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Abstract: Fruit juices have an important place in humans’ healthy diet. They are considered to
be shelf stable products due to their low pH that prevents the growth of most bacteria. However
thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to
cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence
of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability
of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions
make them a major concern for the fruit juice industry worldwide. Their special characteristics
and presence in the fruit juice industry has resulted in the development of many isolation and
identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic
acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and
16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME,
Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the
industry while the development of control methods targeting the inactivation of Alicyclobacillus is of
paramount importance as well. This review includes a discussion of the various chemical (oxidants,
natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and
non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves,
UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus
growth in order to ensure the quality and the extended shelf life of fruit juices.

Keywords: Alicyclobacillus; fruit juice; spoilage; detection; identification; control

1. Introduction

Fruit juices are the most popular beverages, representing a significant market share
within the food industry, and have an important role in human diet since their particular
combination of physical and chemical characteristics render them natural and healthy [1].
They are low calorie foods rich in nutrients and bioactive compounds such as proteins,
vitamins, carbohydrates, polyphenols, minerals, enzymes, fibers and antioxidants that
can fit in today’s busy life style [2]. The full definition for fruit juice is “the fermentable
but unfermented product obtained from the edible part of fruit which is sound and ripe,
fresh or preserved by chilling or freezing of one or more kinds mixed together having the
characteristic color, flavor and taste typical of the juice of the fruit from which it comes” [3].
Fruit juices can be classified according to their composition as fruit juice, fruit juice from
concentrate, concentrated fruit juice, water extracted fruit juice, dehydrated/powdered fruit
juice and fruit nectar. Depending on their dispersion system composition they are divided
into clear, opalescent, cloudy and pulp enriched juices. According to the preservation
method employed in order to prevent spoilage (microbial, chemical and enzymatic), while
retaining their quality and nutritional value, they are classified as freshly squeezed, chilled,
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frozen, pasteurized and concentrated [4,5]. Today consumers prefer fruit juices as an easy
way to cover the five servings of fruits and vegetables recommended by the World Health
Organization for a healthy diet. The variety of different juice products on the market
in combination with the use of new preservation technologies make them even more
attractive. Furthermore, due to their low pH value, fruit juices do not favor the survival of
pathogenic and spoilage microorganisms, making them safer and therefore more attractive
to consumers [6,7].

2. Spoilage and Safety Aspects of Fruit Juices

In recent years many outbreaks concerning fruit juice contamination have been re-
ported and the fruit juice industry has suffered financial damage [8,9]. Pathogenic and
spoilage microorganisms are a challenge for the fruit juice manufacturers. The type of
microorganisms present in fruit juice can originate from the fruits before harvest, therefore
fallen fruits or fruits wounded from insects should be avoided. Other sources of microbial
contamination could be the added water, flavorings or other chemicals, and finally process
machinery and filling lines with deficient hygiene protocols. The relevant microorganisms
considered as threats for commercial fruit juices are yeasts, molds and bacteria, while
protozoa and viruses can also cause problems to a lesser extent [5,10].

Yeasts are the predominant spoilage microorganisms in fruit juices [11]. Their high
acid tolerance and preference for anaerobic conditions, in combination with the sugar
content and the refrigeration temperature during distribution and storage of the juice,
favor spoilage incidents [12,13]. Contamination of fruit juices with yeasts results in car-
bon dioxide and alcohol production, increasing turbidity and flocculation, off-odors and
changes in color [14]. It has been proved from previous researchers that representatives of
Saccharomyces, Candida, Zygosaccharomyces, Torulaspora, Rhodotorula, Hanseniaspora, Pichia
and Trichosporon genera are most frequently encountered in fruit juices [5,14,15]. The oc-
currence of contamination from yeasts in the fruit juice industry could be attributed to
highly contaminated raw materials, failure in the pasteurization process and poor hygiene
practices [16].

Moulds are microorganisms frequently encountered in fruit juices [11]. They are aero-
bic microorganisms that prefer low pH and high sugar content for growth [13]. Depending
on their response to thermal treatment, moulds can be classified into heat resistant and
heat sensitive [14]. The dominant heat resistant molds that have appeared in fruit juices
over the years are Aspergillus ochraceus, Aspergillus tamarii, Aspergillus flavus, Byssochlamys
nivea, Byssochlamys fulva, Paecilomyces variotii, Neosartorya fischeri, Eupenicillium brefeldianum,
Phialophora mustea, Talaromyces flavus, Talaromyces trachyspermus, Thermoascus aurantiacum,
Penicillium notatum, Penicillium roquefortii and Cladosporium spp. [17–20]. These moulds can
produce gas, form colonies and floating mycelia on the surface, and change the odor of the
juice [13,16]. Furthermore, they can cause disintegration to the fruit juice since they have the
ability to produce disintegrative and pectinolytic enzymes [21], such as amylases, cellulases,
pectinases and proteinases [5]. The most frequent heat sensitive molds belong to the genera
of Aspergillus, Penicillium, Mucor, Alternaria, Cladosporium, and Botrytis [16,22]. Although
these moulds can be eliminated with the pasteurization process [23], their presence indi-
cates high contamination in the raw material or insufficient hygiene conditions during the
manufacturing process [14]. Moulds are also associated with the production of mycotoxins,
which is a serious safety issue for the fruit juice industry. They are secondary metabolites
produced by fungi growing on food matrices. A mould has the ability to produce different
kinds of mycotoxins and on the other hand one mycotoxin can be produced from different
kinds of moulds [24]. The most dominant mycotoxins concerning the fruit juice industry
are patulin and ochratoxin A. Patulin is mainly associated with apple juice and ochratoxin
A with grape juice [25–27]. The maximum level for patulin in apple juice was established
as 50 ppb [28], while the European regulation [29] recommends a maximum level of 25 ppb
for solid apple products. The maximum concentration of ochratoxin A in grape juice and
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grape juice ingredients in other drinks has been defined as 2 ppb [30]. These mycotoxins
could be a serious threat to human health worldwide due to their toxicity.

Bacteria are another group of microorganisms that has been associated with spoilage
in fruit juices [7]. The acidic pH of most fruit juices favors the presence of lactic acid bacteria
(LAB) and particularly the genera Lactiplantibacillus and Leuconostoc [7]. They produce off
flavors similar to buttermilk and metabolic products such as lactic acid, formic acid, acetic
acid, ethanol and carbon dioxide [16,31] that can change the juice flavor. Furthermore, their
presence can cause haze and gas in the product [16]. Acetic acid bacteria are frequently
found on many fruit surfaces and therefore associated with the spoilage of fruit juices, with
Acetobacter pasteurianus and Acetobacter aceti being the predominant species [23]. These
bacteria produce acetic acid from ethanol, sauerkraut and buttermilk off-flavors and can
also cause browning of the juice [14]. Although both LAB and acetic acid bacteria are heat
sensitive and can be destroyed with pasteurization [32], their presence indicates insufficient
cleaning and sanitization of the equipment throughout the production line [14,33]. In order
to avoid contamination, high standard hygiene protocols should be applied throughout
processing [34]. Spore forming bacteria are a major issue for the fruit juice industry,
since they can cause spoilage and cannot be controlled with standard pasteurization.
The main problem from this group is due to Alicyclobacillus spp. and its predominant
species Alicyclobacillus acidoterrestris [5]. Except from spoilage bacteria, pathogenic bacteria
could be also considered as a threat to the fruit juice industry. Although fruit juices
have been considered safe throughout the years, several foodborne outbreaks have been
reported especially with unpasteurized fruit juices [35]. Escherichia coli O157:H7 [36–39],
Salmonella [37,40–43] and Staphylococcus aureus [31] are considered to be implicated in
many outbreaks of unpasteurized fruit juices including cider, apple juice and orange juice.
Although Listeria monocytogenes has not been considered as a pathogen implicated directly
in fruit juice outbreaks, it should be taken into consideration since it has the ability to
survive throughout the production line of fruit juices [44]. In order to avoid the presence of
pathogenic bacteria, the industry must retain high standard protocols of hygiene throughout
the production line [17].

Protozoa are another threat for the fruit juice industry. The parasites of concern are
Cryptosporidium parvum and Cyclospora cayetanensis that cause diarrhea [7], and the proto-
zoan Trypanosoma cruzi, which causes Chagas disease affecting the autonomous nervous
system in the esophagus, the heart and the colon [45]. Unpasteurized apple juice and
cider have been associated with outbreaks of cryptosporidiosis [46,47], while in Brazil
Trypanosoma cruzi has been involved in outbreaks associated with consumption of bacaba
juice [48] and acai palm fruit juice [49].

Viruses can also contaminate fruit juices. Norovirus and Hepatitis A have been associ-
ated with outbreaks involving fruit juices such as orange juice [50,51]. The transmission
of the viruses passes through contaminated fruit or water that has come in contact with
feces [14]. The presence of protozoa and viruses can be intercepted by good agricultural
and manufacturing practices and implementation of HACCP [52].

2.1. Alicyclobacillus spp. General Characteristics

In recent years, Alicyclobacillus has become the most serious threat of the juice industry.
The isolation of this bacterium from various acid thermal environments was reported for
the first time in the USA by Darland and Brock [53] and in Italy by De Rosa et al. [54].
Based on a previous published work in Japan [55], the characteristics of these bacteria
were very similar to thermo-acidophilic microbes containing unusual ω-cycloexane fatty
acids as a major component in their membranes. This microorganism was classified as
a new species of the genus Bacillus and it was named Bacillus acidocaldarius [53]. In 1981,
thermoacidophilic bacteria closely related to Bacillus acidocaldarius were isolated from
neutral soils [56]. The first isolates from a non-thermal source of this species were reported
by Cerny et al. [57] after a spoilage incident of pasteurized apple juice in Germany in 1982.
These isolated strains were similar to those reported by Hippchen et al. [56] but differed
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from Bacillus acidocaldarius in the use of carbon sources. Thus Deinhard et al. [58] proposed
to name the new species Bacillus acidoterrestris. Poralla and König [59] identified another
ω-alicyclic fatty acid microorganism that contained mainly ω-cycloeptane and named this
bacterium Bacillus cycloheptanicus. However, after sequence analysis on the 16S ribosomal
RNA genes of the three species (B. acidocaldarius, B. acidoterrestris and B. cycloheptanicus),
results indicated that they were very similar to each other but distinct from any other Bacillus
species. Consequently, it was proposed that these three species should be reclassified and
the new genus was named Alicyclobacillus, in favor of the ω-alicyclic fatty acids in their
membranes [60].

Throughout the years more Alicyclobacillus species have been described (Table 1),
but according to many researchers the predominant spoilage species is A. acidoterrestris.
Alicyclobacillus species are Gram positive, except for A. sendaiensis [61], non-pathogenic,
thermo-acidophilic rod-shaped endospore forming bacteria [62,63]. They have the ability
to grow in a temperature range of 20–70 ◦C, with the optimum between 40–60 ◦C, and
in a wide pH range (2.0–6.0), with an optimum between 3.5 and 4.5 [64]. Although all
species are anaerobic and the presence of oxygen is expected to influence the growth of
the microorganism, there is no agreement in the literature about the effect of oxygen on
bacterial growth. Cerny et al. [65] reported that the presence or absence of the headspace in
the container made no essential difference in the growth of A. acidoterrestris and no spoilage
was observed in either case. On the contrary, Walker and Philips [66] demonstrated that
containers of apple juice without headspace showed significantly lower growth levels
in comparison to those containing headspace. Siegmund and Pöllinger-Zierler [67] also
verified that the presence of limited oxygen decelerated A. acidoterrestris growth in apple
juice without preventing high cell concentrations.

The presence of ω-alicyclic fatty acids in the membranes of Alicyclobacillus species is
the dominant characteristic that distinguishes them from other spore forming bacteria. Re-
searchers have claimed that ω-cycloexane and ω-cycloeptane rings in fatty acids contribute
to the strong heat and acid resistance of Alicyclobacillus [68]. It has been also stated that
the presence of cyclohexane rings in membranes increased the acyl chain density, resulting
in a denser packing of the lipids in the membrane core, structural stabilization and lower
fluidity and permeability of the membrane. This probably justifies the maintenance of
the barrier function of the membrane, thus protecting the microorganisms in acidic and
high temperature environments by forming a protective coating with strong hydrophobic
bonds [60,68,69]. Another characteristic that may contribute to the resistance to extreme
environments is the presence of hopanoids in the cells of most Alicyclobacillus strains [56,70].
The hopane glycolipids are structurally similar to cholesterol, and they affect the membrane
lipid organization due to a decreased mobility of the acyl chain lipids. Furthermore, this
action is more advantageous at low pH values [70].

The heat resistance of Alicyclobacillus endospores has been associated with several
other factors including temperature, pH and water activity. Specifically, the temperature
of thermal treatment exerts the greatest influence on the heat resistance of endospores,
since the D-value decreases with increasing temperature. In addition, pH and Total Soluble
Solids (TSS) also affect the heat resistance with a linear decrease in D-value with decreasing
pH, and a linear increase in D-value when the content of TSS increases. Water activity also
has an impact, since it has been shown that bacterial spores become more resistant as the
values of aw decrease [71]. Moreover, endospore resistance to heat can also be influenced
by the presence of heat stable proteins and enzymes and the mineralization of dipicolinic
acid (DPA) with divalent cations of calcium or manganese [68,72]. It needs to be noted that
different strains even of the same species of Alicyclobacillus may have different D-values [73].
Furthermore, the cell number, the cell age, the sporulation temperature and the state of the
endospore protoplast cortex can influence the heat resistance of the endospores [72,74,75].

Throughout the years, Alicyclobacillus species have been isolated from various environ-
ments, such as hot springs [60] and soils [76,77], as well as beverages, fruit concentrates
and fruit juices [78–82]. The contamination of fruit juices by Alicyclobacillus species is most
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likely caused by soil, during harvest, as well as by fallen and unwashed or poorly washed
fruits [68]. Employees can also transfer spores from the soil in the manufacturing facilities.
Researchers have reported that water can also be a source of contamination [83–87] in the
processing environment. Spoilage incidents of fruit juices by Alicyclobacillus species have
increased considerably in the last years [78,79,81,88–90] including concentrated orange
juice [6,91,92], apple juice [85,93], mango juice [94], passion fruit juice [95], pear juice [84,86],
banana and watermelon juice [75], grapefruit and blueberry juice [96], and lemon juice [62].

The fact that spoilage due to the presence of Alicyclobacillus is difficult to detect
makes this microorganism a serious problem for the fruit juice industry. Since there is
no gas production or swelling of the container, contamination cannot be perceived until
the consumer complains [68]. The evident sign of spoilage after consumption is an off-
flavor described as medicinal, phenolic and antiseptic [69,97] associated mainly with the
production of guaiacol (2-methoxyphenol), but also with the halophenols 2,6 dibromothenol
and 2,6 dichlorophenol [63,98]. Guaiacol, which is the major metabolite associated with
off-flavors in fruit juices, can be a product of microbial metabolism [68]. It is a spoilage
compound produced during ferulic acid metabolism, from a non-oxidative decarboxylation
of vanillic acid, catalyzed by vanillate decarboxylase [99,100].

Table 1. Alicyclobacillus species isolated from various sources.

Alicyclobacillus Species Source Reference

A. acidiphilus Acidic beverage [78]

A. acidocaldarius Thermal acid waters [53,55,60]

A. acidocaldarius subsp. cidocaldarius Fruit juice or soft drink [101]

A. acidocaldarius subsp. rittmannii Geothermal soil of Mount Rittmann,
Antarctica [102]

A. acidoterrestris Soil/apple juice [56,58,60,87]

A. aeris Copper mine, China [103]

A. cellulocilyticus Steamed Japanese cedar chips [104]

A. consociatus Human clinical specimen [105]

A. contaminans Soil, Fuji city Japan [76]

A. cycloheptanicus Soil [58–60]

A. dauci Mixed vegetable/fruit juices [106]

A. disulffidooxidans Water sludge, Canada [107,108]

A. fastidiosus Apple juice [76]

A. ferrooxydans Solfataric soil [109]

A. fodiniaquatilis Acid mine water, China [110]

A. herbarius Hibiscus herbal tea [111]

A. hesperidum Solfataric soil [112]

A. kakegawensis Soil, Japan [76]

A. macrosporangiidus Soil, Japan [76]

A. montanus Hot spring [113]

A. pohliae Geothermal soil, Antarctica [114]

A. pomorum Mixed fruit juice [115]

A. sacchari Liquid sugar [76]

A. sendaiensis Soil, Japan [61]

A. shizuokensis Soil in crop fields, Japan [76]
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Table 1. Cont.

Alicyclobacillus Species Source Reference

A. tengchongensis Soil in hot spring, China [116]

A. tolerans Oxidizable lead-zink ores [108]

A. vulcanalis Hot spring, United States [117]

2.2. Alicyclobacillus Acidoterrestris

Since its first association with spoilage in fruit juices in 1984 [57], Alicyclobacillus aci-
doterrestris has been considered as a challenge for the fruit juice industry worldwide [14].
It is the most important representative of the genus due to the number of reported spoilage
incidents [63]. A. acidoterrestris has been isolated from a variety of juices and concentrates
including apple, orange, lemon, mango, grapefruit, pear, tomato, white grape, pineapple,
passion fruit, blueberry, pomegranate, cherry, strawberry, chokeberry, raspberry, water-
melon, blackcurrant, kiwi and banana [82,92,95,118–123]. It is a spore forming bacterium
that can survive thermal treatment during pasteurization, grow at low pH, germinate,
and spoil the juice [124]. Therefore, it has been proposed as a target microorganism to
control the effectiveness of the pasteurization process in acid fruit juices. The maximum
accepted concentration of A. acidoterrestris spores as defined by the fruit juice industry
is 100 CFU/mL of raw material [125]. A. acidoterrestris is an aerobic, Gram-positive, rod-
shaped endospore-forming spoilage microorganism [62,63]. It can grow in a wide pH range
(2.0–7.0) with the optimum between 3.5 and 4.0, and in a temperature range of 25–60 ◦C
with the optimum between 40 and 45 ◦C [126–128]. A. acidoterrestris spores are very heat
resistant and, depending on the conditions of thermal treatment and bacterial strain, D90◦C
ranges between 5.95 and 23 min [129] and D95◦C between 0.06 and 8.55 min [130]. The main
characteristic of A. acidoterrestris strains that make them so tolerant to heat is the presence
of ω-cycloexane fatty acids in their membranes [60,87].

A. acidoterrestris spores have a slow growth cycle of ca. 5 days [62]. Spoilage is not
visible during storage or retail since there is no gas production and swelling of the juice
container (flat-sour type spoilage). Only after consumption, flavors described as “smoky”,
“antiseptic” or “disinfectant” and possible increased turbidity and sediment formation
can lead to the conclusion of spoilage of the juice [87,131,132]. The predominant spoilage
compound responsible for this is guaiacol [131]. Although the contamination pathway
with guaiacol from A. acidoterrestris has not been clearly elucidated, the most accepted
assumption is that it is produced during ferulic acid metabolism [69,133]. Microorganisms
usually decarboxylate ferulic acid to 4-vinylguaiacol [134] causing a “rotten” flavor espe-
cially in orange juice [135]. However, it can also be directly metabolized to vanillin [136]
or vanillic acid [137]. A. acidoterrestris is capable of producing guaiacol from vanillin [138]
and vanillic acid [139]. Although tyrosin and lignin have been suggested as precursors
for the production of guaiacol from A. acidoterrestris, the pathway has not been studied
extensively [69,133]. It has been proved that when the concentration of A. acidoterrestris cells
ranges between 105 and 106 CFU/mL it produces enough guaiacol to spoil the juice [75,131].
Considering the substantial economic losses in the fruit juice industry due to the growth
of A. acidoterrestris spores, the factors that induce spoilage should be seriously taken into
account, specifically since spoilage is not apparent before consumption. The cell concen-
tration of the microorganism, the heat shock treatment, the incubation temperature, the
oxygen availability and the growth medium are among the factors influencing spoilage [68].
It must be noted that spore germination and growth is inhibited under 20 ◦C [140] and
even at low oxygen concentration, contamination cannot be completely suppressed [67].
Furthermore, the growth behavior of A. acidoterrestris strains depends on the type of the
juice and the isolation source of the strain [76]. However, the presence of A. acidoterrestris in
juice is not a threat for human health, since neither the microorganism nor its metabolites
have ever been associated with illness from the consumption of contaminated juice [141].
Although A. acidoterrestris is a non-pathogenic bacterium, spoilage incidents are a major
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concern for the fruit juice industry mostly because of the difficult detection of the bacterium,
due to the absence of visible deterioration of the containers and associated spoilage.

3. Isolation and Identification of Alicyclobacillus spp.

Since spoilage from Alicyclobacillus has become a major issue for the fruit juice industry
resulting in high economic losses, the need for developing rapid, accurate and sensitive
methods for the early detection of the bacterium is of paramount importance. Initially
researchers used mainly direct plating and spoilage detection methods, but nowadays
detection methods based on instrumental analysis, immunodetection and molecular analy-
sis are becoming more popular. Detection can be separated into three strategies, namely
(a) targeting the cell/spore detection, (b) nucleic acid analyses, and (c) metabolites measure-
ment [142]. An overview of the detection and identification methods for Alicyclobacillus is
displayed in Table 2.

Table 2. Detection methods of Alicyclobacillus species.

Detection Method Isolation Source/Medium Reference

Cell/Spore-Based Methods

ELISA
Apple juice [143–146]
Apple juice concentrate [147,148]
Orange, clear apple, unfiltered apple, pear, tomato, pink grapefruit, and white grape [149]

Flow Cytometry Apple juice concentrate [141]

Molecular Methods

PCR

Isotonic water, lemonade, fruit juice blend, fruit carrot juice blend [81]
Orchard soil [77]
Mango juice [94]
Fruit concentrates and soils [122]
Various food and soil [150]

PCR/RAPD-PCR

Orchard soil, soil on the fruit (pear, peach, apricot and apples) and samples of water and
materials through the production line [86]

Soil from lemon orchard [151]
Soil of Foggia and pear juice [152]

RAPD-PCR
Passion fruit juice [95]
N/A [149]

PCR/ERIC-PCR Orchard soil [153]

PCR/PCR-DGGE Fruit juices and fruit juice blends from Ghana and Nigeria [80]

PCR/RT-PCR Apple juice and saline [154]

PCR-RFLP

Various juices and concentrates, drinks and intermediates [155]
Concentrated apple juice [156]
Concentrated apple juice and processing environment [85]
Orange juice [157]

RT-PCR

Orange juice [158,159]
Orange juice, sports drink, lemonade and NaCl solution [160]
Apple juice [161]
Flavored non-carbonated drinks [162]
Acid buffer [163]

IMS-PCR
Apple juice [144]
Sterile water, apple juice and kiwi juice [164]

IMS-RT-PCR Apple and kiwi fruit orchard and fruit juice production line [165]

qPCR(quantitative) Apple juice [166]

16S rRNA sequencing

N/A [60]
Soil and water [111]
Various orchards [76]
Kiwi juice, fruit, soil and air of orchards and fresh cut and frozen fruit [82]
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Table 2. Cont.

Detection Method Isolation Source/Medium Reference

Analytical Methods

HPLC

Apple juice [138,167,168]
Flavored non-carbonated drinks [162]
Pear concentrate [169]
Fruit juices and fruit juice blends from Ghana and Nigeria [80]
Soil from lemon orchard [151]
Tomato puree [170]

GC Mixed fruit drink [140]

GC-MS

Apple drinks, apple juice concentrate and orange juice [171]
Apple, orange and peach juice [172]
Fruit concentrate, flume water and vinegar flies [173]
Kiwi juice and fruit [110]
Apple juice [174]

GC-MS/GC-
Olfactometry

Orange juice [131]
Fruit concentrates and soils [122]

GC-MS/SPME
Apple juice [67,161,175–178]
Apple, pear and orange juice [179]
Orange juice [180,181]

Electronic Nose

Apple, pear and orange juice [179]
Flavored non-carbonated drinks [162]
Apple, orange and peach juice [172]
Apple and orange juice [98]
Apple juice [178,182]
Concentrated apple juice [174]
Mixed fruit juice beverage [183]
Orange juice [181]

Fourier Transform
Infrared Spectroscopy

(FTIR)
Apple juice [184–186]

N/A: Not Available.

Plating methods are simple and reliable but cannot detect low populations of the
bacterium. Since research findings indicate that A. acidoterrestris spores do not grow on
acidified agar such as Brain Heart Infusion agar, Nutrient agar, Standard Plate Count agar,
Tryptone Soy agar and Veal Infusion agar, new media have been developed in order to
isolate and successfully enumerate these spores [69,171]. Thus, the media that favor the
growth of Alicyclobacillus after being acidified to pH 3.5–5.6 by HCl, H2SO4 and malic acid
after autoclaving [68,75] are Bacillus acidocaldarius medium (BAM) and Bacillus acidoterrestris
thermophilic (BAT) agar [58,92,187,188], Yeast Starch Glucose Agar (YSG) [78,111,189],
Orange Serum Agar (OSA) [190], K agar [85], Potato Dextrose Agar (PDA) [91,96,118] and
SK agar [191]. It has also been suggested that spread plating is more effective than pour
plating for bacterial growth [171,188,192], but Yokota et al. [64] reported the opposite on
YSG agar. Although several traditional microbiological methods have been employed for
the detection of Alicyclobacillus strains, the IFU Method No 12 developed by the Working
Group on Microbiology of the International Federation of Fruit Juice Producers (IFU) is
considered to be the most effective [193]. This method can distinguish spoilage and non-
spoilage species but it is time-consuming. The membrane filtration technique is another
method used in combination with the plating method, mainly when high populations of the
bacterium must be detected [189]. IFU Method No 12 recommends the use of 0.45 µm filters,
while the European Fruit Juice Association (AIJN) recommends 0.2 µm filters. Although
this technique is more sensitive and has a lower detection limit [194], it cannot be used
for all products [195]. Several isolation methods including the IFU Method No 12, apply
heat shock treatment to the endospores of the microorganism in order to destroy the
existing vegetative cells and induce the germination of predominant spores [64]. Many heat
treatment schemes have been suggested but the predominant include thermal treatment
at 80 ◦C for 10 min (recommended by the IFU) and at 70 ◦C for 20 min (recommended
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by the JFJA) (Japan Fruit Juice Association) [69,75,133]. Although these methods have
been widely employed for routine analysis by the industry due to their low cost, they are
time consuming and demanding, thus novel rapid detection and identification techniques
are needed.

Enzyme-linked immunosorbent assay (ELISA) is a biochemistry assay that has been
applied for the detection of Alicyclobacillus mostly in apple juice, using a specific polyclonal
anti-Alicyclobacillus antibody [143,144]. This method reduces the detection time to 6–7 h but
detects populations higher than 105 CFU/mL. The above procedure has been improved by
adding immunomagnetic separation that has shortened the time of analysis to 3 h and the
detection limit to 103 CFU/mL [196]. Even though ELISA is rapid and reliable, it has high
cost of analysis and legal limitations of animal use for the antibody production [159].

Flow cytometry is another cell detection method based on laser light that scatters
samples in order to obtain cell size and corresponding light patterns of DNA density. This
method detects cell concentration higher than 103 CFU/mL for Alicyclobacillus strains in
fruit juice concentrates within 10 h [141]. Although the detection is achieved within limited
time, flow cytometry can only be used for fluid samples [133].

Over the years methods based on Polymerase Chain Reaction (PCR) have been widely
employed in research for the rapid identification of microorganisms and were also success-
fully applied to Alicyclobacillus. Reverse transcription polymerase chain reaction (RT-PCR)
was first used by Yamazaki et al. [197]. Based on shc (squalene-hopene cyclase) gene, a key
enzyme in the biosynthesis of hopaniods, researchers managed to detect A. acidoterrestris
and A. acidocaldarius with a detection level of 1–2 CFU/mL after 15 h of enrichment. In
2004, Luo et al. [154] developed a Taqman® RT-PCR method also based on sch gene with
a detection level less than 100 CFU/mL within 3–5 h for both species. A Taqman® PCR
targeting the 16S rRNA gene was able to detect more species of Alicyclobacillus within
5 h and with a detection limit lower than 100 CFU/mL [160]. Random Amplification
of Polymorphic DNA (RAPD) PCR has also been selected as a rapid method in order
to distinguish Alicyclobacillus strains [77,82,95,151,152,198,199]. The selected primer and
the lysed DNA of the microorganism are mixed with Taq polymerase and after PCR and
electrophoresis the bands that appear are further analyzed [200]. Yamazaki et al. [198]
reported the identification of A. acidoterrestris from acidic juice by applying RAPD PCR
within 6 h. Restriction fragment length polymorphism (RFLP) PCR is another rapid and
low-cost method that differentiates homologous DNA sequences, which are detected by
different length fragments after DNA digestion and are then cut by restriction endonuclease.
After gel electrophoresis, a unique fingerprint is received. Analysis of 16 S rRNA RFLP
has been used for the characterization of Alicyclobacillus strains from concentrated apple
juice [85] and orange juice [157].

16 S rRNA sequence analysis has been used widely for identification, because this
gene deviates among the closely related Alicyclobacillus bacterial species. Furthermore,
the 5′-end hyper-variable region of the gene varies among Alicyclobacillus species and
makes it sufficient for discrimination among species [201]. Moreover, the immunomagnetic
separation method (IMS), which is based on magnetic beads that capture the microorganism
cells improved the sensitivity of PCR and RT-PCR when cooperating with the 16 S rRNA
gene for the detection of Alicyclobacillus [164,165,196].

Denaturing gradient gel electrophoresis (DGGE) has been also proved to be effective
not only for the detection of Alicyclobacillus but also for the distinction of guaiacol producing
and non-producing species by adding an Alicyclobacillus DNA sequence ladder mix on the
DGGE gel [80]. Vermicon Identification Technology (VIT), which is based on fluorescent
labelled probes, has been shown to have a detection limit of 1 CFU/mL within 3 h of
isolation and can be applied directly to fruit juice concentrate. This method is also capable
of differentiating Alicyclobacillus acidoterrestris from other Alicyclobacillus species since they
glow in different colors [202].
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Indirect detection of Alicyclobacillus spoilage can be determined by measuring the
metabolites, mainly guaiacol. The determination can be accomplished using sensory,
analytical, or chemical methods.

Sensory methods are mostly used for screening the sample for the presence or absence
of spoilage compounds. A trained panel is usually asked to describe the taste, aroma,
sourness, color, and finally the acceptability of the sample when compared to a control
(unspoiled) sample [174]. The published studies concerning the detection of guaiacol
by a sensory panel showed that the detection is highly dependent on the sensitivity of
the panelists and on the sample matrix, due to the variation of the components in fruit
juices [67,171,174,175,180]. Although analytical methods are considered to be more sensitive
to the detection limit of guaiacol, other researchers reported that sensory analysis presented
greater sensitivity [171,203].

Analytical methods are used for both qualitative and quantitative detection and
the most frequently used are chromatographic analysis such as Gas-Chromatography
(GC) and High-Performance Liquid Chromatography (HPLC). These methods include
three steps: extraction, separation and identification [68,69]. After collecting an adequate
quantity of the sample, heat desorption or solvent extraction follows for GC or HPLC,
respectively. The separation of the compounds with the use of specific columns depends
on their molecular weight, solubility, ion exchange capacity and polarity, which emerge at
different retention times. With the use of standards, the method can detect the chemical
compound and its quantity [68]. The GC-MS (mass spectrometry) is widely employed
due to the sensitivity of the detector [131,171,180] together with GC-O (olfactometry) [131].
Solid Phase Microextraction (SPME) has also been successfully combined with GC for the
determination of volatile compounds [175,176,180,181]. Apart from GC, the use of HPLC
for the detection of Alicyclobacillus spoilage has also been reported [138,167]. Although
the former mentioned analytical techniques have been shown to be accurate, they are
expensive, time consuming, require skilled personnel for operation and analysis of the
results and cannot be adapted easily in the production line [133,142].

Electronic nose (EN) is an artificial sensing system, based on a chemical sensor array of
semi selective gas sensors combined with pattern recognition algorithms. With the proper
data analysis tools, EN could result in the early detection of Alicyclobacillus contamination.
Gobbi et al. [172] detected Alicyclobacillus spp. in peach, orange and apple juice after 24 h
from inoculation, while Cagnasso et al. [179] identified spoilage from A. acidoterrestris
in orange and pear juice at the same time period. Concina et al. [162] identified the
contamination of Alicyclobacillus spp. in commercial flavored drinks at the early stage of
growth and Huang et al. [182] reported that EN could perceive a contaminated apple juice
beverage after 4 h when coupled to linear discriminant analysis. It is a promising method
because it is simple, quick, reliable and of low cost, and can be easily used in the production
line [181].

Another rapid method that is widely used for the detection and identification of bacte-
ria is Fourier Transform Infrared Spectroscopy (FTIR). FTIR is based on measuring distinct
biochemical characteristics of the cytoplasm and the cell wall components, presenting
them as different spectral features at 400–4000 cm−1. The detection limit of this method
is 103–104 CFU/mL and it can distinguish different species of Alicyclobacillus and classify
them as guaiacol and non-guaiacol producing strains [184,185]. Some drawbacks of this
method include the cost of the equipment and an essential extension with comprehensive
spectral reference database in order to limit detection time for unclassified Alicyclobacillus
strains [133,142].

The chemical method that has been broadly used for the detection of guaiacol is
Peroxidase enzyme colorimetric assay (PECA), which can detect and quantify the pres-
ence of guaiacol. PECA is based on the oxidation of guaiacol by peroxidase enzymes
in the presence of H2O2 with the formation of a brown compound, identified as 3,3′-
dimethoxy-4,4′-biphenoquinone [204], which can be measured by spectrophotometry at
420 nm [138,167] or 470 nm [204–206]. The guaiacol detection kits that are available in the
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market are based on this method and besides detecting guaiacol they can also quantify it by
using standard concentration curves. Although this method is simple, less time consuming
and of low cost, it is imprecise and most frequently used only for the detection of the
presence of guaiacol and not for quantification.

4. Control of Alicyclobacillus spp.

The spoilage of fruit juices from Alicyclobacillus spp. has been shown to start from
the beginning of the supply chain, since contaminated fruits at harvest can intrude into
the production line and cause problems that will appear only after consumption. This
observation necessitates the implementation of highly effective measurements in order to
avoid spoilage from the beginning and therefore economic loss for the fruit juice industry.
Good Manufacturing Practices and systematic use of Hazard Analysis and Critical Control
Points (HACCP) rules throughout the whole supply chain can control contamination from
Alicyclobacillus. In order to ensure fruit juices with high safety and extended shelf life,
chemical, physical, and combined methods have been developed.

4.1. Chemical Treatments

The first step to control the contamination from this microorganism is to avoid harvest-
ing fallen fruit or at least wash the surface of the fruit properly with the use of disinfectants.
The oxidants that are usually diluted in water are sodium chlorite (NaClO2), chlorus acid
(HClO2) and chlorine dioxide (ClO2) [175]. Since 1998, the use of ClO2 has been allowed
by the Food and Drug Administration [207] as an antimicrobial chemical and therefore
it is widely used for the disinfection of fruit, containers, and processing equipment. The
effectiveness of this sanitizer on the inactivation of Alicyclobacillus spores is possibly due to
the injury of the inner membrane of the spore resulting in germination and outgrowth [208].
Bevilacqua et al. [209] also implied that this oxidizing compound aimed to damage the inner
membrane of A. acidoterrestris spores. These disinfectants can also be used as preservatives
in the fruit juice processing line [133].

Ozone (O3) is another oxidant also recognized as safe from the FDA that can be used
in fruit juices. It also has the potential to eliminate Alicyclobacillus spores, since it has been
shown that as the concentration and the treatment time of O3 increases, the inactivation of
A. acidoterrestris also increases [210].

The growth of Alicyclobacillus can also be controlled with the use of some organic
acids. The effectiveness of acids on bacterial cells, but not on spores, in ascending order
was benzoic, butyric-caprylic, acetic, citric-malic-lactic, and tartaric acids [211]. Chemical
preservatives like sodium benzoate and potassium sorbate have been allowed to be added
in beverages with a limit of 1500 mg/L [212]. It has been reported that they can control
A. acidoterrestris growth [103] with the need for higher concentrations for vegetative cells
than for spores [213].

The increasing demand of consumers for natural additives in food products has led
to the use of natural compounds in fruit juices for the control of Alicyclobacillus. Natural
antimicrobials of microbial origin, animal origin and plant origin have been successfully
used for the inhibition of the microorganism [133].

4.1.1. Natural Compounds of Microbial Origin

Bacteriocins are antimicrobial peptides or proteins that are produced from various
bacteria, which present antimicrobial activity against closely related species [214]. Nisin
is a non-toxic polypeptide used in many countries as a safe food preservative [215,216].
It is obtained from Lactococcus lactis subsp. lactis and has a significant effect especially
on the spores of A. acidoterrestris [89,129,217–220]. Nisin is the only bacteriocin used for
the control of A. acidoterrestris in the fruit juice industry at present [214], added either
directly in the juice [129,217] or integrated into the biodegradable polylactic and polymer
film of the container [221,222]. Studies have revealed more bacteriocins to be effective
against Alicyclobacillus including enterocin AS-48 produced from Enterococcus faecalis [223],
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bificin C6165 from Bifidobacterium animalis subsp. animalis [224], biovicin HC5 purified from
Streptococcus bovis [225], warnericin RB4 from Staphylococcus warneri [226], paracin C from
Lactiplantibacillus paracasei [227,228] and cyclin A from Lactiplantibacillus plantarum [229].
Although all of them have high potential in inhibiting Alicyclobacillus strains they have
limited application in the industry due to the high cost of extraction and purification [133].

4.1.2. Natural Compounds of Animal Origin

Lysozyme is an enzyme present in various biological tissues and fluids like tears,
saliva, eggs and milk, often used to inhibit Gram positive bacteria and especially ther-
mophilic spore forming bacteria at a concentration of 20 µg/mL [230,231]. Lysozyme is also
considered as a safe preservative [232] and has been applied directly in fruit juices [233] or
through the polymeric matrix film in packaging in order to control Alicyclobacillus [234,235].
The efficiency of lysozyme depends on the concentration, the strain of the bacterium and
the external conditions applied [233,236–238].

Chitosan, the only basic polysaccharide in nature is a derivative of chitin, extracted
from the shell of shrimps, crabs and crawfishes; it has the ability to control bacteria, yeasts,
and molds [239,240]. When combined with thermal processing it can inhibit A. accidoter-
restris spores from germinating at a concentration level of 1.4 g/L [241].

4.1.3. Natural Compounds of Plant Origin

Essential oils (EOs) are aromatic liquids obtained by extraction, distillation, fermenta-
tion or enfleurage from plant materials, mostly herbs and spices that are used in the fruit
juice industry as food flavorings [133,242,243]. The antimicrobial activity of cinnamalde-
hyde, eugenol and carvacrol has been reported to be efficient against A. accidoterrestris
spores [90,244]. Lemon essential oil and extracts of Eycalyptus maculata also controlled the
germination of A. accidoterrestris spores as reported by Maldonado et al. [245] and Taka-
hashi et al. [244]. Fatty acids and esters have also been reported to have antibacterial activity
against A. accidoterrestris spores. Manolaurin, which is recognized as a safe compound from
the FDA, was effective against the vegetative cells of the microorganism [246]. Sucrose
palmitate, sucrose stearates and sucrose laurates have also been reported as efficient an-
timicrobials against Alicyclobacillus spores [247]. Other plant extracts have been reported
to have antimicrobial effectiveness against Alicyclobacillus. Saponin that was extracted
from Sapindus saponaria fruits inhibited A. acidoterrestris spore germination, but affected the
sensory quality and resulted in foam production [248]. Papain and bromelain enzymes
extracted from Carica papaya and Ananas comosus, respectively, also controlled A. acidoter-
restris spore germination [249], whereas two formulations of Rosmarinus officinalis were
effective against A. acidoterrestris, A. hesperidum and A. cycloheptanicus vegetative cells [250].
An overview of chemical treatments applied for the inactivation of Alicyclobacillus species
is presented in Table 3.

4.2. Physical Treatments

Thermal pasteurization is a heat treatment successfully employed by the fruit juice
industry in order to extend the shelf life of processed fruit juices. It manages to inactivate
heat sensitive microorganisms and enzymes that can degrade the quality without influenc-
ing the sensory characteristics of the fruit juice. The conventional heat treatment (88–96 ◦C
for 2 min) however is not sufficient against Alicyclobacillus, since its spores can survive
pasteurization treatments and germinate under favorable conditions during storage [68,71].
Provided that refrigerated temperatures are ensured throughout the whole supply chain,
Alicyclobacillus spores would not grow since germination is inhibited at temperatures below
20 ◦C. Distribution though does not always take place under refrigerated conditions, due
to high cost, therefore spores may induce spoilage during warmer months [68]. In order
to control the presence of Alicyclobacillus, the temperature of thermal treatment should
be increased, but this would result in quality (vitamin and nutrient loss) and sensory
(nonenzymatic browning and flavor compounds) deterioration [251–253]. Consequently,
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the development of nonthermal methods is necessary to retain both safety and quality
attributes of fruit juices.

Table 3. Overview of chemical treatments applied for the inactivation of Alicyclobacillus species.

Chemical Treatments Compounds References

Oxidants
ClO2 [133,207–209]
Ozone [210]
Sodium benzoate, Potassium sorbate [103]

Natural compounds of
microbial origin

(bacteriocins)

Nisin [89,129,217–220]
Enterocin A5-48 [223]
Bificin C6165 [224]
Biovicin HC5 [225]
Warnericin RB4 [226]
Paracin C [227,228]
Cyclin A [229]

Natural compounds of animal origin Lysozyme [234,235]
Chitosan [241]

Natural compounds of plant origin
Essential Oils [90,244,245]
Fatty acids and esters [246,247]
Plant extracts [248–250]

4.3. Nonthermal Treatments

High hydrostatic pressure (HHP) is based on two principles, namely the isostatic and
the Le Chatelier. The first one secures the homogeneous and instant distribution of the
pressure applied equally in all directions of the sample and the second one states that any
occurrence of chemical or biochemical reaction, molecular configuration or phase transition
that can lead to volume reduction is improved by pressure [254,255]. The food industry
uses HHP with pressure ranging from 100 to 800 MPa, duration from milliseconds to more
than 20 min, and treatment temperatures from 0 to 90 ◦C. The main mechanism of HHP
that causes the inactivation of Alicyclobacillus is the damage to the noncovalent bonds that
are present in lipids, proteins, nucleic acids and polysaccharides. In this way, HHP affects
the cell membrane constituents such as proteins, enzymes and ribosomes and therefore
damages the genetic material of the microorganism, since it causes denaturation of cell
components resulting in the injury and death of the microorganism [256]. HHP has been
used extensively for the inactivation of Alicyclobacillus because when combined with heat
treatment it is very effective against spores that are very resistant to inactivation. HHP can
cause the germination of spores, which are less resistant to dormant spores that will be sub-
sequently killed with the simultaneous heat treatment [257,258]. The germination of spores
at lower pressures (50 to 300 MPa) proceeds via activation of nutrient receptors (D-sugars,
L-amino and purine nucleosides), while at higher pressures (400–800 MPa) germination is
triggered by the direct release of Ca-DPA (dipicolinic acid) [259,260]. It has been proved
that cycle pressure treatments can enhance the inactivation of the spores for an equivalent
duration of a single pressure application. Treatment with the low pressure exposure results
in spore germination and the higher pressure inactivates spores and vegetative cells [261].
Relevant research concerning the application of HHP for the inactivation of Alicyclobacillus
is summarized in Table 4. Although HHP is very effective, some dormant spores have the
ability to remain immutable, a fact that must be taken into serious consideration by the
fruit juice industry when applying HHP treatments [262]. Juices treated with HHP often
exhibit superior quality compared to those treated with thermal processing since HHP has
minimum impact on color, flavor and taste while retaining nutrients, vitamins, amino acids
and functional properties [263]. Taking into account consumers’ demands for minimally
processed products, HPP has many industrial applications and therefore it has been the
most popular non-thermal treatment since the late 1980s.
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Table 4. Overview of HHP conditions applied for the inactivation of Alicyclobacillus species.

Alicyclobacillus Species Medium Experimental Conditions Reference

A. acidoterrestris ATCC49025
A. acidoterrestris NFPA 1013 (apple juice isolate) Apple juice 207, 414 and 621 MPa/1, 5 and 10 min/22, 45, 71 and 90 ◦C [264]

A. acidoterrestris DSMZ 2492

BAM broth
Orange juice
Tomato juice
Apple juice

Broth
350 and 450 MPa/5, 10 and 20 min/35, 45 and 50 ◦C
Juices
350 MPa/20 min/50 ◦C and storage 3 weeks/30 ◦C

[265]

A. acidoterrestris DSMZ 2492 BAM broth 350 and 450 MPa/35, 45 and 50 ◦C [266]

A. acidoterrestris NFPA 1101 (apple juice isolate)
A. acidoterrestris NFPA 1013 (apple juice isolate) Apple Juice concentrate 207, 414 and 621 MPa/1, 5 and 10 min/22, 45, 71 and 90 ◦C

Various concentrations of juice (17.5, 35 and 70 ◦Brix) [267]

A. acidoterrestris LMG 16906
Citric acid buffer (pH 4.0 and 5.0)
Potassium phosphate buffer (pH 7.0)
Tomato sauce (pH 4.2 and 5.0)

HHP and combined treatment HHP + heat
Buffers
100, 200, 300, 400, 500 and 600 MPa/40 ◦C/10 min + heat 80 ◦C/10 min
Tomato sauce
100, 200, 300, 400, 500 and 600 MPa/25, 40 and 60 ◦C/10 min + heat 80 ◦C/10 min

[268]

A. acidoterrestris TO-29/4/02 (apple juice isolate) Apple juice

• 200, 300 and 500 MPa/30 min/50 ◦C continuously
• 100, 200, 300 and 500 MPa/2, 4 and 6 cycles of 5 min with 5 min pause/50 ◦C
• 100, 200 MPa × 6 cycles and 200 MPa x 4 cycles/5 min with 5 min pause/50 ◦C

incubation 60 min at 50 ◦C/pressure 500 MPa/30 min 50 ◦C
• Combined treatment of HHP + lysozyme: 300 MPa/5, 10, 15 and 30 min/50 ◦C

+ 0.05 and 0.1 mg/mL lysozyme
• Combined treatment of HHP +nisin:

◦ 300 MPa/5, 10, 15 and 30 min/50 ◦C + 500, 750 and 1000 IU/mL nisin
◦ 200 MPa/5, 10, 15 and 20 min/50 ◦C + 250 IU/mL nisin

[237]

A. acidoterrestris NZRM 4098 Orange juice 200 and 600 MPa/1–15 min/45, 55 and 65 ◦C [263]

A. acidoterrestris DSMZ 2498 Apple juice
Orange juice 200, 400 and 600 MPa/10 min/20, 50 and 60 ◦C and storage for 28 days [98]

A. acidoterrestris TO-29/4/02 (apple juice isolate)
A. acidoterrestris TO-117/02 (apple juice isolate)

Apple juice
(11.2, 23.6, 35.7 and 71.1 ◦Brix)

200 MPa/5, 10, 15, 30 and 45 min/50 ◦C
200 MPa/5, 10, 15 and 30 min/50 ◦C for 11 days/11 and 16 months spores
of TO-29/4/02
200 MPa/5, 10, 15 and 30 min/50 ◦C for 10 days/2, 10, 11 and 23 months spores
of 117/02
200 MPa/1, 5, 10, 15 and 30 min/50 ◦C × 3 subsequent treatments

[269]
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Table 4. Cont.

Alicyclobacillus Species Medium Experimental Conditions Reference

A. acidoterrestris TO-117/02 (apple juice isolate)
Mcllvain buffer
(pH 4.0 and 7.0)
Apple juice

Germination and Inactivation
• 100, 200, 300, 400 and 500 MPa/20 min/50 ◦C (buffers and juice)
• 200 MPa/5, 10, 15 and 30 min/20, 50 and 70 ◦C (juice)
• 200 MPa/5, 10, 15 and 30 min/11.3, 23.7, 35.5 and 70.7 ◦Brix
• 200 and 500 MPa/20 min/50 and 70 ◦C (juice)
• 200 MPa/5, 10, 15 and 30 min/50 ◦C (buffers and juice)
• 200 MPa/50 ◦C for 2, 4 and 6 cycles/5 min with 5 min pause

[270]

A. acidoterrestris TO-117/02 (apple juice isolate) Apple juice
Buffer (pH 4.0)

200, 300, 400 and 500 MPa/15 min/4, 20 and 50 ◦C
Determination with optical density [271]

A. acidoterrestris NZRM 4447 Orange juice 200 and 600 MPa/15 min/39 ◦C + thermosonication 20.2 W/mL/78 ◦C [127]

A. acidoterrestris NZRM 4447 Malt Extract Broth
(10, 20 and 30 ◦Brix)

600 MPa/up to 45 min/35, 45, 55 and 65 ◦C
600 MPa/up to 45 min/45 ◦C Validation for apple juice, lime juice concentrate and
Blackcurrant juice concentrate

[97]

A. acidoterrestris CCT 7547 Acai pulp 600 MPa/5, 10, 15, 20 and 25 min/65 ◦C [272]

A. acidoterrestris CCT 7547 Deionized Water 300 and 600 MPa/5 min/25 and 70 ◦C + heat shock [273]

A. acidoterrestris AJA 66 (apple juice isolate)
A. acidoterrestris ATCC 49025

Apple juice
Potassium Phosphate Buffer
(pH 3.7 and 7.0)

600 MPa/1, 3 and 5 min/70, 80 and 90 ◦C [274]

A. acidoterrestris (apple juice isolate)
A. acidoterrestris DSMZ 2498 Orange juice 500 and 600 MPa/1, 3, 5, 15 and 30 min/25, 45, 60 and 70 ◦C [275]

A. acidoterrestris CCT 7547 Mango pulp

600 MPa

• 0, 5, 10, 15, 20 and 25 min/65 ◦C
• 0, 4, 8, 12, 16 and 20 min/70 ◦C
• 0, 2, 4, 6, 8 and 10 min/75 ◦C
• 0, 1.5, 3, 4.5, 6 and 7.5 min/80 ◦C
• 0, 1, 2, 3, 4 and 5 min/90 ◦C

[276]

Alicyclobacillus spp. N1089
(canned tomatoes isolate)
Alicyclobacillus spp. N1098 (apple juice isolate)

Tomato juice
Apple juice

Combined treatment of HHP + Sucrose laurate L1695
392 MPa/10 min/45 ◦C + 0.005% and 0.01% for N1089
392 MPa/10 min/45 ◦C + 0.025, 0.04 and 0045% for N1098

[247]
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High pressure homogenization (HPH) (150–200 MPa) or Ultra High pressure homoge-
nization (350–400 MPa) is a food processing technology that is based on the principles of
conventional homogenization with higher pressures [277] and can be applied only to fluid
products. The shear stress distribution across the treated product is responsible for the
changes occurring in microorganisms resulting in inactivation [5]. Bevilacqua et al. [126] re-
ported reduction of A. acidoterrestris population with cells being more sensitive than spores
when applying HPH (500, 800, 1100, 1400 and 1700 bar) for 2 ms to three different strains
inoculated in malt extract broth. The susceptibility was proved to be strain dependent. This
treatment has limited industrial applicability because of the need for refrigeration in order
to guarantee the safety of final products.

Ultrasound or ultrasonic waves are electromagnetic waves with frequency above
20 kHz that can create cavitation in the cell wall of the microorganism and thus destroy
it [278]. A. acidoterrestris vegetative cells in apple juice were inactivated with ultrasonic
treatment that seemed to be more effective as the power level and the processing time
increased [279]. Wang et al. [280] also reported that ultrasonic waves inhibited Alicyclobacil-
lus vegetative cells and that the effectiveness of the method depended on the matrix, the
strain, the power level, and the exposure time. Ultrasound treatment has been proved to be
more effective when combined with other processes, in particular high pressure and heat.
Although this treatment is considered to improve the quality of many products including
fruit juices [281], it affects the sensory characteristics of the fruit juice and thus may not
meet consumer’s demand [279].

Microwaves are also electromagnetic waves that have the ability to change the cell
membrane permeability, break the hydrogen bonds of RNA and DNA and thus inhibit the
cell growth [133]. Microwave sterilization has been employed as a nonthermal treatment
since it heats the product faster without influencing the texture and the taste and does not
lead to cell cortex swelling like conventional sterilization [133,282].

Ultraviolet (UV-C) light is a form of electromagnetic radiation ranging from 200 to
280 nm [283] that has the ability to damage the DNA of the microorganism and therefore
eliminate it [284]. The treatment has been proved effective against A. acidoterrestris spores
in grape and apple juice [285,286]. The low energy consumption and the absence of toxic
byproducts in the final product makes UV-C light a promising control treatment and for
this reason FDA approved its use in order to clear fruit juices (FDA, 2000).

Irradiation treatment uses gamma rays, electrons, or X rays [253,287] targeting the
chromosome in order to split the double helix of DNA and thus damage the cell of the
microorganism [253]. The use of gamma rays and electrons were reported to be effec-
tive against A. acidoterrestris spores in citrus juice in combination with heat treatment
(85–95 ◦C) [288]. In addition, Lee et al. [289] reported the inactivation of A. acidoterrestris
spores in apple and orange juice with the use of gamma rays. Irradiation has limited
applicability in the fruit juice industry today due to its association with radioactivity that is
unacceptable from the consumers’ point of view [277].

Ohmic heating uses an electrical current to generate heat instantly inside the food in
order to kill microorganisms [73]. A. acidoterrestris vegetative cells were inactivated in apple
juice with the use of an ohmic heating system. When the temperature was above 70 ◦C the
death rate was close to 100% [290]. Moreover, the inactivation of A. acidoterrestris spores
was reported to be higher with the use of ohmic heating than with conventional heating
in orange and apple juice [291,292]. However, additional studies should be undertaken to
verify the effectiveness of this method in the fruit juice industry.

Pulsed electric field generates pulse waves that have enough intensity to cause cell
membrane damage that leads to cell destruction [293]. Uemura et al. [294] reported the
reduction in the population of A. acidoterrestris in orange juice in a very short time (0.9 s) at
125 ◦C without influencing the nutritional quality of the juices. This technology has the
ability to improve the microbiological quality and preserve the physicochemical and nutri-
tional attributes of juices, but concerning Alicyclobacillus spores, more studies, including
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sensory assessment, should be performed in order to elucidate the effects of temperature
assistance on the organoleptic traits of fruit juices.

5. Conclusions

Fruit juices have gained popularity due to their health benefits resulting in the expan-
sion of the global juice market. Therefore spoilage incidents can cause significant financial
losses to the industry. Alicyclobacillus and Alicyclobacillus acidoterrestris in particular are
thermo-acidophilic spore forming bacteria responsible for spoilage that cannot be detected
until consumption of the juice, making them a major hazard for the fruit juice industry. The
quality of the raw material and the hygiene processing conditions should be taken under
consideration to avoid spoilage. Subsequently, various control and prevention methods
have been established to inactivate Alicyclobacillus spores and preserve the quality and the
shelf life of the fruit juice. The early detection of spoilage using rapid methods is also a
requirement of the industry. Consequently, future studies should focus on the improvement
of the existing techniques and the development of new methods to ensure the rapid and
early detection of Alicyclobacillus and preserve the quality of fruit juices.
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