total arc length

MUweightedArea_webb (MIMUWA) (segment MU × segment area) MUweightedArea =
totalMU

MUweightedArea_webb=MI_webb (MUweightedArea)
SegArea_MU_webb (MISAMU) Segment area at each control point  SegArea_MU =

MU at each control point

MI_webb (SegArea_MU)SegArea_MU_webb =
  total control points

segmentMU_webb (MIMU) MI_webb (segment MU)segmentMU_webb =
  total control points

segmentarea_webb (MISA) MI_webb (segment area)segmentarea_webb =
  total control points

AAV_CP_Masi_webb[4] (MIAAV) MI_webb (AAV_CP_Masi)AAV_CP_Masi_webb  =
  total control points

LSV_CP_Masi_webb[4] (MILSV) MI_webb (LSV_CP_Masi)LSV_CP_Masi_webb  =
  total control points

DR_webb[12,16] (MIDR) MI_webb (DR)DR_webb  =
  total control points

LS_webb[12,16] (MILS) MI_webb (LS)LS_webb  =
  total control points

GS_webb[12,16] (MIGS) MI_webb (GS)GS_webb  =
  total control points

JS_webb[12,16] (MIJS) MI_webb (JS)JS_webb  =
  total control points

DR: Dose rate, DoM: Degree of modulation, GS: Gantry speed, LS: Leaf speed, MI: Modulation index, MU: Monitor unit
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version R2011b (MathWorks, Natick, MA) to calculate the 
modulation indices.

Patient‑specific QA measurement
The gamma evaluation method was used as a measure of the 
VMAT plan delivery accuracy. An Octavius 1500TM (PTW, 
Freiburg, Germany) detector array tandem with a cavity 
was placed on the treatment table for the measurement. The 
array consists of 1405 chambers that were mounted below a 
0.5 cm polystyrene build‑up layer, and the spacing between 
the centers of two adjacent chambers was 7.1  mm.[27] The 
Octavius CT‑IC (PTW, Freiburg, Germany) with a 2D array 
was used for CT scan acquisition and dose calculation.[28] 
The verification plans for gamma evaluations were calculated 
with a calculation grid of 2 mm and 3% statistical variation 
using the Monte Carlo method in Monaco TPS. The array was 
always cross‑calibrated with the phantom for 2 Gy at the level 
of the effective point of measurement of the array (isocenter) 
in water equivalent reference conditions corresponding to 
10 cm × 10 cm. Two array measurements were always taken 
for the same plan with one measurement using the array center 
positioned at the plan isocenter and the other measurement by 
shifting the couch by 5 mm superiorly. Both measurements 
were then merged to determine the final measured fluence, 
resulting in a comparatively higher spatial resolution of 5 mm.

The Verisoft software (version 7.1, PTW, Freiburg, Germany) 
was used to calculate the global gamma index with gamma 
criteria of 2%/2  mm and 3%/3  mm. Pixels with a dose 
value >10% of the maximum dose were evaluated with an 
increased tolerance of 10% dose difference for values below 
0.3.[29] The center of the dose matrix was chosen as the 
normalization point. The calculated dose distribution was 
aligned with the origin of the measured dose matrix. For each 
patient, the ROI was defined to cover the target as well as the 
low‑dose area. The analysis performed was always in a relative 
mode such that the dose at the isocenter for the measured and 
calculated distributions was the same.

Statistical analysis and data validation
All statistical analyses were performed using the SPSS Statistics 
for Windows (version 20.0. IBM Corporation, Armonk, NY) 
and STATA for Windows (version 16, StataCorp, Texas, USA). 
The GPR is a variable dependent on the modulation complexity 
parameters. The mean and standard deviation of the modulation 
indices, PTV size, and the GPRs were calculated. The LASSO 
regression analysis was performed to derive a predictive 
linear model as it removes the redundant data to minimize 
multicollinearity. Double cross‑validation  (10‑fold) was 
executed on the training dataset extracted from the total dataset 
to test the accuracy of prediction.[30] The multicollinearity of the 
data was tested using the variance inflation factor (VIF < 5). 
The sensitivity and specificity of the model were also analyzed 
using ROC curves. The mean, standard deviation, root mean 
square error (RMSE), and mean absolute error (MAE) were 
calculated for the validation dataset of 10 new routine patients 
to evaluate the performance of the model.[22]

Results

Modulation complexity indices
The statistical analysis  (range, average, and standard 
deviation) of various MIs, PTV size, as well as GPRs of 
global gamma evaluation with gamma criteria of 2%/2 mm 
(G22) and 3%/3  mm  (G33) used in this study is shown in 
Table 2.

The correlation analysis between MIs, PTV size, and global 
GPRs with gamma criterion of 2%/2 mm and 3%/3 mm is 
shown in Table  3. Spearman’s correlation coefficient  (rs) 
was calculated along with the P value. MILS and PTV size 
showed the highest correlation with both the gamma criteria 
of 2%/2  mm and 3%/3  mm. The rs values of MILS with 
G22 and G33 were  −0.407 and  −0.351, respectively, with 
P < 0.01, whereas the rs values of PTV size with G22 and G33 
were −0.455 and −0.411, respectively, with P < 0.01.

Table 4 presents the VIF values of the modulation indices used 
in the multivariate model to predict the GPRs. The VIF values 
of all the parameters were <2, which indicates that these data 
were weakly associated with each other.[31] The coefficients, 
intercept, and R‑squared value for the model are calculated for 
the prediction of global GPRs with a global gamma criterion of 
2%/2 mm and 3%/3 mm as shown in Table 5. For G22 prediction, 
DoM, MCSSPORT, gantry speed (MIGS), and leaf speed (MILS) 
were predictive variables, whereas for G33 prediction, 

Table 2: Quantitative analysis of modulation 
indices  (mean, range, and standard deviation)

Range Average SD
DoM 1.824–9.824 5.014 1.578
MCSMasi 0.039–0.397 0.120 0.048
MCSSPORT 993.719–56,185.692 10,726.873 7379.763
MCS_LT 54.378–322.396 156.202 50.167
LTMCS 0.032–0.374 0.102 0.044
MILT 1.059–26.324 9.914 5.149
MIJT 0.123–1.304 0.515 0.240
MIGT 0.043–0.350 0.189 0.070
MIMUWA 2.656–32.111 12.974 5.495
MISAMU 0.855–9.364 3.158 1.629
MIMU 0.404–24.347 5.565 3.530
MISA 1.271–11.182 4.568 1.815
MIAAV 0.0082–0.096 0.026 0.012
MILSV 0.013–0.074 0.036 0.011
MIDR 6.989–138.728 70.708 29.292
MILS 9.767–120.748 41.558 21.403
MIGS 0.420–2.031 1.210 0.267
MIJS 0.680–4.462 2.307 0.747
RDM 106.77–926.02 270.09 101.881
PTV size 73.00–3193.00 799.29 647.39
G22 (2%/2 mm) 61.30 76.139 11.468
G33 (3%/3 mm) 28.20 92.198 6.464
SD: Standard deviation, DoM: Degree of modulation, PTV: Planning 
target volume, GS: Gantry speed, LS: Leaf speed, MI: Modulation index, 
MU: Monitor unit, MCS: Modulation complexity score, RDM: Relative 
degree of modulation, LTMCS: Leaf travel modulation complexity score
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DoM, MCSSPORT, Robust decision making  (RDM), and leaf 
speed (MILS) are important predictors, as shown in Table 5.

The indices to assess the reliability of the predictive model, 
such as MAE and RMSE, calculated for 10 new routine patients 
of SBRT liver, are presented in Table 6. The sensitivity and 
specificity of the predictive model were evaluated, and the 
results for G22 and G33 are shown in Table  7. Two ROC 
curves were generated corresponding to the G22 and G33 

criteria  [Figure  1]. The process‑based threshold  (reference 
value) was calculated from the measured data as recommended 
in TG‑218.[32] A threshold for the predictive model was then 
selected from ROC curves where the sum of specificity and 
sensitivity is near to one.[33]

Discussion

The use of modulation complexity as a pretreatment QA has been 
studied by many authors. Higher modulation in VMAT plans 
increases the differences between the planned and measured dose 
distributions (pretreatment QA results). Different authors have 
used different modulation indices to predict plan deliverability 
and showed correlations with GPRs. However, none of the 
authors compared the effectiveness of the parameters used for 
the calculation of MI to predict the GPRs. Furthermore, the 
models were not handy to use in routine clinics.

In this study, we designed a predictive model to use MI as 
a pretreatment QA for liver SBRT cases using multivariate 
regression. The various parameters [Table 1] that may affect the 
modulation and hence the uncertainty of the treatment plan were 
calculated from the DICOM‑RP file of the patient. However, 
few of these parameters have a high underlying association 
and correlation. Thus, all the extracted parameters were not 
redundant. We extracted a few nonredundant parameters that 
could be used to predict the GPRs. The formalism of Webb 
was used to calculate the modulation indices because it adds 
weight on variations larger than a certain threshold value, in 
contrast to conventional methods, which is simply the average 
of the data.[18] As the impact of larger variations is potentially 
greater, the formalism of Webb may show better performance.

In previous studies, few MIs were checked for correlation with 
GPRs using the Spearman correlation analysis with statistical 
significance. MCSv and MISPORT showed a positive correlation, 
which agreed with the results of Park et al., in 2014. The results 
of MIDR (P > 0.05) and MILS (P < 0.01) in the present study are 
similar to that found in the study of Park et al., in 2014. This 
can be attributed to the fact that different TPS were used in 
the two studies. As suggested, one parameter that affects the 
plan complexity in one TPS may have an insignificant effect 
on modulation in another TPS.[21]

Since 2%/2 mm and 3%/3 mm evaluate the plan deliverability, 
we have presented two models corresponding to 3%/3 mm and 
2%/2 mm global gamma evaluation criterion.[29] Brushi et al. 
studied the effect of the resolution of an array on the evaluation 
of GPRs and showed reasonable accuracy of the measured dose 
distribution of the Octavius 1500 module (merged from two 

Table 3: Correlation analysis between global gamma 
passing rates with various gamma criteria and the 
modulation indices for volumetric modulated arc therapy 
plans

MI 2%/2 mm 3%/3 mm

rs P rs P
DoM −0.287 <0.01 −0.275 <0.01
MCS_Masi 0.177 0.014 0.211 <0.01
MCS_SPORT −0.339 <0.01 −0.317 <0.01
MCS_LT −0.248 <0.01 −0.223 <0.01
LTMCS 0.212 <0.01 0.237 <0.01
MILT −0.311 <0.01 −0.291 <0.01
MIJT −0.163 0.025 −0.183 0.012
MIGT 0.110 0.131 0.103 0.157
MIMUWA −0.310 <0.01 −0.253 <0.01
MISAMU −0.225 <0.01 −0.182 0.012
MIMU 0.02 0.786 −0.002 0.978
MISA −0.264 <0.01 −0.228 <0.01
MIAAV 0.335 <0.01 0.343 <0.01
MILSV 0.341 <0.01 0.332 <0.01
MIDR 0.093 0.2 0.083 0.252
MILS −0.407 <0.01 −0.351 <0.01
MIGS 0.079 0.280 0.123 0.090
MIJS −0.351 <0.01 −0.313 <0.01
PTV size −0.455 <0.01 −0.411 <0.01
DoM: Degree of modulation, PTV: Planning target volume, GS: Gantry speed, 
LS: Leaf speed, MI: Modulation index, MU: Monitor unit, MCS: Modulation 
complexity score, LTMCS: Leaf travel modulation complexity score

Table 4: Variance inflation factor among modulation index 
obtained for the predictive model  (1) using 2%/2 mm 
gamma criteria  (2) using 3%/3 mm gamma criteria

GC DoM MCSSPORT MILS MIGS RDM
G22 1.179 1.741 1.575 1.056 ‑
G33 1.412 2.071 1.588 ‑ 1.312
DoM: Degree of modulation, GS: Gantry speed, LS: Leaf speed, 
MI: Modulation index, MCS: Modulation complexity score, RDM: Relative 
degree of modulation

Table 5: The regression coefficients for various modulation index parameters intercept values obtained using a predictive 
model for  (a) equation number 1 using 2%/2 mm gamma criteria  (b) equation number 2 using 3%/3 mm gamma criteria

GC Coff_DoM (a) Coff_MCSSPORT (b) Coff_MILS (c) Coff_MIGS (d) RDM (e) Intercept (f) R2

G22 −0.492 −0.0000553 −0.0569 1.4456 ‑ 99.30 0.2625
G33 −0.08968 −0.0000376 −0.014291 ‑ −0.0017559 101.1919 0.2082
DoM: Degree of modulation, GS: Gantry speed, LS: Leaf speed, MI: Modulation index, MCS: Modulation complexity score, RDM: Relative degree of modulation
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measurements) for gamma evaluation.[34] Using the LASSO 
method of predictor selection in multivariate regression, only 
those variables are extracted such that variables are minimally 
multicollinear (VIF <5).

In addition, the pretreatment QA devices and LINAC used in 
this study are different from those used in the previous study. 
The MILS and PTV size showed the highest correlation with 
the GPRs  (P  <  0.05). The present model includes various 
factors that can affect uncertainty in treatment delivery. 
The noncollinear factors with statistical significance were 
extracted to derive the model. In theory, the performance 
of the model should be superior to that of other published 
modulation indices, as not all the parameters that may affect 
the complexity of the plan were included. In addition, the 
factors that affect treatment delivery were quoted. The model 
suggests that DoM, MCSSPORT, gantry speed (MIGS), and leaf 
speed  (MILS) affect the plan delivery accuracy, the highest 
in SBRT cases being that for the 2%/2 mm cases, whereas, 
DoM, MCSSPORT, RDM, and leaf speed  (MILS) affected the 
plan deliverability by 3%/3 mm. These indices are extracted 

from statistical analysis where VIF  <2, suggesting weak 
correlation/multicollinearity exists between these parameters 
as shown in Table 4. VIF (inversely proportional to [1– R2]) 
quantifies the extent to which multicollinearity increases the 
variance of an estimated regression coefficient. The linearly 
independent variables correspond to R2  =  0 and VIF  =  1. 
Thus, some parameters that are significantly correlated with 
the results of pretreatment QA pass rates were identified. The 
coefficients of the dependent parameters of the empirical 
formula were found to predict the GPRs for various gamma 
criteria as shown in Table  5. To evaluate predictive model 
performance, the calculated mean ± standard deviation (%), 
MAE, and RMSE were evaluated in one study for the validation 
dataset, and the corresponding results were −0.2 ± 4.2, 3.2%, 
and 4.2%, respectively, for G22 gamma evaluation criteria.[22] 
The obtained values in our study were comparable to this study 
as shown in Table 6.

By plotting the trade‑off between sensitivity and specificity, 
ROC curves provide a comprehensive view of the predictive 
model and identify the selection of an appropriate threshold 
for making classification decisions. As shown in Figure 1 and 
Table 7, the specificity and sensitivity for the G22 prediction 
model were 75.0% and 75.0% for the threshold of 94.6% 
GPR, respectively, whereas the corresponding values for the 
G33 prediction were 85.7% and 74.9% for the threshold of 
98.9% GPR, respectively. For the implication of the predictive 
model on new patients, if results for G22 and G33 are more 
than threshold values of 94.6% and 98.9%, respectively, then 
it can be considered as passed for pretreatment patient‑specific 
QA. The classification process with a predictive model helps to 
decide “pass” or “fail,” as a clinical decision‑making system. 
The sensitivity of the model would be imperative to determine 
the effect on delivery accuracy. The area under the curve (AUC) 
in the ROC curves is the measurement of model performance. 
The AUC of G22 and G33 was 0.801 and 0.846, respectively. 
The AUC value of more than 0.7 suggests the better overall 
performance of the model across all possible thresholds.[33]

Table 6: Comparative indices obtained for the predictive 
model for new 10 patients  (1) for 2%/2 mm gamma 
criteria  (2) for 3%/3 mm gamma criteria

GC prediction model Mean±SD MAE RMSE
G22 0.91±3.39 2.33 3.07
G33 0.21±1.19 0.72 1.14
SD: Standard deviation, MAE: Mean absolute error, RMSE: Root mean 
square error

Table 7: Sensitivity and specificity analysis of predictive 
model for various global gamma criteria

GC Sensitivity (%) Specificity (%) Threshold (%) AUC
G22 75 75 94.6 0.801
G33 74.9 85.7 98.9 0.846
AUC: Area under curve

Figure 1: Receiver operating curve analysis (a) G22, (b) G33
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The machine learning approach used in literature to predict 
GPRs is quite complex to use for planners as it requires thorough 
knowledge and expertise to develop and use the software. The 
model derived here gives an empirical formula that is quite 
handy and easy to use in routine practice and is accurate at an 
acceptable level. Although gamma analysis is a measure of 
potential deviations from the planned dose, its resolution and 
dose calculation uncertainty of TPS can also affect its results. 
In addition, planar measurements and 2D gamma analysis 
were performed in the present study. By contrast, a more 
sophisticated approach of 3D gamma analysis could be used 
for volumetric results. This will be investigated in future work 
using a large dataset of VMAT plans. Another limitation of the 
study is that we were unable to extract the actual delivered 
parameters from log files of Elekta to evaluate whether higher 
modulation results in deviations of planned parameters, could 
result in a significant change in dose‑volume parameters. In 
addition, various QA systems will be investigated in further 
studies. The derivative‑based gamma approach is reported to 
be useful for stringent patient‑specific QA for SBRT of the 
liver and will be studied in future works. The present study 
was conducted for one site along with a specific QA system and 
treatment delivery machine. A randomized multi‑institutional 
study for multiple sites and various systems is required to 
generate a generalized predictive model.

Conclusions

This study aimed to develop a predictive model to calculate 
GPRs by focusing on the DoM using multivariate LASSO 
regression analysis. DoM, MCSSPORT, gantry speed (MIGS), 
and leaf speed (MILS) were found to be predictors of global 
GPRs for 2%/2 mm, whereas DoM, MCSSPORT, RDM, and 
leaf speed  (MILS) were predictors of the global gamma 
criterion of 3%/3 mm. The model is potentially beneficial 
as an alternative to pretreatment QA in predicting the 
uncertainty in plan deliverability at the planning stage and 
thus can reduce resources in busy clinics. This would lead 
to efficient and rapid decision‑making for determining plan 
quality, especially in online adaptive radiotherapy planning, 
these mathematical predictive models would facilitate the 
clinical decisions.
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