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Key questions

What is already known?
►► Estimating maternal and newborn health outcomes 
at small geographical areas is increasingly import-
ant in identifying hidden pockets of health inequali-
ties. The use of Bayesian geostatistical models has 
allowed for the quantification of associated uncer-
tainty with these modelled estimates.

What are the new findings?
►► The trade-off between increasing spatial resolution 
in model inputs/outcomes and associated uncertain-
ty has not been explored, particularly among mater-
nal and newborn health outcomes.

What do the new findings imply?
►► While uncertainty in model outcomes increases with 
increasing spatial resolution, model precision was 
best approximated at the finest spatial resolution 
for prevalence of delivery via caesarean section in 
Tanzania. These findings imply an important trade-
off between identifying concealed spatial heteroge-
neities and accuracy of estimates, which should be 
communicated in policy relevant settings.

Abstract
Visualising maternal and newborn health (MNH) outcomes 
at fine spatial resolutions is crucial to ensuring the most 
vulnerable women and children are not left behind in 
improving health. Disaggregated data on life-saving 
MNH interventions remain difficult to obtain, however, 
necessitating the use of Bayesian geostatistical models to 
map outcomes at small geographical areas. While these 
methods have improved model parameter estimates and 
precision among spatially correlated health outcomes 
and allowed for the quantification of uncertainty, few 
studies have examined the trade-off between higher 
spatial resolution modelling and how associated 
uncertainty propagates. Here, we explored the trade-off 
between model outcomes and associated uncertainty at 
increasing spatial resolutions by quantifying the posterior 
distribution of delivery via caesarean section (c-section) 
in Tanzania. Overall, in modelling delivery via c-section 
at multiple spatial resolutions, we demonstrated poverty 
to be negatively correlated across spatial resolutions, 
suggesting important disparities in obtaining life-saving 
obstetric surgery persist across sociodemographic factors. 
Lastly, we found that while uncertainty increased with 
higher spatial resolution input, model precision was best 
approximated at the highest spatial resolution, suggesting 
an important policy trade-off between identifying 
concealed spatial heterogeneities in health indicators.

Introduction
Achieving the Sustainable Development 
Goal aims laid out in 2015 necessitates 
measurement of health outcomes at small 
geographical areas to ensure ‘no one left 
behind’.1 With recent advancements in the 
collection and distribution of geo-located 
household surveys, such as those collected 
via the Demographic and Health Survey 
(DHS) programme (​www.​dhsprogram.​com), 
researchers are increasingly using methods 
such as small area estimation and geostatis-
tical additive models (GAMs) to generate 
high spatial resolution maps of health and 

development indicators.2–4 Such subnational, 
high-resolution estimates have become useful 
tools for researchers and policy makers alike 
in uncovering hidden health inequities that 
would otherwise be masked by aggregate or 
national-level health indicators, enabling 
targeted interventions in settings with limited 
resources.1 5–8

Visualising health outcomes and associ-
ated uncertainty at high spatial resolutions 
has distinct policy relevance among maternal 
and newborn health (MNH) outcomes,9 as 
maternal and neonatal mortality both vary 
geographically and occur relatively rarely. 
Furthermore, the data associated with 
maternal mortality are subject to limitations, 
misclassification and bias,10 11 particularly 

http://gh.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjgh-2019-002092&domain=pdf&date_stamp=2020-02-06
www.dhsprogram.com
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Figure 1  Delivery by caesarean section at the 
administrative 1 level using DHS data, Tanzania, 2015.

within more rural areas of sub-Saharan Africa where 
many deaths do not occur at hospitals and may go unre-
corded.12 As with maternal mortality, data on life-saving 
MNH interventions such as antenatal care, skilled birth 
attendance and delivery via caesarean section (c-section) 
can be widely obtained at aggregate levels but remain 
difficult to measure at subnational levels, especially in the 
most rural and vulnerable areas of the world. While some 
work has been done modelling key MNH interventions 
at subnational scales such as maternal health services, 
exclusive breastfeeding, childhood vaccinations and 
health systems performances,5 6 13–15 other vital life-saving 
interventions that occur less frequently, such as delivery 
via c-section, have not been modelled previously at high 
spatial resolutions.

With advancements in computational resources and 
data availability over recent decades, researchers across 
disciplines have begun employing Bayesian GAM to map 
disease and quantify uncertainty in posterior model 
outcomes, particularly using hierarchical clustered data 
such as from the DHS.3 4 16–18 The application of these 
methods is increasingly pertinent, as access to healthcare 
services is heterogeneously distributed across landscapes, 
requiring high-resolution spatial data and modelling 
techniques to identify the most vulnerable populations. 
However, these methods and associated spatial data 
carry limitations and bias, manifesting in uncertainty 
that should be adequately quantified and communicated 
to decision makers and non-academic audiences for 
optimum policy impact.19 While the use of such GAMs 
to predict high-resolution health outcomes has improved 
model parameter estimates and precision among spatially 
correlated and rare adverse health outcomes3 20 and 
allowed for this quantification of uncertainty,21 no studies 

have examined the trade-off between predicting health 
outcomes at higher spatial resolutions and visualising the 
spatial distribution of associated uncertainty.22

Here, we estimate prevalence of delivery via c-section 
in Tanzania, using input covariates at varying levels of 
spatial coarseness within a Bayesian geostatistical model 
framework. With these models, we investigate how uncer-
tainty varies with spatial resolution, and how this changing 
uncertainty can be better visualised and communicated. 
Specifically, we explore the trade-off between model esti-
mates and associated uncertainty at increasing spatial 
resolutions through exploration of the posterior distribu-
tion of modelled delivery via c-section at multiple spatial 
resolutions.

Methods
DHS data
We compiled DHS data from Tanzania for 201523 using 
SAS V.9.4 software24 and restricted the sample to women 
with a birth in the preceding 5 years (n=7050 women) 
with corresponding spatial data, as provided by DHS 
cluster locations. Briefly, the DHS provides global posi-
tioning system (GPS) coordinates for clusters of aggre-
gated household survey data in order to facilitate spatial 
analyses while also maintaining participant confidenti-
ality. These coordinates are displaced up to 2 km in urban 
areas and 5 km in rural areas, with up to 1% of points 
displaced up to 10 km in rural areas.25 Using these geo-
located cluster locations, spatial inference occurs at a 
higher spatial resolution than the geographic region in 
which the survey is designed to be representative of. This 
hierarchical sample design therefore necessitates the 
use of geostatistical models to make inferences at spatial 
resolutions finer than the DHS region level.3 In these 
analyses, our binary outcome of interest was defined as 
the number of women who underwent any delivery via 
c-section for a birth within the preceding 5 years (regard-
less of whether it was the most recent), as compared with 
women who had not experienced delivery via c-section 
for any preceding birth. To maintain survey representa-
tiveness, this was calculated at the DHS level 1 resolution, 
representing the 30 administrative I regions of Tanzania 
(figure 1).

Covariate data
In addition to demographic data gathered through the 
DHS, we also compiled environmental geospatial covar-
iate data that we extracted to DHS cluster locations 
(figure 2). Because these locations are displaced, we aver-
aged geospatial covariates to 2 km and 5 km buffers for 
urban and rural locations, respectively. While up to 1% 
of coordinates in rural areas are displaced within a 10 km 
radius, the addition of buffers at the 10 km level has 
been shown to impact very few rural coordinates,25 while 
unnecessarily introducing bias in environmental covari-
ates, thereby justifying use of a 5 km buffer in rural areas. 
First, we gathered data from the European Commission’s 
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Figure 2  Study analysis flow chart. INLA, Integrated Nested Laplace Approximation; NOAA, National Oceanic and 
Atmospheric Administration.

Joint Research Centre on accessibility to major cities for 
the year 2000, representing travel time to the nearest city 
exceeding a population of 50 000 using land (ie, roads) 
or water-based travel (ie, rivers and lakes).26 Next, we 
included data on annual night light intensity for the 
year 2013 (an indicator of urbanicity), as generated by 
the National Oceanic and Atmospheric Administration’s 
National Centers for Environmental Information.27 We 
also included live births for the year 2015 at the 1 km 
resolution, as well as Multidimensional Poverty Index 
estimates for the year 2010, as obtained via the WorldPop 
Project (​www.​worldpop.​org.​uk) and outlined by Tatem et 
al.28 29 Lastly, we included travel time to the nearest public 
hospital, as outlined by Ouma et al,30 calculated through 
a cost–distance algorithm incorporating a travel imped-
ance surface by assigning travel speed to road networks.

These covariates were chosen as previous studies have 
shown them to be predictive of MNH outcomes and 
risks,6 31–34 representing a suite of geospatial covariates 
with robust predictive power to examine how uncertainty 
changes as a function of spatial resolution. Notably, we 
chose to include only geospatial covariates in this model 
as we could vary the spatial resolution of these variables, 
thereby addressing our research objectives. Specifically, 
these datasets were compiled at the 1 km spatial resolution 
and subsequently averaged at the 5 km, 50 km and 100 km 
resolutions to facilitate projecting the fitted model onto 
gridded surfaces at these levels. These surfaces repre-
sent a theoretical exploration of the trade-off between 
increasing gridded spatial resolution and modelled esti-
mates and were chosen to clearly illustrate the difference 

in the practical range of estimates, as shown in online 
supplementary figure S2.

Model framework
To explore how uncertainty in posterior modelled c-sec-
tion delivery estimates varied at multiple spatial resolu-
tions, we employed a Bayesian hierarchical model frame-
work with input covariates at varying spatial coarseness. 
These models have been used extensively with DHS and 
other household survey data,1 2 35–38 as they are able to 
robustly account for the multistage sampling efforts 
employed during the data collection process, resulting 
in hierarchically structured data provided through the 
DHS. Here, our model accounts for the nested structure 
of DHS data by allowing for variation in the nth region 
among individual respondents, as outlined below. These 
models were fit independently of each other, resulting 
in three models with input covariates and modelled 
outcomes at the 5 km, 50 km and 100 km spatial scales. To 
predict c-section delivery at a continuous spatial resolu-
tion, we implemented these models via stochastic partial 
differential equation (SPDE) spatial regression approach, 
implemented using the Integrated Nested Laplace 
Approximation (INLA) technique within the R-INLA 
package.39 This approach was suitable for this analysis as 
these spatial processes are generally well captured by a 
Gaussian field with Matérn correlation.40 These models 
have similarly been used in previous research combining 
DHS data and geospatial covariates to predict high-
resolution childhood vaccination coverage by disaggre-
gating areal surveillance data.1 2 34 We employed a similar 
modelling framework, generally defined as

www.worldpop.org.uk
https://dx.doi.org/10.1136/bmjgh-2019-002092
https://dx.doi.org/10.1136/bmjgh-2019-002092
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Table 1  Marginal effects of the fixed effects and hyperparameters of the posterior c-section models at 5 km, 50 km and 
100 km

Parameter

5 km 50 km 100 km

Mean
Lower 
95% CI

Upper 
95% CI Mean

Lower 
95% CI

Upper 
95% CI Mean

Lower 
95% CI

Upper 
95% CI

Accessibility to cities 1.0001 0.9975 1.0027 0.9999 0.9975 1.0022 0.9999 0.9975 1.0022

Night-time lights 0.9603 0.0522 19.7189 0.666 0.0308 14.7623 0.6574 0.0298 14.9301

Live births 1.0471 0.8645 1.2873 0.9915 0.8313 1.1913 0.9938 0.8313 1.197

Poverty 0.0271 0.0005 2.1231 0.0071 0.0001 0.4548 0.0071 0.0001 0.4682

Travel to nearest hospital 1.0046 0.9946 1.0143 1.0062 0.9965 1.0163 1.0063 0.9964 1.0164

Hyperparameters

Θ1 Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

−0.9259 0.6329 (−2.1791 to 0.3104) 0.229 0.942 (−1.636 to 2.071) 0.213 0.945 (−1.646 to 2.070)

Θ2
0.1348 0.4988 (−0.8380 to 1.1226) 0.041 0.724 (−1.376 to 1.472) 0.052 0.718 (−1.352 to 1.474)

Precision 1816.2045 1813.6598 (121.78 to 6626.24) 5.290 5.794 (0.647 to 20.476) 5.814 6.901 (0.648 to 23.539)

λ 0.5020 0.2699 (0.0497 to 0.9491) 0.354 0.243 (0.031 to 0.876) 0.354 0.243 (0.030 to 0.876)

DIC 155.67 152.4 152.61

PD 17.65 17.70 17.81

Marginal 
likelihood

−118.52 −120.84 −120.89

DIC, deviance information criterion.

	﻿‍ Yi ∼ Binomial
(
Ni, pi

)
, i = 1, . . . , nA, nA + 1, nA + np‍�

where ‍nA‍ represents subnational DHS regions within 
Tanzania to maintain survey representation; ‍Yi‍ represents 
the number of women delivering via c-section within 
area, ‍Ai‍ ; ‍pi‍ represents the probability of a woman deliv-
ering via c-section over grid points ‍np‍; and ‍Ni‍ represent 
the number of women surveyed within area, ‍Ai‍ .

In this framework, the areal units and observation grid 
points are linked using the following equations

	﻿‍
logit(pi) =

∼
x
′

iβ + |Ai|
−1
ˆ

n(s)ds + ϕi, i = 1, ..., nA
‍�

	﻿‍ logit(pi) = x
′
iβ + η

(
si

)
+ ϕAi , i = nA + 1, . . . , nA + np‍�

where ‍xi‍ and ‍
∼
xi‍ represent covariates for the ith area and 

grid point, respectively. This framework provides a statis-
tical link between the areal data and high-resolution 
spatial covariates and random effects, allowing for 
models at two spatial levels. Further details on the model 
framework are outlined in Utazi et al.2 See refs 2 34 40 for 
more detailed information on similar approaches imple-
menting an SPDE approach of Bayesian hierarchical 
models via R-INLA using DHS data.

Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting or dissemination of our research. 
The data used in these analyses were obtained from 
the DHS programme, which makes global health and 
demographic data confidentially and freely available to 
researchers across the world. More information on how 
the DHS programme conducts the Informed Consent 
process can be found at https://​dhsprogram.​com.

Results
Table 1 shows posterior marginal effects for the fixed effects 
within the 5 km, 50 km and 100 km models as well as model 
hyperparameters. Fixed effects estimates with upper and 
lower 95% credible intervals (CIs) that do not cross 1 are 
considered significant. Overall, we found that modelled 
c-section prevalence negatively correlated strongly with 
poverty and slightly with night-time lights across all spatial 
scales, as shown in online supplementary figure S1. Of note, 
night-time lights were not significant within the model but 
presented wide CIs for marginal effects, as seen in table 1. 
While poverty was not significant at the 5 km scale, it was 
significant at the 50 km and 100 km scales and showed a 
consistent pattern at the 5 km scale with other spatial reso-
lutions (online supplementary figure S1). Conversely, these 
estimates were strongly positively associated with travel time 
to the nearest hospital across scales, although this was not 
significant within the model.

The large precision estimate for the 5 km model as shown 
in table 1 suggests the spatial process was estimated well with 
a Gaussian field, while smaller estimates among the 50 km 
and 100 km models suggest this was not the case. Regard-
less, the deviance information criterion (DIC) estimates for 
the latter two models were slightly improved over the 5 km 
model (table  1). Briefly, these DIC estimates represent a 
measure of model comparison, trading off between model 
complexity and model goodness of fit and performing well 
among Bayesian models in particular.41 Smaller DIC values 
represent models with better fit, given model complexity, 
suggesting these models perform better as compared with 
the other models.

Figure 3 shows the distributions of the posterior 95% 
CIs for each model as violin plots. These plots show similar 

https://dhsprogram.com.
https://dx.doi.org/10.1136/bmjgh-2019-002092
https://dx.doi.org/10.1136/bmjgh-2019-002092
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Figure 3  Violin plot of posterior 95% credible intervals for caesarean section estimates predicted at the 5 km, 50 km and 
100 km scale.

summary statistics as boxplots, while also providing infor-
mation on probability densities, where thinner sections 
represent a lower probability of a given value occurring. 
These estimates approximate the trade-off between 
spatial resolution and uncertainty, representing the 
density of the width between the posterior upper and 
lower 95% CI for each grid cell for the 5 km, 50 km and 
100 km surfaces. Here, all models had CI widths ranging 
from near 0 to 1, but CI width became more narrowly 
distributed and approached zero with decreasing spatial 
resolution. Mean density at the 100 km and 50 km scales 
were 0.13 (±0.14) and 0.14 (±0.13), respectively, while 
mean density at the 5 km scale was 0.21 (±0.16).

Figure 4 visualises prevalence of delivery via c-section 
and associated uncertainty at the 5 km, 50 km and 100 km 
spatial resolution. These maps show spatial patterns 
typical of c-section deliveries, with higher prevalence 
observed in cities such as Arusha and Dar es Salaam, 

and lower prevalence in areas with high inaccessibility 
to a health facility or among more impoverished women 
(table  1). Overall, the mean estimated prevalence of 
obtaining a c-section at delivery at the 5 km resolu-
tion was 8.7% (±6.2%), while the mean uncertainty 
as measured by the posterior distribution was 20.9% 
(±15.7%). Mean estimated prevalence was slightly lower 
at the 50 km and 100 km resolutions, measuring 7.9% 
(±4.9%) and 7.8% (±4.8%), respectively, while mean 
uncertainty was 14.2% (±12.7%) and 13.1% (±14.3%). 
Areas of higher c-section utilisation were associated with 
higher uncertainty and observed around major urban 
areas, notably Dar Es Salaam, Arusha and Moshi and 
Dodoma. This trend was observed across spatial reso-
lutions and in accordance with DHS data. Among DHS 
regions, Dar Es Salaam had the highest prevalence of 
delivery via c-section at 17%, compared with a national 
average of 5.9% (figure 1).
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Figure 4  Modelled c-section prevalence estimates (left) and 
associated 95% credible interval (right) at 5 km (top), 50 km 
(middle), and 100 km (bottom), Tanzania, 2015.

Discussion
Overall, we found increasing model uncertainty associ-
ated with increasing spatial resolution, as quantified by 
increasing 95% CI widths (figure 3). This is unsurprising, 
given that increasing spatial resolution comes with prob-
lems of increasingly sparse events, zero inflation and 
missing data.42 Furthermore, both c-section prevalence as 
well as model uncertainty tended to be higher in urban 
areas, reflecting greater variance within the data. This 
uncertainty could be due to increased data availability 
within large population centres, or potentially due to GPS 
displacement error within urban areas. While Bayesian 
hierarchical modelling techniques have developed to help 
account for these limitations through rigorous quantifi-
cation of uncertainty,3 our findings suggest an important 
and often overlooked trade-off persists between modelling 
these high-resolution health indicators and corresponding 
policy relevance if these estimates tend to be highly uncer-
tain. This is evidenced in figure 4, where the highest rates of 
modelled c-section estimates tend to also have the highest 
corresponding uncertainty. Despite increasing uncertainty 
that accompanied increasing spatial resolution, we found 
that the 5 km model was the most precise, as evidenced by 
a high precision estimate (table 1). These findings corre-
spond to findings reported in the Tanzania DHS report23 

where rates of c-section utilisation are higher in urban 
areas. Other studies similarly suggest that while the preva-
lence of c-section is increasing globally,43 44 women in more 
rural areas who cannot access a health facility quickly have 
a lower chance of undergoing the procedure in emergency 
circumstances.45 46

Within our models, we further found that poverty was 
negatively correlated with undergoing delivery via c-sec-
tion across spatial resolutions and was significant at lower 
spatial resolutions (50 km and 100 km). These findings 
are again in line with reported DHS findings suggesting 
women in the highest wealth quintile were eight times 
more likely to undergo a c-section as compared with 
those in the lowest quintile.23 Because health insur-
ance coverage is generally low in Tanzania and relies 
heavily on payment at point of service,47 our findings 
may suggest that more impoverished women are either 
unable to afford c-section surgeries when needed or are 
generally accessing healthcare less frequently across the 
continuum of pregnancy and childbirth.

Researchers are increasingly quantifying health and 
development indicators at the district level and high spatial 
resolutions, with aims of achieving Sustainable Devel-
opment Goals to ensure ‘no one left behind’.8 48 While 
identifying these previously hidden pockets of vulnerable 
and marginalised populations is vital to improving the 
health and well-being of all, the geostatistical methods 
used to accomplish these goals have inherent uncertainty 
and bias, which should be communicated effectively to 
policy makers and other non-academic audiences. While 
studies have recognised the importance in quantifying 
this uncertainty,3 22 42 no studies have explored how 
increasing spatial resolution impacts model estimates and 
uncertainty. This study is therefore the first to map high 
resolution estimates of c-section prevalence in Tanzania 
and examine the trade-off between increasing spatial 
resolution and associated model uncertainty in these 
estimates. These results of this study imply an important 
trade-off between identifying concealed spatial heteroge-
neities and accuracy of estimates, which should be opti-
mally communicated in policy relevant settings.

Limitations
This methodological study was exploratory in nature, exam-
ining the trade-off between increasing spatial resolution 
and model uncertainty and is therefore subject to a variety 
of limitations. First, we used a suite of standard covariates 
to explore the impact of spatial resolution alone on model 
uncertainty, and therefore rigorous covariate selection and 
model validation efforts were not undertaken during these 
analyses. As such, the results of these models may not be 
generalisable to Tanzania, nor to other study countries, and 
should be used for illustrative purposes only. Furthermore, 
the spatial resolutions chosen for these analyses represent 
a theoretical exploration of the impact of increasing reso-
lution on modelled estimates and are unlikely to represent 
estimates at resolutions at which policy decisions are made. 
Future work may explore the impact of increasing spatial 
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resolution on modelled estimates at policy relevant admin-
istrative boundaries, as opposed to the rasters employed 
in these analyses. Second, the suite of covariates and DHS 
data used are subject to their own biases and limitations—
for example, the DHS collects data on births within the 
previous 5 years, so the estimates presented here may not 
reflect the current situation within Tanzania. Furthermore, 
DHS data are not routinely collected registration data 
and therefore do not capture information on c-sections 
performed on women who have subsequently died. This 
potentially represents biased information, as only women 
obtaining and surviving the procedure are interviewed. 
Additionally, travel to the nearest public hospital does 
not account for individuals who may bypass the nearest 
facility in favour of a facility with higher quality of care. 
Lastly, the geospatial covariates used have associated error 
and misclassification bias, particularly night-time lights 
that may suffer from light refraction errors, for example. 
Future work should aim to include more recent data on 
actual health facility used, where possible, and explore the 
impact of misclassification bias inherent to these environ-
mental covariates.

Conclusions
Researchers are increasingly applying Bayesian hierar-
chical modelling techniques to visualise high-resolution 
spatial patterns of health indicators. These techniques offer 
powerful and rigorous methods to quantify and visualise 
model uncertainty, but few studies have explored how to 
communicate this uncertainty in policy-relevant settings. 
Here, we explored how model uncertainty changes with 
increasing spatial resolution and found that while uncer-
tainty increases with higher spatial resolutions, model 
precision was best approximated at the highest spatial reso-
lution, suggesting an important policy trade-off between 
identifying concealed spatial heterogeneities in health 
indicators. In modelling delivery via c-section at multiple 
spatial resolutions, we demonstrate poverty to be negatively 
correlated across spatial resolutions, suggesting important 
disparities in obtaining life-saving obstetric surgery persist 
across sociodemographic factors. This work is the first study 
to explore modelled c-section estimates and uncertainty at 
varying spatial resolutions and has potential policy impli-
cations in terms of visualising spatial patterns of obstetric 
surgery, as well as focusing MNH data collection efforts 
within Tanzania.
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