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Abstract: Wheat accounts for more than 50% of Australia’s total grain production. The capability
to generate accurate in-season yield predictions is important across all components of the agricul-
tural value chain. The literature on wheat yield prediction has motivated the need for more novel
works evaluating machine learning techniques such as random forests (RF) at multiple scales. This
research applied a Random Forest Regression (RFR) technique to build regional and local-scale
yield prediction models at the pixel level for three southeast Australian wheat-growing paddocks,
each located in Victoria (VIC), New South Wales (NSW) and South Australia (SA) using 2018 yield
maps from data supplied by collaborating farmers. Time-series Normalized Difference Vegetation
Index (NDVI) data derived from Planet’s high spatio-temporal resolution imagery, meteorologi-
cal variables and yield data were used to train, test and validate the models at pixel level using
Python libraries for (a) regional-scale three-paddock composite and (b) individual paddocks. The
composite region-wide RF model prediction for the three paddocks performed well (R2 = 0.86,
RMSE = 0.18 t ha−1). RF models for individual paddocks in VIC (R2 = 0.89, RMSE = 0.15 t ha−1)
and NSW (R2 = 0.87, RMSE = 0.07 t ha−1) performed well, but moderate performance was seen for
SA (R2 = 0.45, RMSE = 0.25 t ha−1). Generally, high values were underpredicted and low values
overpredicted. This study demonstrated the feasibility of applying RF modeling on satellite imagery
and yielded ‘big data’ for regional as well as local-scale yield prediction.

Keywords: wheat; yield prediction; random forests; satellite imagery; Normalized Difference Vegeta-
tion Index (NDVI)

1. Introduction

Wheat is a key component of the Australian grain industry. Regional and national-
scale wheat yield forecasting and prediction provide essential information to all parts of
the value chain from farm production, aggregation, processing, distribution and through to
the commodity markets, as well as governmental agricultural and economic departments.
At the farm scale, this is the ability to monitor and predict crop health and, by exten-
sion, yields, in a spatially-variable manner within a farm paddock using NDVI facilitates
precision variable-rate nitrogen application to achieve high production efficiencies and
profitability [1]. The mainland southeast Australian wheat belt accounts for 53% of all
wheat production regions [2], but is particularly vulnerable to significant volatility in yields
due to climactic variability [3,4]. Therefore, this is a region that would benefit greatly from
accurate yield prediction. Comprehensive and up-to-date reviews of crop yield prediction
methods have been reported by [5,6].

High and ultra-high-resolution imagery using aerial platforms such as UAVs and
manned aircraft can now provide high-precision quantitative information for crop monitor-
ing of crop health and stresses at the sub-meter scale [7]. However, these techniques tend to
be beyond the capabilities of normal producers or regional assessors and can also be limited
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by the spatial coverage and revisitation frequency (cadence) meaning that satellite-based
data remain a critical component of regional and local-scale yield predictions. Cloud cover
is a persistent problem [8] but this can be largely addressed with high-cadence imagery.
Planet’s (www.planet.com; last accessed 17 July 2019) [9] constellation of Dove satellites
offers an unprecedented observing potential of daily land surface imagery increasing the
chances of acquiring cloud-free images for analysis, with an orthorectified spatial reso-
lution of 3 m, enabling the detection of reflectance variations over very small distances
and matching them with yield data [10]. This allows investigation of within-field yield
variation which aids farmers in precision agriculture decisions. While somewhat limited
in spectral resolution and range, PlanetScope imagery can bridge the spatio-temporal and
spectral characteristics of MODIS (36 bands; 250 to 1000 m spatial resolution; daily revisit),
Landsat 8 (9 bands; 30 m spatial resolution with 15 m for Band 8; 16-day revisit) and
Sentinel 2 MSI (10 to 60 m spatial resolution; 5-day effective revisit) platforms that have
recent multisensory data fusion strategies [11–13].

Machine Learning (ML)-driven approaches show much potential for the retrieval of
key parameters such as biomass and soil moisture from satellite imagery [14]. While much
previous work has focused on using Artificial Neural Networks (ANNs); the potential
of random forests (RF) [15], being quicker and requiring fewer training dataset volumes,
have yet to be comprehensively evaluated [14], particularly for dynamic, in-season wheat
yield prediction at multiple scales. RF is a supervised ML algorithm based on decision-
tree procedures to predict output classes based on patterns learnt in the training datasets.
These involve building tree ensembles whose growth are controlled by randomized se-
lection of (input-output) vectors from the training dataset; which are then assembled as
classification or regression models to predict the most likely output class (or values) from
the inputs of the test dataset with good accuracy and robustness to outliers with lower
likelihood of generalization errors [15]. RF have the potential to generate better mod-
els compared to single decision-tree models [16], are more efficient computationally and
therefore suitable for regional and global applications in agriculture [17] where Big Data
dominates [18,19]. For instance, RF-driven yield prediction for sugar cane in Australia has
been found to be more accurate and reliable than traditional approaches such as multiple
linear regression [20,21]. For wheat yield prediction, methods ranging from a traditional
crop-weather analysis model relating crop yield to stress (water, temperature) indices [22],
to computationally-driven crop model simulation tools such as DSSAT and APSIM [23–25]
have been used to varying degrees of success but require substantial calibration to reduce
uncertainty. Recently, Feng et al. [26] adopted a hybrid approach combining a biophysical
model and RF to improve dynamic yield forecasts for 29 sites across the New South Wales
wheat belt and achieved good yield forecasting results (r = 0.87, RMSE = 0.64 t ha−1) based
on the end of milk development stage. However, this study used NDVI derived from
MODIS/MOD09GA surface reflectance composites at 500 m spatial resolution, precluding
the assessment of intra-paddock variability.

Recent examples of RF-driven yield prediction include evaluating the effective use of
RF at the global and country (USA) scale using wheat, maize and potato yield, climate, soil
and fertilizer management datasets [27]; wheat biomass estimation in Jiangsu province of
southern China using experimental plots and vegetation indices (VIs) from 30 m resolution
multispectral imagery from HJ-1A/B satellites [28]; broad-scale wheat yield prediction
over nine agricultural divisions in north China using Terra MODIS MOD13Q1 data, where
RF was found to be one of the top best-performing ML algorithms [29]. These studies
demonstrated the higher performance, robustness and accuracy of RF compared to sta-
tistical models, artificial neural networks (ANNs) and support vector regressions (SVRs).
Furthermore, work on the use of ML techniques for within-farm wheat yield forecasting
has been found to be still in their early stages [30,31] and therefore can provide novel
and accurate information to aid farmers’ precision agriculture decision-making such as
variable-rate nitrogen or phosphorus application for improved production efficiency and
sustainability [32–34] as well as downstream stakeholders in the grain industry.

www.planet.com
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The main objective of this research was to evaluate the integration of ML (RFR)
algorithms, high-resolution satellite imagery with multiple field and weather data to
develop advanced, data-driven yet generalizable models for wheat yield prediction for
wheat-growing paddocks in different parts of southeast Australia. This would therefore
develop a foundation for developing region-centric algorithms for national-scale yield
prediction. A key enabling objective was to build a parsimonious model (i.e., having a
maximum predictive power using a minimum number of parameters) to predict yield in-
season prior to, and up to harvest at various phenological stages while minimizing costs and
complexity, and maximizing applicability to potential users (e.g., growers and agronomists).

2. Materials and Methods

The project process workflow is summarized in Figure 1 and elaborated in the follow-
ing sections.
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Figure 1. Summary of workflow processes and datasets used for building, testing and evaluating RF
model wheat yield prediction method.

2.1. Study Region Paddocks

Spatially-distributed and referenced wheat yield values (t ha−1) were the pixel-level
target variable for the RF prediction model. Three paddocks in southeast Australia viz.
the states of Victoria (VIC), New South Wales (NSW) and South Australia (SA), that grew
wheat in 2018 (Figure 2), were selected from a pool of private yield data collected from col-
laborating farmers; 5 m grid resolution yield maps were generated using a semi-automated
procedure involving block kriging of yield monitor data, detailed in [35]. The verified yield
maps were resampled to 3 m resolution to match with the PlanetScope imagery detailed
below. The paddocks varied in hydroclimatic conditions, and soil characteristics and the
preceding 3 years’ cropping/fallow sequences were likely to have affected fertility, water
availability and crop residue cover leading into the 2018 season [36]. Different wheat vari-
eties were also grown, adding another layer of complexity with which to test the robustness
of the present technique. For instance, Kord is a mid-maturing variety that is robust to
drought stresses, though not necessarily with the highest potential yields. Lancer is a mid
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to late-maturing variety suitable for early sowing with good resistance to lodging. Scepter
is an early-mid season maturing type that has moderate resistance to lodging and one of the
highest average yields of up to 3.0 t ha−1 in the SA wheat National Variety Trials (NVTs).
These yield maps were used as training, testing and validation datasets for the RF model
development [37].
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Figure 2. Location of study paddocks in southeast Australia, covering the states of Victoria (VIC),
New South Wales (NSW) and South Australia (SA).

According to study [38], 2018 was a particularly difficult growing season for south-
east Australia cropping with the region experiencing rainfall in decile one range and
temperatures in decile ten.

2.2. PlanetTM Satellite Imagery

NDVI data was used as one of the predictor variables (features); 16-day Periods
spanning sowing to harvest dates for all three paddocks were created to constrain the
temporal variability of the wide range of data and imagery, and also enable foreseen
later work to compare with LANDSAT-based studies and imagery [39,40] (Table 1). In
total, 41 PlanetScope Analytic Ortho Scene (Level 3B), cloud-free BGRN imagery (VIC: 13,
NSW: 15, SA: 13) for the target paddocks were selected from available datasets, spanning
the southeast Australia winter wheat-growing season, ~April to December 2018, from
sowing to harvest. Ground Sample Distance (GSD) was 3.7 m and pixel dimensions
were 3 m × 3 m. This spatial resolution was relevant to practical precision agronomic
management by farmers (e.g., variable-rate fertilization), and harvesting header swath
width varying between approx. 5 to 12 m. Normalized Difference Vegetation Index (NDVI)
layers were generated for each scene using the Red (R) and Near Infra-Red (NIR) bands
following [41]; see also [42,43] in QGIS 3.4 [44], before cropping to paddock boundaries.
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Table 1. Location, cropping, climate and soil characteristics of study paddocks.

Location
2018

Wheat Crop
Information

Paddock Area &
Cropping Sequence

2015–2016–2017
Climate Soil Description

Ouyen,
VIC

142.37 E
35.12 S

Variety: Kord
Sowing: 15 May
Harvest: 30 Nov

Growing days: 199
Mean yield: 1.53 t ha−1

181.2 ha

Barley–Wheat–Fallow

Mean Max Temp: 23.8 ◦C
Mean Min Temp: 9.8 ◦C

Mean Annual Rainfall:
331.2 mm

Calcarosol (dune systems
with series of alkaline

sandy/loamy duplex, and
sandy clay soils).

Barmedman,
NSW

147.46 E
34.15 S

Variety: Lancer
Sowing: 4 April
Harvest: 27 Jan

Growing days: 298
Mean yield: 1.06 t ha−1

67.6 ha

Canola–Wheat–Canola

Mean Max Temp: 24.0 ◦C
Mean Min Temp: 9.9 ◦C

Mean Annual Rainfall:
470.9 mm

Brown Vertosol (heavy clay
soil, alkaline with strongly

sodic subsoil).

Pinery, SA
138.46 E
34.32 S

Variety: Scepter
Sowing: 9 May
Harvest: 11 Dec

Growing days: 216
Mean yield: 1.95 t ha−1

120.1 ha

Wheat–Wheat–Lentils

Mean Max Temp: 23.6 ◦C
Mean Min Temp: 9.7 ◦C

Mean Annual Rainfall:
408.9 mm

Calcarosol (alkaline silty
clay loam to

medium-heavy clay)
variable soil profiles on

dune systems.

In total, there were 377,475 pixels (3 m resolution; total area: 400 ha) across the VIC
(188,865 pixels; 170 ha), NSW (67,830 pixels; 61 ha) and SA (120,780 pixels; 109 ha) paddocks.
Areas covered by pixels analyzed were lower than actual paddock areas (Table 1) because
the data were cropped internally from paddock boundaries to mitigate edge effects.

The main dataset comprising all three paddocks was split into individual paddock
datasets, giving two levels: regional-scale (three-paddock composite) and local-scale (indi-
vidual paddock). All datasets were randomly divided into 60% training, 20% testing and
20% validation.

2.3. Weather Data

Location-specific daily weather data were compiled for each paddock from 5 km grid
resolution values interpolated from local and regional networks of the Bureau of Meteorol-
ogy and affiliated contractors’ weather station measurements, extracted from the Scientific
Information for Land Owners (SILO) database (http://www.longpaddock.qld.gov.au/silo,
last accessed 20 June 2019) [45], and assembled into the individual Periods (Table 2). For
each Period, mean maximum and minimum, absolute maximum and minimum temper-
atures were prepared as predictor variables (features) that would help indicate heat or
frost occurrence that could impact yield negatively; particularly pertinent at critical growth
stages such as anthesis [46]. Growing degree days (GDD) corresponding to the imagery
dates were also calculated and included as predictor variable [47]. Two rainfall datasets
were prepared: rainfall depth (mm) in the preceding Period and cumulative rainfall depth
(mm) since sowing date. Because of the coarse spatial resolution of the weather data, they
were applied uniformly at the paddock scale for each Period by assigning the same value
for all individual pixels within each paddock.

http://www.longpaddock.qld.gov.au/silo
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Table 2. PlanetScope imagery fortnightly Periods, dates and corresponding Days After Sowing (DAS)
in year 2018 for each location in the states of Victoria (VIC), New South Wales (NSW) and South
Australia (SA), Australia.

Location Ouyen, VIC Barmedman, NSW Pinery, SA

Period 2018 Date DAS 2018 Date DAS 2018 Date DAS

1 - - 19 April 15 - -
2 - - 30 April 26 - -
3 25 May 10 14 May 40 16 May 7
4 31 May 16 29 May 55 31 May 22
5 14 June 30 22 June 79 13 June 35
6 30 June 46 30 June 87 29 June 51
7 14 July 60 14 July 101 14 July 66
8 29 July 75 12 August 130 29 July 81
9 13 August 90 27 August 145 26 August 109

10 7 September 115 4 September 153 4 September 118
11 20 September 128 21 September 170 17 September 131
12 4 October 142 30 September 179 1 October 145
13 19 October 157 18 October 197 19 October 163
14 4 November 173 11 November 221 2 November 177
15 18 November 187 26 November 236 17 November 192
16 - - 12 December 252 - -

2.4. RF Model Development

Pandas software library functions for Python [48] were used for data preparation,
manipulation and analysis. Time-series NDVI and weather data were used together as
predictor variables. The NDVI data layers were parsed into CSV format with each cell value
representing an individual pixel value. Weather variables were assembled as individual
pixel values homogenous for each Period. Yield data (t ha−1) for individual spatially-
referenced pixels were used as the target values for the prediction algorithms. All input
and target values were indexed to retain their individual geographic locations to enable
their reassembly for examination of their spatial distributions.

The RF approach is an ensemble learning technique that makes predictions by com-
bining decisions from a sequence of base models, with individual base models known as
trees [49]. Hyper-parameters (e.g., weather and NDVIs) are tuned using the best cross-
validation (CV) results. Random Forest Regression (RFR) was performed using the Scikit-
learn machine learning module for Python [50]. Each tree in the RFR was built by using
randomly selected variable sets from the training dataset with the final prediction for the
testing datasets derived by averaging the tree outputs. Cross-validation was conducted to
check the accuracy of the model on the independent validation dataset [51].

Calibration of each RFR model was done by hyperparameter tuning to obtain the
optimal combination of: (i) number of trees in ensemble (n_estimators); (ii) maximum
number of levels in each decision tree; (iii) maximum number of features considered for
splitting a node, and (iv) method for sampling data points (with or without replacement).
Random Grid Search was to incorporate a wide range of possible values and hyperpa-
rameter combinations in an unbiased manner, with superior computation times [52], an
important consideration for mining large volumes of agricultural data. Twenty iterations
of five-fold cross validation, with different model settings each time, were performed to
facilitate model optimization and generalizability, while avoiding overfitting on the test
dataset [50,53].

2.5. Feature Importance Analysis

Identifying and ranking the importance of individual features used in the RFR mod-
els we built, was conducted via Scikit-learn toolkit RF feature importance function, in
order to understand the underlying dynamics contributing to model accuracy in yield
prediction and ascertain their generalizability and meaningfulness [15,54,55]. To improve
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model performance while reducing the risk of overfitting, a forward-selection process was
implemented following [21,56]. The optimum parameter combination giving the highest
mean validation score was selected for model training. There was a need to balance per-
formance against computational costs, even though model accuracy would expectedly
increase with number of trees. To quantify and evaluate the tradeoffs made with different
hyperparameter combinations, mean validation score was compared against number of
trees, with the latter changed one at a time. Grid Search was then used for the selected
numbers of trees to corroborate the optimality of the tuned settings, thus giving converged
parameter settings of practical value.

3. Results
3.1. Regional (Composite) Yield Prediction

The RFR model developed for predicting yield of the three paddocks combined, i.e., at
the regional scale, performed well with good generalizability across the VIC, NSW and SA
locations. Table 3 compares the descriptive statistics of the observed and predicted yield
datasets; the independent validation dataset. They were very similar, albeit with predicted
minimum yield slightly higher, and maximum yield, slightly lower than the observed yield.
Performance metrics shown in Table 4 demonstrate the good accuracy of the developed
model. Notably, the adjusted R2 value and validated regression metric scores were similar,
indicating good model generalization ability and absence of overfitting, performing well
on unseen data.

Table 3. Descriptive statistics for regional-scale observed and RF model predicted yield.

Observed Yield Predicted Yield

sample size, n 75,495 75,495
minimum (t ha−1) 0.35 0.38
maximum (t ha−1) 2.79 2.67
mean (t ha−1) 1.60 1.60
standard deviation (t ha−1) 0.47 0.44

Table 4. Statistical performance of regional-scale RF yield prediction model.

Metric Test
Dataset

Validation
Dataset

R Squared (R2) 0.858 0.860
Adjusted R Squared (R2) 0.858 0.860
Mean Absolute Error (MAE) 0.126 0.126
Mean Squared Error (MSE) 0.032 0.031
Root Mean Squared Error (RMSE) (t ha−1) 0.179 0.177

As seen in Figure 3, the datapoints were mostly closely clustered around the reference
line, particularly for yield values between 0.8 to 1.3 t ha−1. However, they were more
dispersed between the 1.3 to 2.8 t ha−1 yield. While the VIC paddock (blue) yield values
were broadly distributed, NSW paddock (orange) yield values tended towards the lower,
and for SA paddock (green), the higher ranges.
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Figure 3. Scatterplot of observed and predicted yield of VIC, NSW and SA paddocks combined.

Feature importance analysis found that NDVI data acquired in late September/early
October were most important to the prediction accuracy of the RF model developed for
the 3-paddock composite (Figure 4; Table 2). This corresponded to 142, 179 and 145 DAS
for VIC, NSW and SA paddocks, respectively. If the NDVI data for Period 12 (P12) were
excluded as input to the model, a mean decrease in prediction accuracy of 53% occurred.
In contrast, excluding NDVI data from later or earlier time Periods led to only 2% to 6%
mean decrease in prediction accuracy. Notably, only NDVI images from P5 to P14 featured
in the top 10 most important features.
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P12 refer to NDVI in Periods described in Table 2.



Sensors 2022, 22, 717 9 of 19

We also found low feature importance of weather (temperature and rainfall) datasets,
being ranked outside of the top 10; this also applied to the individual paddock RF prediction
models discussed below.

3.2. Individual Paddock Yield Prediction Models

For all three paddocks, predicted mean yields were very close to the observed mean
yield with less than 1% difference (Table 5). Standard deviation values showed that RF
model predictions resulted in lower variations around the mean compared to observed
yield, with the worst performance for SA paddock and best performance for NSW paddock.
This was also shown in the overprediction of minimum yields by up to 0.06 t ha−1 for NSW
paddock, and underprediction of maximum yields by up to 0.14 t ha−1 for SA paddock.

Table 5. Descriptive statistics for predicted yields from individual RF models compared with observed
yields for VIC, NSW and SA paddocks.

VIC
(n = 37,773)

NSW
(n = 13,566)

SA
(n = 24,156)

Yield Statistic
(t ha−1) Observed Predicted Observed Predicted Observed Predicted

mean 1.55 1.56 1.08 1.08 1.95 1.94
standard
deviation 0.44 0.41 0.20 0.19 0.33 0.22

minimum 0.36 0.38 0.34 0.40 0.91 0.96
maximum 2.72 2.66 1.67 1.59 2.80 2.66

The individual paddock RF model performance metrics are presented in Table 6.
RF prediction models for VIC and NSW paddocks performed well with high R2 values,
although with only moderate performance for the SA RF prediction model with R2 at 0.447.
Nevertheless, all adjusted R2 values indicated the absence of overfitting. MAE, MSE and
RMSE values were generally good, with lowest values for the NSW paddock but for the SA
paddock, relatively higher error values.

Table 6. Statistical performance of VIC, NSW and SA RF yield prediction models.

VIC NSW SA

Metric Test
Dataset

Validation
Dataset

Test
Dataset

Validation
Dataset

Test
Dataset

Validation
Dataset

R2 0.890 0.887 0.870 0.878 0.447 0.443
Adjusted R2 0.890 0.887 0.869 0.877 0.445 0.441

Mean Absolute Error
(MAE) 0.110 0.111 0.056 0.054 0.186 0.185

Mean Squared Error
(MSE) 0.021 0.022 0.005 0.005 0.061 0.060

Root Mean Squared Error
(RMSE) (t ha−1) 0.146 0.147 0.073 0.071 0.246 0.246

Figure 5a–c compare the RF predicted and observed yield for VIC, NSW and SA
paddocks, respectively. There was a close clustering of data around the reference line for
VIC paddock for yield values between 1.0 to 1.3 t ha−1, while this was seen for the NSW
paddock between 0.8 to 1.3 t ha−1. SA paddock displayed quite widely-dispersed values
around the reference line with clear underprediction 2.0 t ha−1 and overprediction below it.
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Figure 6a–c present the yield map and histogram for VIC, NSW and SA paddocks,
respectively. For the VIC paddock, we saw from the yield map, good spatial correspondence
between the observed and predicted values. The histograms showed a higher number of
high-yield values being predicted compared to the observed yield values, quite apparent
for the yield values above 2.0 t ha−1. The NSW paddock yield map also showed good
spatial correspondence between observed and predicted values. The NSW yield histograms
also showed good similarities in the general distribution of values, although the prediction
was not able to replicate the bimodal pattern of the observed yield with peaks at 1.0 and
1.3 t ha−1. The prediction gave a single high peak around the 1.25 t ha−1 yield value.
The SA paddock yield map had comparatively poorer spatial correspondence between
the observed and predicted values. The predicted yield histogram had a higher peak of
average values around 1.95 t ha−1 compared to the observed yield histogram, which had
gentler peaks around 1.75 t ha−1 and 2.15 t ha−1. This corroborated with the lower standard
deviation of 0.22 t ha−1 for predicted yield compared to 0.33 t ha−1 for observed yield in
Table 5.

3.3. Feature Importance Analysis for Individual Paddocks

Table 7 shows the mean decrease in accuracy (MDA)—the arithmetic averaged loss of
prediction accuracy for all individual pixels comparing predicted output with target output
values, if one of the features were excluded as predictor input for the RF model, for the top
10 most important features, and the corresponding Period (P) (Table 2) of the NDVI data.

Table 7. Top ten most important features for VIC, NSW and SA paddock RF models, and correspond-
ing NDVI Period and mean decrease in accuracy (MDA) if excluded.

Feature
Importance Rank

VIC NSW SA

NDVI
Period MDA NDVI

Period MDA NDVI
Period MDA

1 18 0.68 16 0.68 13 0.22
2 17 0.11 17 0.14 16 0.12
3 20 0.04 7 0.02 18 0.09
4 13 0.03 21 0.02 15 0.08
5 12 0.03 18 0.02 14 0.07
6 16 0.02 19 0.02 17 0.06
7 15 0.02 20 0.02 12 0.06
8 19 0.02 13 0.02 22 0.06
9 14 0.02 14 0.01 19 0.04
10 11 0.01 9 0.01 11 0.04

For the VIC paddock, NDVI data for Period 12 (30 September to 15 October; 138 to
153 DAS), with the imagery on 4 October (142 DAS) used for the VIC RF yield prediction
model. This image contributed 68% to the prediction accuracy. The second most important
NDVI map in the Period 11 (20 September, 128 DAS) contributed 11% to prediction accuracy.

For the NSW paddock, NDVI data for Period 10 (29 August to 13 September; 147 to
162 DAS), with imagery obtained on 4 September (153 DAS) used for the NSW RF yield
prediction model. This image contributed 68% to prediction accuracy.

For the SA paddock, NDVI data for Period 7 (12 July to 27 July; 64 to 79 DAS) with
imagery obtained on 14 July (66 DAS) used for the SA RF yield prediction model. In
contrast to the results for VIC and NSW paddocks, this image contributed only 22% to
prediction accuracy. The second most important NDVI map was obtained in Period 10
on 4 September (118 DAS) contributing 12% to prediction accuracy. Distribution of RF
yield prediction model feature importances of NDVI data for SA paddock were hence more
evenly distributed across the growing period, albeit with lower prediction accuracy.
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Figure 6. Yield maps and histograms for (a) VIC; (b) NSW and (c) SA paddocks. Notes: Yield
maps—darker colors indicate higher yield values; yield histogram y-axes differ in range for NSW
and SA paddocks.
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4. Discussion

The regional-scale RF regression model was able to provide accurate wheat yield
prediction at a high R2 value of 0.86 and low RMSE of 0.18 t ha−1. The results show
that the model is robust at prediction across the three different paddocks with distinct
conditions. Despite its limitations, NDVI continues to be a useful Vegetation Index (VI)
for yield prediction, and the results from this study concurs with previous work using
UAV-mounted cameras [57], LANDSAT [58] and MODIS imagery [59]. The present work
further demonstrates the ability for spatially-explicit predictions by using high-resolution
imagery and machine learning (RF) approach. Furthermore, the high-cadence of Planet
imagery enabled the acquisition of cloud-free images of our target paddocks within a
constrained time period, an important consideration for operational applications at the
regional and local scales.

Interestingly, we found that the weather data were not significant features for all de-
veloped RFR yield prediction models, even though it is indubitable that these are important
factors affecting crop health and growth [60], and their inclusion have improved accuracy
of various yield prediction techniques [61–63]. None of the weather data layers were found
in the top ten features of importance. The key explanation could be that while NDVI is
able to indicate plant health, including their responses to varying weather and climatic
conditions [64], high spatial resolution 3 m NDVI used in this study (and indeed other
VIs), the precision with which plant growth conditions are reflected, and the fidelity with
which the data can be extrapolated via RFR to reasonably accurate yield predictions, render
near-term weather data unnecessary. Hence, RFR could enable parsimonious wheat yield
prediction models to be built by possibly precluding the requirement for accessing and
assembling large weather datasets to aid the prediction process.

While good agreement was found between predicted and observed yield, the reported
differences can be attributed to several factors. Firstly, NDVI estimates live vegetative
biomass [65] which has good, but not perfect correspondence with yield. This is especially
so for grain crops, such as wheat, where the yield comprises grains in storage organs in
contrast with pasture or forage crops. Secondly, temperature extremes such as frost damage
to foliage, particularly during winter, can initiate leaf senescence and lower vegetation
greenness (higher red reflectance, lower NDVI value) but lag in time for these to manifest
(i.e., in later images normally of lower importance). The yield impacts of frost, particularly
during critical periods during the reproductive and grain development phases, strongly
determine wheat grain number and size [46]. Thirdly, index value saturation, and obscur-
ing of the biomass beneath the closed canopy can lead to high uncertainty in biomass
estimates [66,67] and, consequently, wide variation in accuracy of yield predictions.

Model calibration required few tunable model parameters, similar to how Houborg and
McCabe [42] found good accuracy by simply optimizing the number of trees (n_estimators).
This study concurs with other studies across different crops including wheat (biomass) [28],
sugarcane [21] mango [68] and corn [69]. Thus, RFR has been found to be a suitable and
parsimonious technique for regional-scale wheat yield prediction.

Examination of RFR yield predictions for individual paddocks found good accuracy
for VIC and NSW paddocks. The most important NDVI data for these two paddocks
correspond well to the start of anthesis where peak biomass (and NDVI values) are likely
to translate predictably to grain yield [70], barring any unpredictable perturbations in
the intervening time to harvest, such as temperature stresses (heat/frost) or strong winds
causing lodging. These demonstrate the viability of RFR for aspatial paddock-level pre-
diction of mean yields, as well as the good accuracy of spatially-explicit pixel-level yield
predictions in the given conditions. However, SA paddock RFR prediction model outputs
lowered the overall regional prediction accuracy, and had only moderate accuracy at the
individual paddock level illustrated by substantial statistical and spatial differences be-
tween the predicted and observed yields. The SA RF model feature importances’ lower
values, more even distribution, and higher importance of earlier Periods (Table 7) indicate
that some unpredicted factors were not comprehensively accounted for, when compared
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to the VIC and NSW RF model prediction accuracies and feature importance analyses.
Such inter-regional variability could be mainly attributed to the inter-paddock differences
in wheat variety, sowing density, soil, topography, local weather conditions and farmer
management practices, not all of which can be pragmatically quantified. The earlier time of
most important NDVI map in P7 was likely to have coincided with tillering stage [70], but
was probably confounded by paddock-level variabilities and perturbations affecting crop
health and yield later in the season.

We noted that only SA paddock had legume residue from the previous crop, which
has been shown to supply additional N to wheat crop via fixed soil N as well as organic N
that mineralized as it decomposed [71] and therefore enhanced yield outcomes. However,
there would likely to have been substantial spatial heterogeneity in these decomposition
processes [72]. Furthermore, Scepter was one of the highest yielding and drought tolerant
varieties (trial mean yield: 3 t ha−1) during the 2018 NVT [73]. Hence, this could have led
to ample overall biomass growth, canopy closure and NDVI value saturation which could
have obfuscated the predicted yield, leading to the overprediction of lower- performing ar-
eas and underprediction of high-performing areas. This may not have happened on the VIC
and NSW paddocks which grew comparatively lower-yielding and less drought-tolerant
varieties. This uncertainty would have been compounded by the variable topography and
soil characteristics for the SA paddock. For instance, we observed high-frequency microto-
pographical variations over SA paddock compared to the more regular undulating terrain
for VIC and flat terrain for NSW paddocks. For SA paddock, the high intra-paddock soil
variability, and corresponding soil moisture and fertility variations, could have contributed
to substantial uncertainties in yield outcomes. This corresponds to how study [74] found
close relationships between yield and mean surface curvature due to correlations with soil
productivity (e.g., moisture).

Furthermore, haying-off [75], leading to reduced yields due to post-anthesis drought
and heat stress despite vigorous growth through the season (detected as high NDVI values)
aided by ample N supply, can be quite unpredictable at both the regional and paddock-
level scale. This could have contributed to the overprediction of yield, particularly in SA
paddock. For instance, SA paddock recorded maximum daily temperatures above 35 ◦C
for three consecutive Periods prior to harvest, compared to 1 each for VIC and NSW. These
numerically small occurrences may not have been adequately accounted for amongst all the
other feature datasets used in the RFR. Altogether, the high spatio-temporal variability in
crop phenology throughout the season with drought and heat stresses led to only moderate
prediction accuracy for the SA paddock at Pinery. These results highlight nuances in crop
phenology, and their variable presentation via satellite imagery and NDVI that are difficult
to capture even using RFR.

The results for the composite dataset, and exemplified by the SA paddock results, show
that poor prediction accuracies occurred at the lower and higher ends of the yield values.
Similar outcomes were also found by [27] who found that while overall accuracy of RF
yield predictions were excellent, poor accuracy was found at extreme values or for values
that were outside the range of the training dataset. Nevertheless, similar to study [59], the
developed RF yield prediction models were able to predict yields up to two months before
harvest, a timeline that is useful for farmers and other wheat crop stakeholders further
along the value chain.

The results of the present study for wheat yield prediction (regional RF model: R2 = 0.86,
RMSE = 0.18 t ha−1, n = 75,495) compare favorably with similar studies such as [28],
who reported for wheat biomass prediction using RF and HJ-1/2 30 m satellite imagery,
R2 = 0.79, RMSE = 1.81 t ha−1 (n = 49); [76] applied RF yield prediction methods to wheat,
barley and canola using MODIS 250 m derived Enhanced Vegetation Index and reported
Lin’s Concordance Correlation Coefficient (LCCC) of 0.89 to 0.92 at the field resolution
(RMSE = 0.36 to 0.42 t ha−1) at 10 m spatial resolution. Relatedly, study [30] evaluated
convolutional neural networks (CNN) with bootstrapped regression trees (BRR), and the
effects of different data quality and resolution (Landsat 8, Sentinel 2 and proximal sensing)
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at 5 m spatial resolution; they found optimal wheat yield predictions at LCCC = 0.63
(RMSE = 0.08) for three selected fields using BRR with Sentinel 2 data. The results from
this study, particularly at the paddock scale for VIC and NSW paddocks at 3 m spatial
resolution, demonstrate the viability of RF modeling and, more broadly, data and ML-
driven techniques for wheat prediction. The spatial variations in predicted as well as
observed yield are particularly helpful in the era of precision agriculture where farmers are
able to make better spatial accuracy scouting or fertilizer management decisions (e.g., via
management zoning) [76].

Key challenges involved in this work include the inability to evaluate various other
Vegetation Indices (VIs) that could enable even higher prediction accuracies. Although the
broad spectral resolution limited the range and precision of vegetation indices that could be
harnessed, this study showed that good yield prediction results were possible by using RF
algorithms with NDVI data. This also points to the high potential for further work using
other VIs such as chlorophyll content index (CCCI) or Photochemical Reflectance Index
(PRI) [77], as air and spaceborne platforms with more spectral bands become available as
sensor technologies advance [78].

RF algorithms have some limitations which the present research encountered and
researchers should be aware of. Dang et al. [79] highlighted that the lower performance of
RFR autumn crop yield prediction compared to Support Vector Regression (SVR) and Deep
Neural Network (DNN). This was attributed to its inability to make predictions beyond the
range of values of the training set data, the tendency of overfitting when modeling noisy
data, and discreteness of output values defined by categories (however narrowly defined),
which would otherwise give continuous range of output values provided by, e.g., SVR.

This research also did not integrate data reflecting field management practices such
as fertilization and pest management. Although these are important factors affecting crop
health and yield [80], it is typically very difficult to obtain such information in a timely
way from farmers at the individual level, as well as prepare and input them into the
model. It is also likely the effects of these practices manifest in the crop performance and
health for which the spatially-distributed NDVI and yield values reflect to a reasonable
extent, although with some time lag. Thus, excluding management practices data is not
critical to the yield prediction objectives while allowing the RF modeling process to stay as
parsimonious as possible.

Beyond the present research, further work can include (i) increasing or decreasing
temporal resolution of predictor variables (e.g., NDVI) to optimize modeling and data
processing times and higher accuracy; (ii) evaluation of other VIs or the use of different VIs
at different growth stages [74]; (iii) increased number of paddocks distributed throughout
the region to increase size of training datasets and to capture greater variability for better
model generalizability; (iv) evaluating RFR yield prediction models for other areas such
as the western Australian wheat belt; (v) comparative evaluation of RFR with other ML
algorithms such as SVR, DNN, Least Absolute Shrinkage and Selection Operator (LASSO)
and Sequential Forward Selection (SFS) [81]. At the time of writing in late 2021, southeast
Australia and much of the rest of the country is estimated to record harvests at least 10%
above the 10-year average [77]. Application of the RF modeling method to this “good”
growing season in contrast to the “difficult” season examined in this research would
help to further test its robustness and viability for operational use, as well as reexamine
the importance of various features such as weather parameters, and the integration of
spatially-explicit soil data [28].

5. Conclusions

This study evaluated the use of RFR to perform in-season wheat yield prediction at
regional and paddock-level scales in southeast Australia using (3 m) NDVI data derived
from high-cadence, high-resolution (3 m) PlanetScope satellite imagery and weather data
through the winter crop-growing season with actual yield data as the reference. Evalua-
tion of the RFR models found that good yield prediction results were possible by using
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NDVI data, even though the broad spectral resolution limited the range and precision of
vegetation indices that could be harnessed.

With high accuracy at the regional scale and for two out of three paddocks at the
paddock scale, this research shows how RFR-driven yield prediction could be successfully
performed in data-rich, information-poor (lack of information on soil, topography, farmer
management actions) contexts. Hence, RFR methods have much potential for regional-scale
surveillance and monitoring of wheat crop that can benefit various business stakeholders,
while paddock-level yield predictions can aid spatially-explicit tactical crop management,
harvest and post-harvest decision-making by farmers. When fully or partially automated,
the modeling outputs can be generated efficiently, accurately and communicated effec-
tively to various stakeholders for timely decision-making. Where yields with significant
departures from the mean in terms of amount (t ha−1) or quality (protein, grain size),
further investigations of the contributing factors (soil, pests, microclimate) can be done.
Additionally, the high spatio-temporal resolution of Planet CubeSatCubeSat data exploited
by RFR modeling can also be particularly relevant in smallholder farm contexts (e.g., eco-
nomically less-developed countries) where plot sizes are modest compared to industrial-
scale paddocks in countries such as Australia.
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