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a b s t r a c t 

Stroke is the third most common cause of death globally and a leading cause of disability. The cellular and 
molecular changes following stroke and causes of neuronal death are not fully understood, and there are few ef- 
fective treatments currently available. A rapid increase in the levels of reactive oxygen species (ROS) post stroke 
can overwhelm antioxidant defenses and trigger a series of pathophysiologic events including the inflammatory 
response, blood-brain barrier (BBB) disruption, apoptosis, and autophagy, ultimately leading to neuron degenera- 
tion and apoptosis. It is thought that beyond a certain age, the ROS accumulation resulting from stroke increases 
the risk of morbidity and mortality. In the present review, we summarize the role of oxidative stress (OS) as 
a link between aging and stroke pathogenesis. We also discuss how antioxidants can play a beneficial role in 
the prevention and treatment of stroke by eliminating harmful ROS, delaying aging, and alleviating damage to 
neurons. 
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ntroduction 

Stroke is an age-related disease that leads to neurologic dys-
unction and is associated with high rates of disability and
ortality. [ 1-3 ] Stroke can be classified into hemorrhagic stroke

HS) and ischemic stroke (IS), with the latter accounting for 87%
f cases. HS is caused by bleeding in or around the brain, [ 4 ] 

hereas IS is caused by disruption of the brain’s arterial blood
ow by thrombosis, embolism, or cerebrovascular rupture, re-
ulting in ischemic necrosis of brain tissue and loss of neuronal
unction. [ 5-7 ] IS is the third leading cause of death worldwide,
ith nearly 15 million people affected yearly. [ 8 , 9 ] 

Post-stroke patient care involves correctly identifying the
ype of stroke based on clinical findings. IS patients have higher
ean Glasgow Coma Scale scores than HS patients, [ 10 ] who fre-

uently experience acute onset headaches. Computed tomogra-
hy (CT) findings include a mass effect, hypodense lesions, hy-
erdense artery signs, and sulcus effacement in IS and hyper-
ense lesions in HS. [ 11 ] The prognosis of patients is determined
y the type of stroke, degree and length of blockage or bleeding,
nd severity of neurodegeneration. The location of the lesion is
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lso important in HS, which has a worse outcome than IS. [ 12 ] 

ge adversely affects IS pathophysiology and prognosis. [ 13-15 ] 

urrently, 11% of the world’s population is over 60 years old,
ith the percentage expected to reach 22% by 2050. [ 16 ] Clari-

ying the pathophysiology of age-related IS is critical for devel-
ping new treatments. 

Few pharmacotherapies are effective in mitigating the effects
f stroke. [ 17-19 ] Revascularization therapies such as thromboly-
is recombinant tissue plasminogen activator and endovascular
hrombectomy have been shown to reduce the disability rate of
atients with acute cerebral infarction within 24 h. [ 20 , 21 ] How-
ver, ischemia-reperfusion injury after revascularization ther-
py can worsen outcomes. 

The pathophysiology of stroke is complex. The acute disrup-
ion or reduction of cerebral blood flow and resultant decrease
n available oxygen causes focal or global damage to brain
issue, with characteristic biochemical and molecular changes
hat can lead to transient or permanent neurologic sequelae
r death. [ 22-25 ] The main products of the oxidative stress
OS) response - i.e., free radicals including reactive oxygen
pecies (ROS) - can damage brain tissue and are an important
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athologic mechanism of stroke. Antioxidants that remove free
adicals can limit neuronal injury following stroke [ 26-28 ] and
re thus a potential treatment for IS. 

verview of OS and the Antioxidant System 

OS occurs when there is an imbalance between oxida-
ion and antioxidation, which leads to neutrophil infiltra-
ion, increased protease secretion, and production of oxidative
ntermediates. [ 29 ] Under pathologic conditions such as brain hy-
oxia, oxygen free radicals accumulate and cause damage to
ell membranes, especially that of mitochondria. This lead to
euronal dysfunction and death; thus, interventions that allevi-
te OS are a potential treatment strategy. [ 30-32 ] There are two
ypes of antioxidant system in the body: enzymatic (which in-
ludes glutathione peroxidase [GSH-Px], glucose-6-phosphate
ehydrogenase [G6PD], catalase [CAT], and superoxide dismu-
ase [SOD]) and non-enzymatic (which includes vitamins and
henols). Their potential roles in stroke are discussed below. 

olecular Mechanisms of Stroke 

Excitatory neurotoxicity, oxidative/nitrosative stress, mito-
hondrial dysfunction, and calcium overload are the main
auses of stroke. Cellular damage from free radicals, mainly
S/nitrosative stress injury, plays a critical role in ischemia-

eperfusion injury. [ 33 ] Under normal conditions, electrons pro-
uced by metabolism through the mitochondrial respiratory
hain combine with oxygen and are reduced to water. Under
ypoxia, an excess of electrons combine with iron and other
olecules to produce free radicals. [ 34 ] Restoration of blood flow

esults in a sudden increase in oxygen content, leading to per-
xide production via the reaction between electrons and oxygen
olecules. Following cerebral ischemia/reperfusion, tissue acid-

fication, cell membrane depolarization, calcium influx, neuro-
ransmitter release, and inflammatory cell infiltration can gen-
rate free radicals that are inactivated by antioxidants. [ 35 ] 

ROS are produced by various cellular structures and
olecules including mitochondria, nicotinamide adenine din-
cleotide phosphate (NADPH), nitric oxide synthase (NOS), and
anthine oxidase. [ 36 ] SOD, CAT, and GSH-Px are present at low
evels in the brain and the concentration of free radicals in brain
issue during hypoxia and reperfusion can exceed the antioxi-
ant capacity of these enzymes. The accumulation of ROS can
ead to apoptosis, tissue inflammation, DNA damage, lipid per-
xidation, and protein degeneration. [ 37 ] 

ole of Mitochondria in OS 

Mitochondrial dysfunction is linked to age-related disorders
uch as metabolic syndromes, neurodegenerative and cardio-
ascular diseases, and cancer. [ 38 ] Mitochondria regulate energy
etabolism and maintain cellular homeostasis. Aging is associ-

ted with decreased mitochondrial activity and accumulation of
amaged mitochondria in various tissues. [ 39 ] 

Mitochondrial distribution and activity influence neuron
orphogenesis and synaptogenesis, developmental and synaptic
lasticity, and axogenesis. Axons and dendrites form synapses
fter neural stem cells divide and differentiate into neurons over
he course of development. [ 40 ] Mitochondria participate in neu-
oplasticity through the formation of adenosine 5 ′ -triphosphate,
314 
eneration of ROS and reactive nitrogen species (RNS), induc-
ion of apoptosis, and maintenance of calcium homeostasis.
OS and RNS interact with mitochondrial proteins, lipids, and
NA, at least in part through their proximity. [ 41 ] OS induces

he release of proapoptotic mitochondrial proteins into the cy-
osol through interactions between mitochondrial and extrami-
ochondrial proteins that can be inhibited by other proteins and
mall molecules. [ 42 ] 

Changes in mitochondrial dynamics and quality control can
ead to mitochondrial damage, which in turn contributes to
enescence. Thus, strategies that improve or restore these pro-
esses may prevent aging and age-related disorders. [ 43 ] 

ole of OS in Stroke 

OS is a pathologic process resulting from an imbalance be-
ween ROS production and removal. [ 44 ] Excessive ROS in brain
issue can damage the mitochondrial membrane through lipid
eroxidation, leading to destruction of the respiratory chain. [ 45 ] 

OS in neurons damage mitochondrial DNA, inactivate en-
ymes and degrade proteins in mitochondria, and destroy cell
embrane structure and function, causing neuronal death. [ 46 ] 

hey can also affect cerebral blood flow, causing vasodila-
ion and increasing endothelial cell permeability, causing dam-
ge to vascular endothelial cells, increasing blood-brain bar-
ier (BBB) permeability, and leading to impairment of brain tis-
ue microcirculation, [ 47 ] thereby aggravating the OS response
nd glutamate excitotoxicity. [ 48 ] The associated changes in mi-
ochondrial dynamics can lead to upregulation of N-methyl- d -
spartate receptors and further enhance the OS response and
nduce neuronal death. [ 49 ] These processes can damage brain
issue and contribute to the pathogenesis of stroke ( Figure 1 ). 

elationship Between Aging, OS, and Stroke 

OS is associated with aging and is a feature of aging-related
ascular diseases including stroke. [ 50 ] Aging is itself a risk
actor for worse prognosis following stroke. [ 51-54 ] However,
he molecular links between aging, OS, and stroke are not
ully understood. [ 16 ] We speculate that age directly exacerbates
troke outcomes by inducing oxidative damage. 

Byproducts of normal oxidative metabolism can cause dam-
ge to DNA, lipids, and proteins that contribute to aging. [ 55 , 56 ] 

uperoxide (O 2 ), hydrogen peroxide (H 2 O 2 ), and hydroxyl
adicals are produced upon exposure to mutagens but are
lso byproducts of normal metabolism. [ 57 , 58 ] Lipid peroxida-
ion produces mutagenic lipid epoxides, lipid hydroperoxides,
ipoalkoxy and peroxide radicals, and enaldehydes. Singlet oxy-
en, a high-energy oxygen molecule, is produced by light-
nduced energy transfer, respiratory bursts of neutrophils, or
ipid peroxidation. [ 59 , 60 ] Despite the activities of physiologic an-
ioxidant defense systems, DNA may sustain oxidative damage
 61 ] that cannot be repaired; meanwhile, other cellular repair
ystems such as the proteasomal degradation of damaged pro-
eins may also decline with aging. [ 62 ] Adaptive responses to OS
ecrease with aging as a result of telomere dysfunction in cellu-
ar senescence and induction of senescence-associated secretory
henotypes (SASP) and dysregulation of metabolism. [ 63-65 ] 

Increased OS and neuroinflammation in the aging hippocam-
us is a major cause of age-related cognitive decline and de-
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Figure 1. Schematic illustration of oxidative mechanisms, OS-mediated molecular damage, and antioxidant mechanisms in stroke. 
BBB: Blood-brain barrier; CAT: Catalase; GSH-PX: Glutathione peroxidase; OS: Oxidative stress; ROS: Reactive oxygen species; SOD: Superoxide dismutase. 
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reased neurogenesis and synaptic plasticity. [ 66 ] Post-ischemic
icroglia exhibit reduced interaction with neighboring neurons

nd polarization toward the infarct lesion, which may contribute
o aging-associated vulnerability to and poorer recovery from
S. [ 67 ] Hallmarks of brain aging include OS, reduced adaptive
europlasticity and resilience, aberrant neuronal network activ-
ty, impairment of DNA damage repair, and dysregulated energy
etabolism. [ 68 ] Mitochondrial dysfunction under ischemic con-
itions increases with age and causes the loss of neurovascula-
ure integrity and injury to brain tissue. [ 55 ] Aging can also dam-
ge collateral circulation and prevent brain revascularization,
hich is associated with increased endothelial NOS activity and
ecreased expression of inflammatory response markers, which
esult in the aggravation of stroke [ 69 , 70 ] ( Figure 2 ). 

ntioxidants in Stroke 

elationship between aging, antioxidants, and stroke 

The relationship between aging and antioxidants is com-
lex and the rate of aging is thought to be more significant
han chronological age in terms of disease risk. [ 71 ] Antioxidants,
hich slow the aging process by reducing or maintaining the

evels of oxidizing molecules, can be obtained through the diet
nd may be included in cosmetic products to counter the skin
ell-damaging effects of free radicals. Several biomolecules and
ompounds with redox activity have been identified that can
low the aging process. [ 36 , 72-76 ] Additionally, as OS is increased
n the ischemic brain, antioxidants have been evaluated for their
europrotective potential in stroke. In animal models, ischemic
amage to brain tissue was mitigated by administering BBB-
enetrating antioxidant molecules such as polyethylene glycol-
315 
onjugated SOD, CAT, and lazaroids; and infarct size was de-
reased in SOD transgenic mice but increased in SOD knockout
ice compared with their wild-type counterparts. [ 73 ] A techni-

al challenge when investigating the relationship between OS
nd stroke is the accurate quantification of free radicals gener-
ted in brain tissue. [ 75 ] Indirect evidence of OS during ischemia
ncludes elevated levels of lipid peroxidation products and lower
evels of antioxidants in tissues. [ 74 ] Additionally, it was reported
hat patients with stroke had lower plasma vitamin C and E lev-
ls than non-stroke patients, whereas the levels of thiobarbituric
cid-reactive substances were elevated 2 days after the onset of
erebral ischemia. [ 36 , 76 ] 

SH-Px 

GSH-Px, a peroxidative CAT, is a powerful radical scavenger
hat catalyzes the transformation of glutathione to oxidized glu-
athione, reducing toxic peroxide to nontoxic hydroxyl com-
ounds that promote the breakdown of H 2 O 2 into water and
xygen. Thus, GSH-Px can prevent oxidative damage to the cell
embrane, thereby preserving cell structure and function. [ 77 , 78 ] 

lasma GSH-Px activity was shown to be reduced in patients
ith acute IS [ 78 ] and a decrease in GSH-Px level is an indepen-
ent risk factor for arterial IS. [ 79 ] GSH-Px deficiency increases
xtracellular OS, reduces bioavailable nitric oxide, and pro-
otes platelet activation. In patients with acute IS, red blood cell
SH-Px activity was significantly reduced within 24 h after the
nset of stroke symptoms compared with control patients, [ 80 ] 

nd in an animal model, GSH-Px protected against ischemic
rain injury whereas a reduction in GSH-Px level was associ-
ted with an increased risk of stroke. [ 81 ] These findings indicate
hat GSH-Px can serve as a biomarker for progression of reac-
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Figure 2. Proposed interactions between age-related diseases and stroke. ROS: Reactive oxygen species. 
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ive stroke and has clinical value for the differential diagnosis
f stroke. 

6PD 

G6PD is a rate-limiting enzyme in the pentose phosphate
athway (PPP), which plays an important role in neuronal sur-
ival during cerebral ischemia-reperfusion. G6PD deficiency has
een linked to the development of stroke and is associated
ith poor prognosis following IS, increasing the risk of in-
ospital mortality. [ 82 ] Additionally, stroke patients with G6PD
eficiency may have worse safety outcomes with long-term low-
ose aspirin therapy. [ 83 ] It was also reported that acute stroke
atients with G6PD deficiency had a higher risk of poor clini-
al outcomes with thrombolysis therapy than in patients with
ormal G6PD levels. [ 84 ] Thus, G6PD level may reflect to some
egree the extent of brain damage from stroke. 

AT 

CAT is an oxygen radical-scavenging enzyme that mainly ex-
sts in tissues and erythrocytes. CAT metabolizes H 2 O 2 to H 2 O
nd O 2 and removes hydrogen from H 2 O 2 , causing the reaction
f H 2 O 2 with O 2 and iron chelators to prevent damage to cell
embranes by H 2 O 2 . 

[ 85 , 86 ] CAT levels were found to be lower
n patients with acute IS than in healthy controls, and a reduc-
ion in CAT level exacerbated the cellular response to OS. [ 87 ] 

OD 

SOD catalyzes the partitioning of superoxide anion free rad-
cals to O 2 and H 2 O 2 

[ 88 ] and is the main enzyme preventing
ellular damage from oxygen radicals; its activity reflects the ex-
ent of damage involving lipid peroxidation. [ 89 , 90 ] Reduced SOD
ctivity can lead to the accumulation of metabolites that induce
xidative damage. [ 91 ] Serum SOD levels in acute-phase IS may
erve as a marker of stroke-associated infection; meanwhile, in-
reased SOD levels can protect against brain injury. [ 92 ] In an
316 
nimal model of IS, manganese SOD reduced infarct volume,
mproved neuronal function, and reduced OS and apoptosis. [ 93 ] 

his evidence suggests that SOD can reduce OS and has thera-
eutic benefits in preventing IS. 

on-enzymatic antioxidants 

Non-enzymatic antioxidants including vitamins and phenols
or the treatment of stroke are used in traditional Chinese
edicine. Some of these are discussed in the following sections.

itamins 

Vitamin C is a highly reductive polyhydroxy compound with
ntioxidant effects. [ 94 ] Ascorbate, the biologically active form,
s critical for homeostasis and the regulation of neuron func-
ion[120]. Brain vitamin C content was shown to be closely re-
ated to cognitive decline and stroke severity. [ 95 ] An excess of
ree radicals can lead to lipid peroxidation and IS. [ 96 ] Vitamin
 prevents atherosclerosis by reducing monocyte adhesion to
he endothelium of blood vessels, reducing blood pressure, pro-
oting vasodilation, increasing intravascular nitric oxide, and

nhibiting low-density lipoprotein (LDL) peroxidation to reduce
he risk of IS. Ascorbate was shown to protect neurons from glu-
amate excitotoxicity by modulating glutamate receptor activity
nd lowering the level of free radicals produced by glutamate
elease. High doses of vitamin C may decrease the severity of is-
hemia [ 97 ] and alleviate cognitive impairment in a rat model of
epsis via a protective mechanism involving suppression of in-
ammation and OS and modulation of heme oxygenase 1 (HO-1)
ignaling. [ 98 ] However, whether vitamin C can improve the out-
ome of patients with IS remains to be investigated in large-scale
andomized controlled clinical trials. 

olyphenols 

Phenolic compounds exert antioxidant effects through mul-
iple mechanisms; these include downregulating key enzymes
nvolved in ROS formation, combining with metal ions, and
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nhancing ROS clearance. [ 46 , 99 ] They may also protect plasma
embrane structure and function by altering its properties to
revent the entry of oxidant molecules. Flavonoid polypheno-
ic compounds may inhibit peroxidase activity and neutrophil
elease. [ 100 ] Phenolic compounds regulate nitric oxide produc-
ion by interacting with NOS, thereby reducing oxidative dam-
ge in cardiovascular disease. [ 101 ] In atherosclerosis, polypheno-
ic compounds inhibit LDL peroxidation to prevent IS, [ 102 ] and
hey also play an important role in preventing IS by protecting
eurons from the OS response through inhibition of lipid perox-
dation 

[ 103 ] ( Figure 1 ). 

ree radical products 

Malondialdehyde (MDA) is the end product of fatty acid per-
xidation under OS and indirectly reflects neuronal damage
aused by free radicals. [ 104 ] Elevated plasma MDA levels have
een reported in stroke patients. [ 105 ] Elevated plasma lipid H 2 O 2 

evel in stroke patients at admission was shown to be correlated
ith the severity of neurologic defects. [ 106 ] Thus, MDA level is
n indicator of stroke severity. Lipid peroxide (LPO) is produced
y the reaction of oxygen radicals with polyunsaturated fatty
cids and can serve as a marker of OS in cerebral venous sinus
hrombosis and stroke, [ 48 ] and can also be used for the differen-
ial diagnosis of stroke. 

anomaterial antioxidants in stroke treatment 

Nanomaterials are used for drug delivery in the treatment
f diseases; some have antioxidant properties and can poten-
ially scavenge ROS following stroke. Nanoparticle drug deliv-
ry systems can increase the blood concentration and half-life
f drugs and protect neurons from OS-induced death in the is-
hemic brain. [ 107 ] In one study, macrophage-disguised honey-
omb manganese dioxide nanospheres loaded with fingolimod
educed OS and alleviated the inflammatory response and neu-
onal death. [ 108 ] Nanomaterial antioxidants thus offer the pos-
ibility of multitargeted treatment of IS. 

egulation of OS and antioxidant defense system by 

ethylene blue (MB) 

Clinical applications of the redox dye MB include the treat-
ent of methemoglobinemia, ifosfamide encephalopathy, and

eptic shock. [ 109 ] MB is also a potent guanylate cyclase inhibitor;
n isolated hepatocytes and HeLa cells, MB was shown to inhibit
thanol-induced redox changes and fat deposition, [ 110 ] and its
mpact has been investigated in cultured human erythrocytes.
owever, the effects of MB on OS are controversial. [ 111 ] MB

educed OS in rats treated with cyclosporine A but increased
ntracellular OS at concentrations up to 5 μM in cultured en-
othelium cells. [ 112 ] MB can also be cytotoxic over the long
erm. [ 113 ] MB exposure induced OS caused by increased ROS
evels and decreased CAT, SOD, SOD, and total cellular antiox-
dant levels. [ 114 ] 

onclusions 

This review discussed the central role of OS as a bridge be-
ween aging and stroke, and the potential role of antioxidant
317 
nzymes, compounds, or molecules in stroke treatment. Despite
he contribution of OS to the pathology of stroke, pharmacologic
gents that alleviate OS have had limited benefit for stroke pa-
ients thus far. However, there are opportunities for the devel-
pment of effective treatments for stroke using neuroprotective
gents and multitargeted approaches. The combination of anti-
S, anti-inflammatory, and other agents is a promising future

esearch direction. 
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