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This work was aimed at investigating the predictive value on prognosis, response to immunotherapy, and association with the
immune landscape of costimulatory molecules in HCC patients. We acquired the clinicopathological information and gene
expression of HCC patients from public available database (TCGA and GEO). The prognostic model in TCGA database was
established with LASSO regression and Cox regression analysis. Through the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analysis, the enrichment analysis was implemented for analyzing the biological function
and associated pathways. Immune microenvironment, immune escape, immune therapy, and tumor mutation were analyzed
between both risk groups. TNFRSF4, the critical costimulatory molecule, was chosen for the in-depth investigation in vitro
experiments. A novel risk signature based on 8 costimulatory molecules associated with prognosis was constructed from TCGA
and proved in the database of GEO. The ROC and Kaplan-Meier curves confirmed that this risk model has good predictive
accuracy. Our functional analysis demonstrated costimulatory molecular genes might associate with immune-related functions
and pathways. Statistical differences were not shown between both groups, in the aspect of immune landscape, response to
immune therapy, and tumor mutation. Knocking down TNFRSF4 expression significantly reduced the proliferation ability and
increased the apoptosis ability. On the basis of the costimulatory molecule expression in HCC, a novel risk model was
constructed and had an excellent value to predict prognosis, immune microenvironment, and response to immune therapy.
TNFRSF4 was identified as an underlying oncogene in HCC and deserves further exploration.

1. Introduction

Hepatocellular carcinoma (HCC) was the most prevalent
cancer and the third major cause of deaths associated with
cancer around the world [1]. The most prevalent causes of
HCC are nonalcoholic steatohepatitis, excessive consump-
tion of alcohol, and chronic viral hepatitis (B and C) [2].
Surgery resection and ablation were recognized as curative
therapies; however, the majority of HCC patients were clas-

sified in the intermediate to advanced stage at initial diagno-
sis. Despite great advances in diagnosis and treatments for
HCC, the survival outcome for HCC is still unsatisfactory.
The five-year survival rate was only 18%, because of recur-
rence and metastasis [3]. The characteristics of biological
diversity and genomic heterogeneity further reduced the effi-
cacy of the treatments for HCC [4]. Hence, figuring out the
potential molecular mechanisms of HCC and exploring a
novel treatment modality were significant.
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Immunotherapy, especially immune checkpoint inhibi-
tors (ICIs), has resulted in the revolutionary term of tumor
therapy [5]. The introduction of blocking immunotherapy
against the programmed death-ligand 1 (PD-L1)/pro-
grammed cell death protein 1 (PD-1) has given impressive
results and prolonged the survival time of advanced HCC
patients [6]. Regrettably, only a fraction of patients
benefited from immunotherapy, because the immune-
associated side effects also dampened the efficacy of
immunotherapy.

The costimulatory molecule which activated T cells
played a critical role in immunotherapy. The costimulatory
molecule could identify the worthy antigenic stimuli for
the immune system [7]. According to previous research,
the B7-CD28 [8] together with tumor necrosis factor
(TNF) family was constituted by costimulatory molecules
[9]. The B7-CD28 family comprised 13 molecules, and the
TNF family is composed of the TNF receptor superfamily
(TNFRSF) and TNF ligand superfamily (TNFSF) containing
48 molecules. However, the effect of the costimulatory mol-
ecule on HCC carcinogenesis has not been elucidated.

In this work, a new prognostic signature with the costim-
ulatory molecule-related genes of HCC patients from TCGA
cohort was tested externally in the GEO. We in-depth
explore the association of immune infiltration, immune
microenvironment, immune escape, immune therapy, and
tumor mutation with our prognostic model. The TNFRSF4
was selected to investigate biological function in vitro
experiments.

2. Materials and Methods

2.1. Database. We received the expression profile of HCC
tumor and normal specimen from TCGA database (https://
http://portal.gdc.cancer.gov/repository), with relevant clini-
cal information. The gene profile (GSE 27150) from GEO
database was also downloaded to validate our risk model.
The somatic mutation of patients with HCC was retrieved
from TCGA database. The costimulatory molecule genes
were determined from the earlier study, as displayed in Sup-
plementary Table S1.

2.2. Identification of Differentially Costimulatory Molecule
Genes and Tumor Classification. The expression informa-
tion of costimulatory molecule-related genes was extracted
from TCGA data. The differentially costimulatory molecule
genes (DSMGs) were selected, and the criteria was FDR <
0:05 and jlog 2FCj ≥ 1, with the “limma” package in R.
The network of protein-protein interaction (PPI) was estab-
lished with STRING database (https://string-db.org/). The
heat map of DSMGs was plotted by using the “heatmap”
package, and we drew the volcano plot through the
“ggplot2” package in R.

The consensus cluster analysis of expression profile with
costimulatory molecule genes was performed by the “Con-
sensus Cluster Plus” package with K-means method. The
Kaplan-Meier curve was established for assessing the diverse
cluster prognosis and in contrast to log-rank test.

2.3. Establishment and Validation of the Prognostic
Signatures on the Basis of Costimulatory Molecule Genes.
By using the HCC patients from TCGA cohort, we prelimi-
narily selected the costimulatory molecule genes related with
the prognosis with univariate Cox regression method. To
avoid the overfitting offsets, we implemented the regression
analysis of the least absolute shrinkage and selection opera-
tor (LASSO) to choose optimum coefficient through apply-
ing “glmnet” package in R. The λ value was determined
with minimum criteria. Then, the risk scores for the HCC
patients were calculated as the subsequent formula: risk
score = ðY : expression profile of the gene ; X : coefficient of
the geneÞ. We distributed the patients into low- and high-
risk groups based on median risk score. The survival out-
come was with log-rank and Kaplan-Meier survival plot test.
For the prognostic model, its discriminative ability was
determined through ROC curve. The correlation of patients
from both groups was visualized through t-SNE analysis and
PCA, with the “Seurat” package in R. We also identified the
GSE 27150 data as the external validation cohort to test the
predictive capability of such prognostic model. According to
the above-mentioned risk score criterion, the patients’ risk
score from GSE 27150 was counted. In accordance with
median risk score, the patients could also be classified as
low- and high-risk groups. ROC curve, log-rank test,
Kaplan-Meier survival, t-SNE analysis, and PCA were also
implemented in GSE data.

2.4. Independent Prognostic Analysis and Functional
Enrichment Analysis. The predicted values in GEO and
TCGA data were chosen with multivariate and univariate
Cox regression analysis. Utilizing the “forestplot” package
in R, the forest plot was carried out. DSMGs were chosen
between both groups, utilizing the “limma” R package. Based
on these DSMGs, we explored the biological process
together with the associated pathways with KEGG and GO
analysis, using the “clusterProfiler” package.

2.5. Evaluation of Immune Landscape and Immune Therapy.
Through “gsva” package, single sample gene set enrichment
analysis (ssGSEA) was performed for investigating the
immune cell proportion in tumor tissue, pathways related
to immune. The ESTIMATE method was used to analyze
tumor microenvironment. The expressions of immune
checkpoint molecules (CD80, CD86, CD274, CD276,
CTLA4, PDCD1, PDCD1LG2, and VTCN1) were compared
between our two groups. The immunotherapy response was
predicted with Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm using the web (http://tide.dfci.harvard
.edu). TIDE score was calculated with exclusion score and
dysfunction score and compared them between both groups.

2.6. Estimation of Tumor Mutation and Tumor Mutation
Burden. We used the waterfall chart to visualize the land-
scape of tumor burden by using “maftools” package. We cal-
culated the tumor mutation burden for each patient and
compared them between both risk groups.

2.7. Cell Culture. From Cell Bank of Type Culture Collection
(Chinese Academy of Sciences, Shanghai, China), human
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normal liver cell line L-02 and human HCC lines SKY-HEP-
1, Huh-7, Li-7, and SNU-38 7 could be acquired. The lines
L-02, Li-7, and SNU-387 were cultivated in RPMI-1640
medium (Biological Industries), and SKY-HEP-1 and Huh-
7 cells were cultivated in DMEM medium (Gibco, Gaithers-
burg, MD, USA). Both the DMEM and RPMI-1640 medium
were added with 1% penicillin–streptomycin mixture and
10% fetal bovine serum (Gibco). All of the cell lines were
inoculated under a temperature of 37°C in 5% CO2
atmosphere.

2.8. RNA Extraction and qRT-PCR. In accordance with the
direction (Omega, Norcross, GA, United States), the extrac-
tion of total RNA was conducted from the cell lines through
utilizing the Trizol reagent. Applying the reaction reagents
of the qRT-PCR kit (Tiangen, Beijing, China), the process
of reverse transcription was carried out. The GAPDH was
selected as a reference gene. The qPCR primer sequence is
listed in Supplement Table S2.

2.9. Western Blot Analysis. Western blot was conducted
according to the previous research. It is worth noting that
antibodies applied in this work are as below: TNFRSF4 anti-
body (1 : 500, Proteintech, Shanghai), BAX antibody
(1 : 5000, Proteintech, Shanghai), BCL2 antibody (1 : 1000,
Proteintech, Shanghai), and GAPDH antibody (1 : 1000,
Abcam, USA) were used for internal inference.

2.10. siRNA Transfection. The Li-7 and Huh-7 cells were
transfected by siRNA-siTNFRSF4 and a negative control
shRNA (siNC) according to the manufacturer’s protocols.
The siTNFRSF4 and siNC were made by Share-bio in shang-
hai. The RNA sequences for transfection are listed in Sup-
plementary Table S2. qRT-PCR was utilized to test
transfection efficiency.

2.11. Cell Proliferation and Apoptosis Assay. Colony forma-
tion and CCK-8 assay were conducted to test the cell prolif-
eration ability of Li-7 and Huh-7 cells based on the
instructions of the manufacturer. For the CCK-8 analysis,
cells were inoculated in the plates (96-well) with 1000
cells/well density. Each well was added with CCK-8 solution
(10μl, Beyotime, Shanghai, China) at a given time (24, 48,
72, and 96 hours). After incubation for 3 h, each well was
detected at 450 nm with a spectrophotometer. For colony
assay, 150 cells were incubated in every well of 6-well plates,
and the medium was refreshed every three weeks. After two
weeks, cells in each well were cleaned utilizing PBS, fixed by
paraformaldehyde, and next stained through methylrosanili-
nium chloride solution. Finally, the number of cells in each
well was counted. The apoptosis assay kit (KeyGEN Bio-
TECH, Jiangsu) was performed for the apoptosis assay based
on the protocols of the manufacturer.

2.12. Statistical Analysis. Spearman’s or Pearson’s associa-
tion analysis was conducted to assess the correlation
between both groups. The findings were displayed as fre-
quencies and mean values ± standard deviation and next in
comparison with Fisher’s exact test, chi-square test, or inde-
pendent t-test. The outcomes were statistically significant (P

is less than 0.05). Visualization and data analysis were
implemented with R software (4.0.4).

3. Result

3.1. Identification of Differentially Costimulatory Molecule
Genes between Normal Tissues and HCC. The expression
profile together with associated clinical information of
HCC was gathered from TCGA LIHC data and GEO
27150 data. The clinicopathological characteristics of these
patients with HCC are presented in Table 1. By comparing
60 costimulatory molecule gene expression levels from
tumor tissue and normal tissues in TCGA LIHC data, we
identified differentially costimulatory molecule genes which
were presented in the heat map (Figure 1(a)). Among them,
16 genes were upregulated, while one gene was downregu-
lated (Figure 1(b)). To further explore the connection
between these differentially costimulatory molecule genes,
we performed PPI analysis and coexpression network. The
results showed that these hub genes deserved further investi-
gation (Figures 1(c) and 1(d)).

3.2. Tumor Distribution on the Basis of Costimulatory
Molecule Genes. Consistent cluster analysis was imple-
mented on HCC patients according to TCGA LIHC data
for understanding the function of costimulatory molecular
genes. By using the clustering variable (k), we eventually

Table 1: The clinicopathological characteristics of patients with
HCC from TCGA and GEO database.

Characteristics TCGA (n = 240) GEO (n = 114)
Age 57:12 ± 13:24 63:52 ± 12:72

Gender
Male 165 (68.7%) 93 (81.5%)

Female 75 (31.2%) 21 (18.4%)

Grade

I 29 (12.0%)

II 53 (22.0%)

III 95 (39.5%)

IV 11 (4.5%)

TNM stage

I 55 (48.2%)

II 35 (30.7%)

III 21 (18.4%)

IV 3 (2.6%)

T stage

I 118 (49.1%)

II 53 (22.0%)

III 59 (24.5%)

IV 10 (4.1%)

M stage
M0 236 (98.3%)

M1 4 (1.6%)

N stage
N0 236 (98.3%)

N1 4 (1.6%)

BCLC stage

0 4 (3.5%)

1 73 (64.0%)

2 28 (24.5%)

3 9 (7.8%)
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classified the HCC patients as two clusters (k = 2), as exhibited
in Figure 2(a). The Kaplan-Meier survival analysis suggested
that the prognosis of HCC patients in cluster 1 is greater in
comparison with those in two clusters (Figure 2(b)). The dif-
ferentially costimulatory molecule gene expression levels and
clinicopathological characteristics in two clusters were pre-
sented in the heat map (Figure 2(c)), which showed that two
clusters had significant differences in terms of stage and grade,
and there was no statistical difference in T-N-M stage, sex, and
age.

3.3. Establishment and Validation of Prognostic Signatures
according to Costimulatory Molecule Genes. 376 patients
who meet our criteria were identified in our prognostic anal-
ysis. Firstly, we filtrated the prognostic costimulatory mole-
cule genes (Supplementary Table S3), through utilizing the
univariate Cox regression analysis. Subsequently, with
LASSO regression analysis, we identified eight genes (LTBR,
RELT, TMIGD2, TNFRSF11A, TNFRSF11B, TNFRSF21,

TNFRSF4, and TNFSF4) to establish the prognostic model
according to the optimal λ value (Figures 3(a) and 3(b)).
We calculated the risk score as the following formula: 0:1497
∗ LTBR expression + 0:1945 ∗ RELT expression + ð−1:442Þ
∗ TMIGD2 expression + 0:3414 ∗ TNFRSF11A expression
+ 0:1415 ∗ TNFRSF11B expression + 0:0002 ∗ TNFRSF21
expression + 0:3669 ∗ TNFRSF4 expression + 0:2164 ∗
TNFSF4 expression. The patients with HCC from TCGA
data were distributed into high- and low-risk groups, in
accordance with median risk score. The Kaplan-Meier curve
displayed in comparison with low-risk patients, high-risk
patients have a lower survival rate (Figure 3(c)). For the
ROC curve, area under the curve (AUC) was 0.801, 0.751,
and 0.720, for 1-, 2-, and 3-year survival, respectively
(Figure 3(d)). Statistical differences of survival time and
survival status of HCC patients were shown between the
two groups (Figure 3(e)). Two groups were clustered in two
relatively concentrated areas in t-SNE analysis and PCA
(Figure 3(f)), which revealed the better discriminative value
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Figure 1: Identification of differentially costimulatory molecule genes. (a) Heat map and (b) volcano of differentially costimulatory molecule
genes between tumor and normal tissues. (c) PPI network and (d) coexpression network of these genes.
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of this prognostic signature on the basis of expression values
of costimulatory molecule genes.

114 HCC patients together with relevant clinical infor-
mation were gathered from GEO to further assess the prog-
nostic ability of such novel model. In accordance with above
risk scoring formula, HCC patients were counted and classi-
fied as high- and low-risk groups. Kaplan-Meier survival
curve displayed poor prognosis in high-risk patients
(Figure 4(a)). For 1-, 2-, and 3-year survival, the ROC curve
(AUC) were, respectively, 0.779, 0.681, and 0.752, which also
indicated the excellent predictive values of this prognostic
model (Figure 4(b)). Figure 4(c) shows the survival time

and status in two groups. Consistent with results from
TCGA, patients in two groups from GEO were divided into
two different orientations in the PCA and t-SNE analysis
(Figure 4(d)).

3.4. Independent Prognostic Values of Risk Signature on the
Basis of Costimulatory Molecule Genes. The multivariable
and univariate Cox regression analysis was performed to
in-depth assess predictive value of such risk model. The uni-
variate Cox regression analysis suggested that HCC accord-
ing to TCGA and GEO data, the risk score was a key
predictor related to the patients’ prognosis (HR = 10:940,
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Figure 3: The establishment of prognostic signatures on the basis of costimulatory molecule genes. (a, b) LASSO regression was performed
on prognostic costimulatory molecule genes preliminarily selected by univariate Cox regression, and eight genes were identified for
constructing prognostic model. (c) Kaplan-Meier survival for OS of patients in both groups from TCGA data. (d) AUC of time-
dependent ROC curves confirmed that our risk model has predictive property. (e) Distribution and correlation of survival time, survival
status, and risk score of patients from TCGA data. (f) t-SNE and PCA analysis demonstrated the distribution of patients in two groups
from TCGA data.
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95%CI = 5:633 – 21:247, P < 0:001; HR = 3:065, 95%CI =
1:496 – 3:286, P = 0:008, respectively), as shown in
Figures 5(a) and 5(b). After adjusting confounding factors,
based on multivariable Cox regression analysis, there is a
close association between risk score and poor prognosis
(HR = 9:128, 95% CI: 4.509–18.480, P < 0:001; HR = 3:213,
95% CI: 1.5752–5.448, P = 0:003, respectively), as illustrated
in Figures 5(c) and 5(d).

3.5. Biological Processes and Pathways Based on Risk Model.
DSMGs (41 raised genes and 94 reduced genes) were chosen,
between both groups through “limma” R package (Supple-
ment Table S4). KEGG and GO pathway analysis was
implemented to investigate the association between the risk
model and the biological process of HCC. The DSMGs
were most enriched in biological processes, especially for
the activation of T cell, T cell-mediated immunity,
lymphocyte proliferation, and immunoglobulin-mediated
immune response (Figure 6(a)). The results of KEGG

analysis demonstrated that these DSMGs were related to
the B cell receptor and chemokine signaling pathway and
cytokine receptor interaction (Figure 6(b)).

3.6. The Association of Immune Microenvironment and
Immune Infiltration with Risk Model. Costimulatory mole-
cules affected the activation of T cell, proliferation, and sur-
vival, as well as regulated tumor immunity. The high-risk
group has higher estimate scores, stromal scores, and
immune scores (Figure 7(a)). There existed evident differ-
ences in several important immune cells (macrophages, B
cells, aDCs, NK cells, mast cells, Treg, Th2, and Tfh cells)
between both groups (Figure 7(b)). Besides, the high-risk
score group had higher scores of CCR, APC costimulation,
APC cosuppression, HLA and MHC class, and checkpoint,
while the low-risk score group had higher scores of type II
IFN response, type I IFN response, and cytolytic activity
(Figure 7(c)).
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3.7. Immune Therapy and Immune Escape between Two
Groups. Immune checkpoints are suppressive pathways of the
immune system,whose function is an important cause ofmany
diseases. We then explore the expressions of eight immune
checkpoint molecules (CD80, CD86, CD274, CD276, CTLA4,

PDCD1, PDCD1LG2, and VTCN1) between two groups.
Besides PDCD1LG2, the expressions of seven immune check-
point molecules were higher in the high-risk group
(Figure 8(a)), and Pearson analysis showed seven immune
checkpoint molecule expression was positively related to risk
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scores with statistical significance, except PDCD1LG2
(P = 0:054), as shown in Figure 8(b). The immune therapeutic
effect was evaluated by using TIDE score. The TIDE score in
the high-risk group was lower, indicating that immunotherapy
deficiencywas associatedwith a dismal prognosis (Figure 8(c)).

3.8. Tumor Mutation Burden in Two Groups. The tumor
mutation burden scores in two groups were calculated to
further explore the effect of immune checkpoint inhibitor
therapy. As shown in Figures 8(d) and 8(e), roughly equal
mutation events occurred in samples from two groups
(85.14% vs. 83.89%), and TP53 was the predominant muta-
tion gene in the two groups. Between both groups, there
existed no statistical difference in the samples (Figure 8(f)).
Likewise, the tumor mutation burden score and the risk
score had no linear correlation (Figure 8(g)).

3.9. TNFRSF4 Was an Oncogene in HCC. For in-depth anal-
ysis of the mechanism of our risk model, we selected
TNFRSF4 from 8 molecules which constituted the risk model
for in-depth investigation. The expressions of TNFRSF4 were
higher in HCC from TCGA data (Figure 9(a)). We detected
TNFRSF4 expression in one human normal liver and four
HCC cell lines and found that the expression level of
TNFRSF4 was higher in HCC cell lines with qRT-PCR
(Figure 9(b)). For further investigating the TNFRSF4 mecha-
nism, we chose Li-7 and HuH7 for further experiments,
which had higher TNFRSF4 expression levels. We trans-
fected siRNA specific for TNFRSF4 in Li-7 and HuH7 cells
and detected transfection efficiency by using qRT-PCR
(Figure 9(c)). Knocking down TNFRSF4 expression signifi-
cantly reduced the proliferation ability in Li-7 and HuH7 cell
in CCK-8 assays and colon assays (Figures 9(d) and 9(e)).
Flow cytometry analysis showed increased apoptosis ability
was showed in Li-7 and HuH7 cell, which were transfected
with siTNFRSF4 (Figure 9(f)). In addition, upregulation of
Bax protein and downregulation of Bcl-2 protein were
observed in TNFRSF4-knockdown HuH7 cells (Figure 9(g)).

4. Discussion

Targeted therapy with immune checkpoints acted a critical
role in cancer immunotherapy [10]. The primary T cell acti-

vation needs a synergistic effect of both signals. The first sig-
nal is produced with a T cell receptor (TCR) that recognizes
a peptide-loaded major histocompatibility complex (pMHC)
presented through an antigen-presenting cell (APC) to acti-
vate the T cells primarily. The other signal also known as
costimulatory molecules was produced by the interaction
of the costimulatory molecules on the surface of the APC
with the corresponding costimulatory molecules to fully
activate T cell [7]. The lack of costimulatory signals is one
of the important reasons why tumor cells evade surveillance
by the body’s immune system [11]. PD1 and cytotoxic T
lymphocyte antigen 4 (CTLA4), both members of the
CD28 family, are the focus of current immunotherapy
research [12]. The costimulatory molecule had been used
for the prediction of immunotherapy response and progno-
sis in several tumors [13, 14]. Nonetheless, the value of
costimulatory molecules in the prognosis and immunother-
apy in HCC has not been fully explored.

In our research, 17 DSMGs, of which 16 genes were upreg-
ulated and one gene was downregulated, were chosen through
by comparison between normal tissues and tumor tissues. The
“Consensus Cluster Plus” algorithm has been widely used in
cancer genomics, where new molecular subclasses of the dis-
ease have been identified. On the basis of the costimulatory
molecule features, patients with HCC were distributed into
two clusters. Statistical differences in survival were shown
between the two clusters, indicating expression of the costim-
ulatory molecule gene was correlated with survival.

Then, the costimulatory molecule differential genes were
further used to select the prognostic genes. We conducted Cox
regression and LASSO regression method and selected eight
target genes, including LTBR, RELT, TMIGD2, TNFRSF11A,
TNFRSF11B, TNFRSF21, TNFRSF4, and TNFSF4. In
accordance with median risk score, HCC patients which come
from GEO and TCGA databases were distributed into the
low- and high-risk groups. In such databases, the high-risk
group exhibited low prognosis. For ROC curve, from GEO
and TCGA database, the AUC for the 1-, 2-, and 3-year survival
was 0.779, 0.681, and 0.752 and 0.801, 0.751, and 0.720, respec-
tively, which presented the better sensitivity and specificity. Our
risk model classified our patients as two diverse areas in t-SNE
and PCA analysis, exhibiting outstanding discriminative ability.
Additionally, based on the multivariable and univariate Cox
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Figure 8: Immune therapy and immune escape between two groups. (a) The box plot demonstrated the comparison of the expressions of
eight immune checkpoints molecules. (b) The association of risk score and the expressions of eight immune checkpoint molecules. (c)
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regression analysis, the risk score was an essential predictor
related to the poor prognosis in GEO and TCGA.

Despite the fact that immunotherapy could improve the
prognosis of patients with advanced HCC, only a portion of
patients received profit [2]. It had been reported that the effect
of tumor immunotherapy was influenced by tumor microen-
vironment and immune infiltration [15]. Our outcome exhib-
ited that the estimate scores, stromal score, and immune score
were higher in the high-risk group. Furthermore, there
existed evident differences in several significant immune cells
(containing macrophages, B cells, aDCs, NK cells, mast cells,
Treg, Th2, and Tfh cells) between both groups, which means
that NK cells, mast cells, and B cells acted as an antitumor
agent. Recently, one research found that intratumor B cells
are thought to be a predictor of improved patient survival
and could significantly influence the antitumor immune
response [16]. Mast cells made a significant impact on the
tumor microenvironment and tumor progression by

influencing cell proliferation, angiogenesis, invasion, and
metastasis [17]. Natural killer cell (NK cell) which had both
cytotoxic and immunomodulatory functions had become a
valuable instrument in cancer immunotherapy [18]. Our
study also demonstrated that the high-risk score group had
higher scores of CCR, APC costimulation, APC cosuppres-
sion, HLA and MHC class, and checkpoint, while the low-
risk score group had higher scores of type II IFN response,
type I IFN response, and cytolytic activity. Those results could
bring potential value to targeted therapy for HCC.

The advent of ICIs offered a new and effective treatment for
HCC, and drugs represented by PD-1 and PDL-1 have been
approved for clinical practice [19]. However, not all patients
could benefit from ICIs, the best indication of which remained
controversial. Our study demonstrated that seven immune
checkpoints molecules (CD80, CD86, CD274, CD276, CTLA4,
PDCD1, and VTCN1) were most significantly positively
associated with risk scores with statistical significance, which
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Figure 9: TNFRSF4 was an oncogene in HCC. (a) TNFRSF4 was highly expressed in tumor than normal specimen. (b) The TNFRSF4
expression level in human normal liver and HCC cell lines with qRT-PCR. (c) Validation of siRNA knockdown efficiency in HuH7 and
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indicated that costimulatory molecule signature could be con-
ducted to evaluate effect of ICB therapy. TIDE score was per-
formed to evaluated effect of ICI therapy between two groups.
The score of TIDE was higher in the low-risk group, which
may explain the better prognosis. One study showed that
TMB was correlated with better overall survival after immuno-
therapy for a variety of cancer types, suggesting that TMB can
be utilized as a predictive biomarker for the therapeutic effect
of immune checkpoint inhibitors [20]. Regretfully, themutation
rates of the two groups of patients were 85.14% vs. 83.89%,
respectively, with no significant difference. It indicated that
the costimulatory molecule was not associated with TMB.

Among eight costimulatory molecules which constructed
a prognostic risk model, TNFRSF4 was selected due to the
highest coefficient score. TNFRSF4, also named OX40,
belonged to the tumor necrosis factor receptor superfamily
(TNFRSF). After T cells were costimulated by TNFRSF4, the
intracytoplasmic pathways correlated with T cells were acti-
vated, like Bcl-2 antiapoptotic molecules, cyclin-dependent
kinases, and cyclin A [21]. It had been reported that polymor-
phism characteristic of TNFRSF4 was related to systemic
lupus erythematosus and Sjogren’s syndrome [22, 23]. Li
et al. [24] reported that TNFSF4 facilitates the cisplatin resis-
tance and suppresses apoptosis of lung adenocarcinoma cells.
Our results showed that knocking down TNFRSF4 substan-
tially reduced proliferation ability and increased the apoptosis
ability. The detailed molecular mechanisms of TNFSF4 as a
carcinogenic factor in HCC deserved further exploration.

Our research inevitably had some limitations. Firstly,
TCGA database was utilized to establish the prognostic risk
model and only validated it with the GEO database. It is nec-
essary to perform prospective clinical research to examine
the predictive and discriminative ability of this model. Sec-
ondly, our study demonstrated that immune checkpoint
molecule (CD274) was positively associated with risk scores
with statistical significance. However, the predictive value of
this model for patients who received PD-1 inhibitors therapy
was required to be further validated in real word. Thirdly,
in vitro experiments confirmed the TNFRSF4 oncogenic
effect in HCC, and the mechanism as a tumor promoter
needs to be explored in further research.

5. Conclusion

A novel risk signature based on eight costimulatory molecules
associated with prognosis was constructed to explore the asso-
ciation with survival outcome and immune landscape in
patients of HCC. This signature could effectively discriminate
patients and accurately predict prognosis. The association of
this costimulatory signature with the immune landscape pro-
vided an important basis for further research. Besides, our sig-
nature could potentially predict response to ICB therapy. The
hub costimulatory molecule TNFRSF4 proved to be associated
with prognosis and as an oncogene in in vitro experiments.
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