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ABSTRACT
Natural killer (NK) cells are classically associated with immune surveillance and 

destruction of tumor cells. Inconsistent with this function, NK cells are found in 
advanced human tumors including renal cell carcinoma (RCC). NK cells with non-
classical phenotypes (CD56+CD16dim/neg; termed decidua NK (dNK) cells) accumulate 
at the maternal-fetal interface during embryo implantation. These dNK cells are 
poorly cytotoxic, proangiogenic, and facilitate placenta development. As similarities 
between embryo implantation and tumor growth exist, we tested the hypothesis 
that an analogous shift in NK cell phenotype and function occurs in RCC tumors. 
Our results show that peripheral NK (pNK) cells of RCC patients were uniformly 
CD56+CD16bright, but lacked full cytotoxic ability. By comparison, RCC tumor-infiltrated 
NK (TiNK) cells were significantly enriched for CD56+CD16dim-neg cells, a phenotype 
of dNK cells. Gene expression analysis revealed that angiogenic and inflammatory 
genes were significantly increased for RCC TiNK versus RCC pNK populations, with 
enrichment of genes in the hypoxia inducible factor (HIF) 1α pathway. Consistent 
with this finding, NK cells cultured under hypoxia demonstrated limited cytotoxicity 
capacity, but augmented production of vascular endothelial growth factor (VEGF). 
Finally, comparison of gene expression data for RCC TiNK and dNK cells revealed 
a shared transcriptional signature of genes with known roles in angiogenesis and 
immunosuppression. These studies confirm conversion of pNK cells to a dNK-
like phenotype in RCC tumors. These characteristics are conceivably beneficial 
for placentation, but likely exploited to support early tumor growth and promote 
metastasis.

INTRODUCTION

In humans, natural killer (NK) cells make up 
5–20% of the nucleated cells in the peripheral blood, 
and are identified as CD3neg lymphocytes that express 
CD56 with or without CD16. These two subtypes of NK 
cells demonstrate distinct differences in phenotype and 

function. Most (90–95%) peripheral blood NK (pNK) 
cells are CD56+CD16bright and exhibit efficient cytotoxic 
responses. A small percentage (5–10%) of pNK cells 
are CD56+CD16dim/neg with little cytotoxic function and 
enhanced proinflammatory cytokine production, including 
gamma interferon (IFNγ), tumor necrosis factor alpha 
(TNFα), and granulocyte macrophage-colony stimulating 
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factor (GM-CSF) [1]. Tumor-infiltrated NK (TiNK) 
cells have impaired tumor cytotoxicity and increased 
proinflammatory cytokine production [2, 3]. However, less 
is known regarding the proangiogenic properties of TiNK 
cells or the mechanisms driving functional conversion [4].

The predominant lymphocyte population in the 
decidua during early placentation is NK cells. These 
decidua NK (dNK) cells comprise 75% of lymphocytes 
at the implantation site are phenotypically CD56+CD16neg 
and demonstrate limited to no cytotoxicity capacity 
[5–8]. Human dNK cells secrete angiogenic molecules, 
particularly placenta growth factor (PGF) and vascular 
endothelial growth factor A (VEGFA) [5], angiopoietins 
(ANG), and transforming growth factor-beta (TGFβ) [6]. 
Accumulation of dNK cells correlates with the formation 
of blood and lymphatic vessels, endometrial edema and 
vasodilation leading to increased uterine artery blood 
flow [7, 8]. Thus, CD56+CD16neg NK cells could have 
significant, yet under-appreciated, roles in promoting 
angiogenesis in a number of pathological situations, 
including tumor growth and metastasis.

Renal cell carcinoma (RCC) is a major health issue 
with ~25% mortality rate at diagnosis. This is attributed to 
40% of patients presenting with or developing metastatic 
disease and suboptimal efficacy of available treatments 
such as chemotherapy and radiation [9, 10]. Survival 
improves following surgery combined with cytokine 
therapy, but response rates have not exceeded 20% 
[11]. Suppression of tumor immunity by RCC likely 
imposes functional limitations on the effectiveness of 
immunotherapy [12]. Infiltration of NK cells at RCC sites 
is observed and these TiNK cells have limited cytotoxic 
potential and express differential repertoires of activating 
and inhibitory receptors [13–15]. The proangiogenic roles 
of NK cells in RCC and other tissue-specific cancers have 
not been investigated, and little has been reported about 
mechanisms responsible for the functional conversion of 
NK cells in the tumor environment.

Given the fundamental role of NK cells in tumor 
immunity, identifying the mechanisms by which tumors 
alter NK cell function may prove critical for controlling 
tumor growth. We investigated the extent to which RCC 
tumors could alter the phenotype and function of NK 
cells in the peripheral blood and tumor tissue of newly-
diagnosed patients. We found that NK cells isolated from 
human RCC tumors are phenotypically different from 
matched pNK cells. Molecular characterization of RCC 
TiNK versus pNK revealed up-regulation of angiogenic 
and inflammatory genes, many of which were enriched 
in the hypoxia inducible factor (HIF) 1α pathway. In 
line with this finding, NK cells cultured under hypoxia 
demonstrated increased production of the angiogenic 
molecule VEGFA and reduced cytotoxic potential. 
Finally, comparison of upregulated genes to results from a 
published microarray for bona fide dNK cells [5] identified 
a shared genetic signature consisting of genes with known 

roles in vascularization and immunosuppression. These 
collective findings confirm that RCC tumors are able 
to alter the classical characteristics of NK cells towards 
a dNK-like program. While these characteristics are 
beneficial for placentation, they may be exploited to 
support RCC growth and metastasis.

RESULTS

Peripheral blood NK cells of RCC patients have 
reduced cytotoxic activity

A role for tumor immunity in controlling RCC has 
been implicated following rare clinical observations of 
spontaneous disease regression. The majority of these 
cases involved regression of metastases after removal 
of the primary tumor [16, 17]. Puzzling, however, were 
findings that high levels of tumor infiltrating lymphocytes 
(TIL), including NK cells, are common to RCC [13–
15]. We hypothesized that NK cells of RCC patients 
were phenotypically and functionally altered within 
the circulation and/or tumor environment resulting in 
impaired tumor immunity. To explore the phenotype and 
function of NK cells in patients with RCC, we enrolled 
six patients newly diagnosed with this cancer. All patients 
were males between the age of 50 and 70 years old and 
none had received prior treatment for the disease. The 
clinical characteristics of these patients are shown in 
Table 1. NK cells were isolated from peripheral blood 
mononuclear cells (PBMC) by negative selection using 
a cocktail of antibody-magnetic microbeads. Multi-color 
flow cytometry was used to identify NK cells (CD45+/
CD3-/CD56+ cell population) and gauge expression of 
CD16. Like pNK cells of healthy, cancer-free donors, 
the CD56+CD16+ NK subset was predominant for RCC 
patients (Figure 1A). We did not observe a significant 
difference in the mean percentage of CD56+CD16+ NK 
cells between healthy donors and RCC patients, but there 
was variation in proportion of CD56+CD16+ cells among 
RCC patients. Cytotoxic activity of freshly-isolated pNK 
cells of RCC patients was, however, significantly reduced 
compared to healthy controls at all tested target:effector 
ratios (Figure 1B). As TGFβ treatment has been reported 
to reduce cytotoxic ability of NK cells [18], we measured 
the amount of TGFβ in the plasma of RCC patients by 
ELISA. Compared to healthy volunteers, TGFβ levels 
were 3-fold higher for RCC patients (Figure 1C). These 
findings suggest that production of TGFβ by RCC tumors 
impacts the function of pNK cells in the circulation.

Human RCC tumor-derived NK cells acquire 
altered phenotype and gene expression

To identify alterations that were RCC tumor-
induced, we compared NK cells isolated from RCC 
tumors (TiNK) to matched pNK cells for the six patients. 
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The proportion of TiNK cells averaged 18% (range 
1.8% to 36.8%) of the total CD45+ population (Table 1), 
which is consistent with previous reports of RCC tumors 
being infiltrated by lymphocytes, including NK cells 
[13–15]. Flow cytometry analysis of NK cells isolated 
from peripheral blood (Figure 2A) or RCC tumor tissue 
(Figure 2B) revealed that the CD56+CD16dim/neg population 
was significantly enriched for RCC tumors, with mean 
levels nearly 8-times higher (pNK 6.3% vs. TiNK 47.5%), 

although variation was noted for individual patients 
(Figure 2C).

To explore molecular signatures that characterized 
TiNK cells, we used total RNA isolated from purified pNK 
and TiNK cells of four patients to perform a focused RT-
qPCR array consisting of 79 genes with known association 
to angiogenesis and inflammation. The percentage of 
the CD56+CD16dim/neg population for NK cells isolated 
from peripheral blood or RCC tumor tissue of these four 

Figure 1: Peripheral blood NK cells of RCC patients have decreased cytotoxic function. NK cells were isolated from 
peripheral blood of 5 healthy, cancer-free donors (HD) or 6 patients diagnosed with RCC by negative selection and evaluated for expression 
of surface markers by multi-color flow cytometry or ability to lyse K562 human erythroleukemia cells. (A) Percentage of CD56+CD16+ 
pNK cells isolated from HD or RCC patients with mean ± SEM reported. Each symbol represents an independent person. (B) Relative 
cytotoxic activity of freshly isolated pNK cells from HD or RCC patients for the indicated target:effector ratios. Data are analyzed relative 
to K562 cells treated with digitonin serving as a positive control for cell death (set = 100% lysis) and plotted as mean ± SEM (n = 5 healthy 
donors and RCC patients). (C) Concentrations of activated TGFβ in plasma from healthy donors and RCC patients determined by ELISA 
with mean ± SEM reported. Each symbol represents an independent person. n.s., not significant; *P ≤ 0.05; **P ≤ 0.01; determined by 
Student’s t-test.
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patients are reported in Supplementary Table 1. RNA 
samples were analyzed in triplicate and expression level 
calculated as percentage of β-actin because transcript 
levels for this gene were essentially unchanged for pNK 
and TiNK populations (p = 0.92 by t-test). Supplementary 
Table 2 shows the results for all 79 genes as mean fold-
change ± SEM and ordered from greatest to least fold-
change. As defined by (P ≤ 0.05 and mean fold-change 
≥ 5), 42 out of 79 tested genes were upregulated for 
TiNK versus pNK populations. Figure 3 shows a 
heat map depicting differential expression of selected 
upregulated genes for pNK versus TiNK cells based on 
calculated Z-scores. KEGG pathway analysis showed 
that upregulated genes were enriched in pathways related 
with HIF1, TNF, NFĸB, and transcriptional misregulation 
in cancer with HIF1 signaling demonstrating the greatest 
significance (Table 2). In line with this finding, mRNA 
levels of proangiogenic VEGF were significantly elevated 
for TiNK versus pNK cell populations from these patients 
(Supplementary Table 1). Thus, RCC tumor-infiltrating 
NK cells have pronounced phenotypic and functional 
alterations compared with matched pNK cells; effects that 
are likely influenced by the tumor microenvironment.

Hypoxia conversion of pNK cells to dNK-like 
cells

Advanced tumors have abnormal vasculature and 
insufficient oxygen supply making hypoxia a common 
feature of the tumor environment [19]. Hypoxia 
contributes to malignant progression in cancer by inducing 
an invasive and metastatic phenotype and by activating 
resistance mechanisms to create an immunosuppressive 
environment [20]. To test the extent to which hypoxia 
could enhance the proangiogenic phenotype of pNK 
cells, we cultured pNK cells (n = 5 healthy donors) for 
four days under normal oxygen (21% O2) or hypoxia (1% 
O2), and assayed for proangiogenic VEGFA expression 
and cytotoxic potential. Because hypoxia can influence 
cell survival, trypan blue exclusion assay was used to 
confirm comparable numbers of viable cells under these 
growth conditions. Thus, changes in gene expression 

and cytotoxic ability were unrelated to differences cell 
viability. VEGFA mRNA and protein were expressed 
at low levels for NK cells cultured under normoxic 
conditions. Hypoxia clearly affected NK cells as 
evidenced by well-known upregulation of VEGFA mRNA 
with mean levels increased 11-fold when quantified by 
RT-qPCR (Figure 4A). ELISA of conditioned culture 
supernatants confirmed enhanced production of VEGFA 
under hypoxic growth conditions (51 pg/mL 21% O2 
vs. 143 pg/mL 1% O2; Figure 4B). Concomitantly, we 
observed decreased cytotoxicity (Figure 4C), which may 
result from VEGFA upregulation and/or other HIF1α-
regulated factors (Supplementary Figure 1) [21–23]. Thus, 
conversion of pNK cells to a dNK-like phenotype (poor 
cytotoxic potential and elaboration of VEGFA expression) 
is favored by hypoxia; a factor with key roles in tumor 
invasion and metastasis and response to therapy [19, 20].

RCC tumor NK cells and decidua NK cells have 
a shared transcriptional profile

Decidua NK cells undergo tissue-specific alterations, 
which impart their unique ability to regulate vascular 
remodeling, an essential step for placental growth [24, 25]. 
Previously, Hanna and colleagues performed a microarray 
analysis on purified dNK cells to obtain a transcriptional 
profile of cytokines, chemokines and growth factors 
using CodeLinkTM Uniset Human 20K I Bioarray, 
which provides coverage for about 20,000 human genes 
[5]. To gain additional insight into the function of RCC 
TiNK cells, we compared gene expression results for 
our 79 genes to these microarray data (Supplementary 
Table 3). We first looked at genes with any increase 
above the minimum hybridization threshold of 20 for 
dNK cells versus genes increased by 2-, 4-, 8-, or 16-fold 
for TiNK cells. This analysis revealed that as the level 
of gene expression increased for TiNK cells it became 
more likely that these same genes were upregulated in 
dNK cells (R2 = 0.98) (Figure 5A). Comparison of genes 
induced by at least 2-fold for dNK cells and at least 4-fold 
for TiNK cells identified 1,158 genes for dNK cells and 
46 for TiNK cells with 9 genes present in both data sets 

Table 1: Characteristics of patients with resected RCC tumors analyzed
No. Age Histology Stage Tumor Sample (g) Total Yield (×106)‡ CD45+ (%)# CD56+ (%)^

1 70 Clear Cell III 1.3 30 74.4 4.1
2 55 Clear Cell III 2.6 10 89.9 36.8
3 67 Clear Cell III–IV 3.6 20 99.0 23.9
4 50 Clear Cell III–IV 1.1 1.7 99.6 1.8
5 59 Clear Cell IV 3.0 20 82.8 34.9
6 66 Clear Cell I–II 0.8 1.7 97.4 6.0

‡Total number of cells recovered following centrifugation of dissociated tumor tissue through 35% Percoll gradient. #Percentage 
of recovered cells that were CD45 positive by flow cytometry. ^Percentage of CD45 positive cells that co expressed CD56 
when analyzed by flow cytometry.
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(Figure 5B). Genes with any increase above the minimum 
threshold of 20 for dNK cells were also plotted against 
matched counterparts for TiNK cells (Figure 5C). This 
comparison identified genes that were relatively non-
specific, specific to dNK or TiNK, or shared by both 
dNK and TiNK. It is important to note that CD146 was 
significantly increased for dNK cells (53.8-fold increase 
over the minimum threshold), but assigned a value of 8 
for visualization purposes in the graphical representation. 
For the 9 shared genes, the majority have known roles in 
angiogenesis, immune modulation, tumor development, 
and/or metastasis (Table 3). As angiogenesis and immune 
modulation are critical features of tumor and decidua 
environments, these gene expression results provide 
further evidence for similarities between dNK and RCC 
TiNK cells.

DISCUSSION

A subset of non-classical NK cells (CD56+CD16neg; 
dNK cells) has become recognized for its role in vascular 

remodeling and tissue construction. Most knowledge 
of this angiogenic potential comes from reproductive 
biology, where these cells are undeniably important [5–8]. 
Relevance to cancer is evidenced by the ability of purified 
dNK cells to enhance growth of JEG3 choriocarcinoma 
cells when co-inoculated into immune deficient nude 
mice [5]. Examples of NK cells with a similar phenotype 
exist for cancer patients, including increased levels 
of CD56+CD16dim/neg cells in tumor specimens from 
patients with breast cancer [2], non-small cell lung 
cancer (NSCLC) [3, 26], and colorectal cancer [27, 28]. 
Increased percentages of CD56+CD16dim/neg NK cells in 
the peripheral blood of some patients with these cancers 
suggest phenotype-altering effects can extend beyond the 
local tumor environment and may be indicative of disease 
progression and metastasis [2, 26–28]. Here we show 
that NK cells were altered within human RCC tumors 
compared with autologous peripheral blood samples. NK 
cells in the blood of RCC patients were poorly cytotoxic 
even though phenotypic alterations were less pronounced. 
Although not statistically significant in our small sample 

Figure 2: RCC tumor-infiltrated NK cells are phenotypically distinct from matched peripheral blood counterparts. 
NK cells were isolated from peripheral blood or resected tumor tissues of 6 RCC patients by negative selection and evaluated for expression 
of CD56 and CD16 by multi-color flow cytometry. Representative dot plots of NK cells isolated from peripheral blood (A) versus RCC 
tumor tissue (B) demonstrating CD56 and CD16 expression. (C) Percentage of CD56+CD16dim/- NK cells for peripheral blood of healthy 
donors (n = 5) and RCC patients (n = 6), or RCC tumor-infiltrating NK cells (TiNK, n = 6) plotted as mean ± SEM. Results for TiNK cells 
are also shown for each individual patient (P1 to P6). n.s., not significant; *P ≤ 0.05 determined by Student’s t-test.
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Table 2: Significant signaling pathways based on KEGG database
KEGG ID Category Genes in Pathway P-value
04066 HIF1 signaling HIF1α, VEGFA, FLT1, ANG1, ANG2, NFĸB1, RELA, 

BCL2, IL6
2.1e-8

04668 TNF signaling TNF, NFkB1, IL1β, RELA, CXCL1, CXCL3, CCL20, 
IL6

7.7e-7

04064 NF kappa B signaling NFĸB1, NFĸB2, TNF, RELA, CCL19, IL1β, BCL2, 2.0e-7
05202 Misregulation in cancer IL3, IL6, CCR7, RELA, IL1β, NFĸB1 1.4e-6

Abbreviations: KEGG, Kyoto encyclopedia of genes and genomes.

Figure 3: RCC TiNK cells have an altered transcriptional profiled compared to patient matched pNK cells. NK cells 
isolated from peripheral blood or RCC tumor tissues of 4 patients were isolated of total RNA and RT-qPCR analysis of the indicated targets 
performed in triplicate. Heat maps of transcriptional changes were developed for calculated Z-scores. Each row corresponds to the listed 
gene and columns to an individual patient (1–4) with source of NK cells peripheral blood (pNK) or RCC tumor (TiNK) indicated at the 
top. Scale bar with pseudocolors denotes differential gene expression: blue and red indicate low and high expression, respectively; white 
indicates no change in expression levels.
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size, these changes could reflect what occurs in the 
tumor. These data support a model in which pNK with 
the decidua-like phenotype are either directly recruited 
to RCC tumor sites or converted to phenotypically and 
functionally resemble dNK cells in the hypoxic tumor 
environment when encountering TGFβ to promote tumor 
establishment, growth and/or metastasis (Figure 5D).

TGFβ is highly expressed in the decidua in situ [29] 
and several studies have reported exposure of pNK cells 
from healthy donors to TGFβ mediated conversion to dNK-
like cells [30, 31]. TGFβ is also detected at high levels 
in various tumors and is the major immunosuppressive 
cytokine in the tumor microenvironment [32]. In RCC, 
TGFβ expression directly correlates with tumor stage and 
grade and is significantly elevated with metastatic disease 
[33, 34], suggesting its importance in tumor progression, 
immune evasion and potential role in transformation of 
TiNK cells [4, 35]. Plasma TGFβ levels are upregulated 

in lung [36] and colon cancer patients [37]. The RCC 
patients studied here had 3-fold higher levels of TGFβ in 
the blood compared with healthy cancer-free volunteers. 
Circulating NK cells of RCC patients were phenotypical 
similar to healthy donors, but lacked full cytotoxic ability 
which we hypothesize is attributed to heightened levels of 
TGFβ. A more pronounced diminution of cytotoxicity was 
observed for RCC TiNK cells which were predominantly 
dNK-like (CD56+CD16dim/neg). TGFβ has been associated 
with NK cell dysfunction and changes in expression of 
activating and inhibitory receptors have been described in 
patients with breast cancer, melanoma, lung cancer and 
ovarian carcinoma [2–4, 35–38]. Many types of cells at 
the tumor site, including tumor cells, fibroblasts, stromal 
cells and infiltrating immune cells, express TGFβ to 
promote an immunosuppressive tumor microenvironment 
[32, 35]. A recent report demonstrated that myeloid-
derived suppressor cells (MDSC) from patients with 

Figure 4: pNK cells exposed to hypoxia are poorly cytotoxic and proangiogenic. NK cells were isolated from peripheral 
blood of five healthy, cancer-free donors by negative selection and cultured under atmospheres consisting of 21% O2 (normoxia) or 1% O2 
(hypoxia). (A) Relative levels of VEGF mRNA for NK cells cultured for 4 days. NK cells maintained under 21% O2 conditions set to 1 for 
normalization and data plotted as mean ± SEM (n = 5 donors). (B) VEGF secretion by pNK cells cultured under the indicated conditions 
quantified by ELISA of conditioned supernatants. Data plotted as mean ± SEM (n = 5 donors). (C) Cytotoxic activity of pNK cells after 4 
days of culture under the indicated oxygen conditions. Data are analyzed relative to K562 cells treated with digitonin serving as a positive 
control for cell death (set = 100% lysis) and plotted as mean ± SEM (n = 5 donors). *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 determined by one-
way ANOVA with Newman-Keuls post-hoc analysis or paired Student’s t-test.
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advanced melanoma suppress NK cell activity through the 
production of TGFβ [39]. This would be in keeping with 
the immunomodulatory role of TGFβ in several tumors 
and tumor models [28, 32, 40], similar to what occurs for 
dNK cells [5, 29, 41]. Thus, TGFβ, in combination with 
other factors and/or stimuli, such as hypoxia, may result in 
conversion of NK cells to an angiogenic phenotype within 
the decidua and tumor microenvironment. In support 
of this notion, inhibition of TGFβ has been reported to 
preserve function of activated and ex vivo expanded NK 
cells in tumor models [42].

A distinct feature of RCC is high numbers of 
tumor infiltrating lymphocytes. Consistent with previous 
reports [13–15], NK cells were present in the RCC tumors 
studied here, but percentages varied among patients 
and did not seem to correlate with pathologist-assigned 
staging criteria. RCC TiNK cells displayed the dNK-like 
phenotype and a distinct gene expression profile compared 
to peripheral blood counterparts. Among the upregulated 
genes, a number of genes within the HIF1 pathway were 
highly enriched, including the proangiogenic molecules, 
VEGFA, VEGFB, and ANG2. Thus, the NK cells isolated 
from the RCC tumors represented truly infiltrating 
populations and not peripheral blood contaminants 
through surrounding vasculature. Consistent with previous 
reports [22, 23], we demonstrated that hypoxia decreases 
NK cell cytotoxicity. Hypoxia also resulted in dramatic 
up-regulation of VEGF. Increased expression of VEGF 
in tumors and pathological angiogenesis is correlated 
with poor prognosis [43–45]. These findings confirm the 
association between phenotypic markers (CD56+CD16neg) 
and the ability to produce proangiogenic factors.

The presence of the RCC tumor appears to have a 
systemic effect on the cytotoxic activity of the pNK cell by 
augmenting circulating levels of TGFβ. The observation 
that CD56+CD16+ NK cells remain the dominate population 
in the peripheral blood of RCC patients suggests counter 
mechanisms are in play to retain surface markers, but these 
effects are less capable of preserving full cytotoxic function. 

Our observations for RCC TiNK are consistent with findings 
that a CD56+CD16neg subset of NK dominates in NSCLC 
tumors acting as proangiogenic cells by producing VEGF 
and PGF [26]. While other factors may contribute to the 
observed conversion of RCC TiNK cells, we have shown 
that TGFβ and hypoxia are two likely candidates. In support 
of this assertion, blocking TGFβ signaling can overcome 
immune suppression and enhance the effects of NK cell 
therapy [46, 47]. As TGFβ is a pleotropic cytokine with 
important biological function, it is also intriguing to assume 
that proangiogenic function of RCC TiNK cells could be 
suppressed by targeted VEGF blocking agents including 
antibodies (i. e., bevacizumab) and tyrosine kinase inhibitors 
(TKIs), such as sunitinib and sorafenib. These medicines 
are already used clinically and could ameliorate or reverse 
tumor-supportive function of TiNK cells.

NK cell-mediated antitumor activity is commonly 
described and suggests these cells could be useful in 
therapeutic approaches. For RCC, rare patients with 
metastatic disease can experience spontaneous remission 
supporting the notion that RCC could be immunologically 
controlled [16, 17]. IL2, IL15, IL12, and IFNα (alpha 
interferon) have demonstrated some efficacy, with 
improved success noted when used in combination, 
however, response rates have been limited (ranging from 
15–20%) [11, 48–51]. The precise mechanisms by which 
these cytokines exert their antitumor effects are unknown, 
but it is believed activation and expansion of T cells and 
NK cells has a pivotal role [11, 12, 28, 42]. Of particular 
relevance to our studies are findings that IL12 has the 
ability to rescue NK cell antitumor activity by upregulation 
of CD16 [52]. As an alternative to cytokine stimulation 
of endogenous NK cells, other efforts have explored the 
benefit of NK cell infusion for RCC. Early studies tested 
tumor regressive properties of lymphokine activated CD3−

CD56+ cells (or LAKs) injected in combination with IL-2 
[53, 54]. Follow-up studies employed adoptive transfer 
of ex vivo activated allogeneic NK cells [55] and NK cell 
lines, such as NK-92 [56, 57]. NK cells have also been 

Table 3: Function of genes upregulated in dNK and TiNK cells
Gene Description Function Ref.
VEGFA Growth Factor Physiological/pathological angiogenesis; vascular permeability; 

tumorigenesis
[62]

VEGFB Growth Factor Physiological/pathological angiogenesis; maintenance of blood 
vessels

[63]

ANG2 Growth Factor Physiological/pathological angiogenesis; vascular permeability; 
tumorigenesis

[64]

IL6 Cytokine Acute and chronic inflammation; leukocyte recruitment [65]
IL8 Cytokine Acute and chronic inflammation; neutrophil recruitment [66]
CCL3 Chemokine Acute inflammation; leukocyte recruitment [67]
CXCL1 Chemokine Angiogenesis, inflammation, wound healing [68]
CCR7 Receptor Homing to lymphoid organs; recognizes CCL19 and CCL21 ligands [69]
CD146 Receptor NK cell adhesion; angiogenesis; immune response [70]
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genetically modified to reduce expression of inhibitory 
receptors or augment production of cytokines or activating 
receptors. For example, NK cells engineered to express 
CXCR2 demonstrated improved trafficking and cytotoxic 
potential [58]. Chimeric antigen receptor (CAR) engineered 
NK-92 cells expressing a CAR specific to ErbB2 (Her2) 
or EGFR have shown efficacy in mouse models of human 
RCC [59, 60], which suggest opportunities for future 
benefit of CAR-NK cells in patients [12, 35, 56].

Tumor-induced alterations of NK cells can limit 
tumor cell recognition and decrease their ability to interact 
with other immune cells. We showed that TGFβ and 
hypoxia are (at least) two factors capable of supporting 
the conversion of pNK cells to a dNK-like phenotype 
within RCC tumors. While these characteristics are 
conceivably beneficial for placentation, they may be 
exploited to support RCC growth and metastasis. Our 
findings that peripheral blood of RCC patients has higher 
levels of TGFβ and less cytotoxic NK cells suggests these 
parameters could be used to monitor disease progression. 
The utility of these criteria will require assessment of 
patients with early (stage I/II) versus advanced (stage III/
IV) disease, which is challenging in RCC as the majority 
of patients are in advanced stage at time of presentation. 

The distinct gene expression signature of RCC TiNK cells 
discovered here provides additional targets responsible 
for proangiogenic differentiation of NK cells in the tumor 
environment. Improved knowledge of the extent and 
mechanisms of these newly-identified targets could permit 
development of strategies to restore the ability of NK 
cells to recognize and lyse tumors, particularly in patients 
with advanced disease. Along these lines, it is interesting 
to consider that combined use of TGFβ inhibitors and 
targeted VEGF blocking agents could ameliorate or reverse 
tumor-supportive function of TiNK cells. These and 
related studies in RCC and other cancer types may provide 
foundations for far reaching benefits in diseases in which 
inhibition or augmentation of vascular growth is warranted.

MATERIALS AND METHODS

Human samples and processing

Specimens from healthy donors (venous blood) and 
patients diagnosed with RCC (venous blood and tumor 
tissue) were prospectively collected with the donor’s 
written informed consent in accordance with protocols 
approved by the Springfield Committee for Research 

Figure 5: Similarities in gene expression for RCC TiNK and dNK cells. (A) Comparison of genes from a published microarray 
analysis for purified dNK cells [5] with any increase from the minimum hybridization threshold of 20 plotted against genes increased by 
2-, 4-, 8-, or 16-fold by RT-qPCR analysis of TiNK cells with regression analysis. (B) Venn diagram of gene expression data for dNK 
cells (microarray data, >2-fold increase) versus RCC TiNK cells (RT-qPCR data, >4-fold increase). (C) Genes with any increase above 
the minimum hybridization threshold of 20 for dNK cells plotted against matched counterparts for TiNK cells with genes demonstrating 
> 2-fold increase for dNK and >4-fold increase for RCC TiNK labeled. (D) Schematic diagram of potential role for CD56+CD16-/dim dNK-
like cells in RCC tumor development and metastasis. The noncytotoxic dNK-like cells are converted from pNK phenotype in the tumor 
environment when encountering low oxygen (hypoxia) and/or TGFβ. This results in loss of cytotoxic function and production of angiogenic 
factors and cytokines supporting tumor growth and metastasis.
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Involving Human Subjects (SCRIHS) of Southern 
Illinois University School of Medicine. For RCC patients, 
morphological tumor characteristics were evaluated by a 
pathologist before release to the laboratory. All specimens 
lacked personal health information (de-identified) and 
were processed on the collection day.

Blood (10–20 mL) was diluted 1:2 with phosphate 
buffered saline (PBS), layered over Ficoll-Paque Plus 
(1.077 density, GE Healthcare, Uppsala, Sweden) and 
mononuclear cells separated by centrifugation at 300 
rcf for 30 minutes. RCC tumor tissues were minced and 
disrupted with a gentle MACS dissociator (program 
hTumor-01; Miltenyi Biotec, San Diego, CA, USA). 
Tissue fragments were incubated with RPMI 1640 
medium supplemented with collagenase (1 mg/mL; 
Sigma-Aldrich, St. Louis, MO, USA), DNase I (100 µg/
mL; Roche NimbleGen Inc., Madison, WI, USA), 50 
units/ml each penicillin and streptomycin for 1 hour at 
37°C. The digested mixture was filtered through a 70-
µm nylon cell strainer (BD Falcon, Franklin Lakes, NJ, 
USA) and cells collected by centrifugation at 500xg. 
Pelleted cells were suspended in 35% Percoll solution 
(Sigma Aldrich, St. Louis, MO, USA) and centrifuged 
at 300 rcf for 30 minutes. Cells recovered from Ficoll 
or Percoll were washed twice with phosphate buffered 
saline (PBS). Viable cell counts were performed by trypan 
blue exclusion assay and cells were prepared for flow 
cytometry analysis or NK isolation as detailed below.

NK cell isolation

NK cells were isolated by negative selection 
(Dynabeads Untouched hNK Cell kit, Thermo Fisher 
Scientific, Grand Island, NY, USA) according to the 
manufacturer’s instructions. The antibody-magnetic 
microbead cocktail removes T cells, B cells, NKT cells, 
dendritic cells, platelets, monocytes, granulocytes and 
erythroid cells to yield a population of NK cells that are 
bead- and antibody-free. The viability and purity of isolated 
NK cells was greater than 90% as determined by trypan 
blue exclusion assay and flow cytometry, respectively.

NK cell phenotype by flow cytometry

Purified NK cells were reacted with APC-
conjugated anti-CD45, PE-conjugated anti-CD3, Alexa 
488-conjugated anti-CD56, and APCH7-conjugated anti-
CD16 in PBS supplemented with 0.5% BSA for 30 min on 
ice and washed three times. Viable cells were selected by 
gating on propidium iodide negative populations. NK cells 
were identified as the CD45+/CD3-/CD56+ population and 
evaluated for expression of CD16. Cells left unstained or 
reacted with isotype control antibodies served as negative 
controls for gating. All antibodies were purchased from 
BD Biosciences (San Jose, CA, USA). Flow cytometry 
was performed on FACSAriaII (BD Biosciences) 

and analysis completed using FlowJo v10.0 software 
(FLOWJO, LLC, Ashland, OR, USA). Data are expressed 
as logarithmic values of fluorescence intensity.

NK cell culture

NK cells were cultured at 106 cells/mL in 
Myelocult medium (Stem Cell Technologies, Vancouver, 
BC, Canada) containing 10% human serum, 5% fetal 
calf serum, 20 ng/mL human interleukin-15 (hIL-15; 
PeproTech, Rocky Hill, NJ, USA), 20 ng/mL human stem 
cell factor (hSCF; PeproTech) and 10−6 M hydrocortisone 
(Stem Cell Technologies, Vancouver, BC, Canada). Cells 
were cultured for four days under 21% or 1% O2 in a 
humidified atmosphere at 37°C.

NK cell cytotoxic activity assays

Human K562 erythroleukemia cells (CCL-243, 
ATCC, Manassas, VA, USA) were used to assay for NK 
activity. K562 cells were cultured in Iscove’s Modified 
Dulbecco’s Medium (IMDM; Mediatech Inc., Manassas, 
VA, USA) supplemented with 50 units/ml each penicillin 
and streptomycin, and 10% heat-inactivated fetal bovine 
serum (FBS) all from Hyclone Laboratories (Logan, 
UT, USA) at 37°C in a humidified 5% CO2 atmosphere. 
Freshly isolated pNK cells (effectors) of healthy donors 
or RCC patients were evaluated for cytotoxic capacity 
using K562 (targets) and the Multi-Tox Fluor Cytoxicity 
Assay (Promega, Madison, WI, USA). K562 and NK cells 
were plated in triplicate into 96-well round bottom culture 
plates (BD Falcon, Franklin Lakes, NJ, USA) to achieve 
target:effector (T:E) ratios of 3:1, 1:1, and 1:3, respectively, 
in a total volume of 100 µL of IMDM. Control wells 
containing only K562 or NK cells were included to 
measure spontaneous cell death whereas culture medium 
was assayed to control for background absorbance. K562 
cells treated with the non-ionic detergent, Digitonin 
(Promega), at a final concentration of 30 µg/mL were 
included as positive controls for cell death. After 4 hours 
of incubation at 37°C in a humidified 5% CO2 atmosphere, 
cells were reacted with bis-AAF-R110 substrate which is 
cleaved by the dead cell protease to release R110. The 
free R110 results in the formation of a yellow product 
that is quantitated by measuring fluorescence at 520 nm 
on a Glomax multimode plate reader (Promega). The 
amount of fluorescence is proportional to the number of 
lysed cells and percent cytotoxicity calculated using the 
equation: % cytotoxicity = [(Experimental – Effector 
Spontaneous – Target Spontaneous)/(Target Maximum – 
Target Spontaneous)] × 100.

Quantitative RT-PCR

NK cells isolated from RCC patient blood or 
tumor tissue were extracted of total RNA using Ambion 
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spin columns (Life Technologies, Carlsbad, CA, USA) 
with on-column DNase treatment (Promega). RNA was 
quantified by a Nanodrop 2000 (Life Technologies) and 
quality assessed by visualizing 18S and 28S ribosomal 
RNA bands separated through 1% agarose. RNA (100–300 
ng) was reverse transcribed into cDNA using SuperScript 
VILO cDNA synthesis kit (Thermo Fisher Scientific, 
Waltham, MA, USA) and conditions: 25°C-10 min, 42°C-
60 min, 85°C-5 min, and 4°C-hold.

Differential gene expression was determined using 
cDNA (100 ng/reaction) as template and primer pairs for 
79 genes selected from an in-house gene array. The details 
of this array including primer sequences and amplicon 
size have been described in detail [61]. For this study, 
interrogated genes included cytokines/chemokines/growth 
factors and their receptors; inflammation/activation-
associated genes; single transduction/transcription 
factors; and cell lineage genes (Supplementary Table 2). 
Quantitative PCR reactions were performed in triplicate 
with iTaq Universal SYBR Green Supermix (Bio-Rad, 
Hercules, CA, USA) on a StepOne Plus thermocycler 
(Thermo Fisher Scientific-Applied Biosystems) using 
SYBR Green settings that included a final melt curve 
analysis; all reactions yielded a single peak. Changes 
in transcript levels were assessed by the ∆∆Ct method 
and data normalized to β-actin. Paired t-test was used 
to identify genes with a fold change ≥ 5.0 and a P-value 
≤ 0.05, and these genes were selected for the following 
analyses. Z-scores were calculated for each target gene 
using the equation Z = [(target – mean)/standard deviation] 
and a heat map created using Morpheus software (Broad 
Institute, Cambridge, MA; https://software.broadinstitute.
org/morpheus/). The Kyoto encyclopedia of gene and 
genomes (KEGG) pathway analysis was performed 
to predict the potential significant signaling pathways 
involved in conversion of pNK to TiNK (p ≤ 0.05).

ELISA

TGFβ

TGFβ content in human serum was evaluated using 
a TGFβ ELISA Duoset (R&D Systems) following the 
manufacturer’s instructions. Briefly, to activate latent 
TGFβ, plasma was incubated with 1 N hydrochloric 
acid (HCl) followed by neutralization with 1.2 N 
sodium hydroxide (NaOH)/0.5 M 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) buffer.
VEGF

NK cells were cultured under the indicated 
conditions for 4 days, and culture supernatants collected 
and stored at –80°C. VEGF concentration was measured 
using a VEGF Quantikine ELISA kit (R&D Systems, 
Minneapolis, MN, USA) according to instructions. Results 
were normalized to viable cell counts determined at the 
time of collection.

Statistical analysis

Microsoft Excel or Prism 5 (GraphPad Software, 
Inc., La Jolla, CA, USA) was used to determine descriptive 
statistics (mean ± SD or SEM) and calculate Z-scores. 
Significant differences between mean values were 
determined by paired or unpaired Student’s t-test (two-
tailed) for independent groups or one-way ANOVA with 
Newman-Keuls post-hoc test for multiple comparisons 
where indicated. P-values are indicated by asterisks in the 
figures with level of significance reported as *P ≤ 0.05; **P 
≤ 0.01; ***P ≤ 0.001.
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