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The phencyclidine-derivative ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-

1-one] was added to the World Health Organization’s Model List of Essential Medicines

in 1985 and is also on the Model List of Essential Medicines for Children due to its

efficacy and safety as an intravenous anesthetic. In sub-anesthetic doses, ketamine

is an effective analgesic for the treatment of acute pain (such as may occur in the

perioperative setting). Additionally, ketamine may have efficacy in relieving some forms of

chronic pain. In 2019, Janssen Pharmaceuticals received regulatory-approval in both the

United States and Europe for use of the S-enantiomer of ketamine in adults living with

treatment-resistant major depressive disorder. Pre-existing anxiety/depression and the

severity of postoperative pain are risk factors for development of chronic postsurgical

pain. An important question is whether short-term administration of ketamine can

prevent the conversion of acute postsurgical pain to chronic postsurgical pain. Here,

we have reviewed ketamine’s effects on the biopsychological processes underlying pain

perception and affective mood disorders, focusing on non-NMDA receptor-mediated

effects, with an emphasis on results from human trials where available.

Keywords: pain, dissociation, ketamine, HCN channel, oceanic boundlessness, out-of-body experience

INTRODUCTION

The phencyclidine-derivative ketamine [2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one]
was added to the World Health Organization’s Model List of Essential Medicines in 1985 and
is also on the Model List of Essential Medicines for Children due to its efficacy and safety as an
intravenous anesthetic. In sub-anesthetic doses, ketamine is an effective analgesic for the treatment
of acute pain (such as may occur in the perioperative setting) (1–3). Additionally, ketamine may
have efficacy in relieving some forms of chronic pain (4, 5), including neuropathic pain (6). Not
surprisingly, in those clinical studies of ketamine (vs. placebo) for the treatment of chronic non-
cancer pain, there was a significant increase in the incidence of “psychedelic” side-effects in the
ketamine group [risk ratio (95% confidence interval): 5.35; (2.64, 10.81)] (6). The relevance of
this observation will be made clear below. The molecular structure contains a chiral center at
C-2 of the cyclohexanone ring, thereby giving rise to R(-) and S(+) stereoisomers (Figure 1).
In 2019, Janssen Pharmaceuticals received regulatory-approval in both the United States (7) and
Europe (8) for use of the S-enantiomer of ketamine in adults living with treatment-resistant major
depressive disorder. Pre-existing anxiety/depression and the severity of postoperative pain are risk
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FIGURE 1 | Ketamine structure. Ketamine

[2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one] contains a chiral center

at C-2 of the cyclohexanone ring (numbered as shown), which gives rise to the

two stereoisomers shown.

factors for development of chronic postsurgical pain. An
important question is whether short-term administration of
ketamine can prevent the conversion of acute postsurgical pain
to chronic postsurgical pain.

Ketamine was first synthesized in the early 1960s as an
alternative to phencyclidine (PCP), which had been approved
by the United States Food and Drug Administration as
an anesthetic, but which had side effects that limited its
usefulness. Unless otherwise specified, ketamine, when used
clinically, is administered as the racemate, (R,S)-ketamine.
In the predominant metabolic pathway, (R,S)-ketamine is
initially metabolized to norketamine [(R,S)-norketamine]. (R,S)-
Norketamine in turn can be metabolized in a stereoselective
manner to form both (S) and (R) dehydronorketamines
(DHNKs) and hydroxynorketamines (HNKs) (Figure 2).
Hydroxylation at the six position of norketamine results in
(2R,6S;2S,6S)-hydroxynorketamine while hydroxylation in the
four position (by CYP2B6 or CYP2A6) results in the 4-hydroxy
isomers, (2R,4R;2S,4S)-hydroxynorketamine and (2R,4S;2S,4R)-
hydroxynorketamine. Lastly, hydroxylation of norketamine
at the five position by CYP2B6 produces (2R,5S;2S,5R)-
hydroxynorketamine and (2R,5R;2S,5S)-hydroxynorketamine.
(R,S)-dehydroxynorketamine can result either from direct
dehydrogenation from norketamine or dehydration from
either diastereomer of the 5-hydroxynorketamines. There
are additional minor metabolic pathways that result in
low abundance metabolites, which include: hydroxyphenyl-
ketamine, hydroxyphenyl-norketamine, 4-hydroxyketamine,
(2R,6S;2S,6R)-hydroxynorketamine, (2R,6S;2S,6R)-
hydroxyketamine, and (2R,6R;2S,6S)-hydroxyketamine (9).With
respect to the individual enantiomers, (R)-ketamine selectively
forms (2R,6R)-hydroxynorketamine while (S)-ketamine
selectively forms (2S,6S)-hydroxynorketamine (9–11).

The dose of ketamine resulting in unresponsiveness in
humans is ∼ 2 mg/kg iv, which produces plasma concentrations
of 1,500–1,800 ng/ml (∼6.3–∼7.6µM) and 2,000 ng/ml
(∼8.4µM) in adults (12–14) and children (13), respectively;
consciousness reappears when the concentration falls below
1,060 ng/ml (4.5µM) (12, 14). In healthy, young (36 ± 3

yr, n = 5) human volunteers, (R,S)-ketamine (50 mg/min),
(S)-ketamine (25 mg/min), or (R)- ketamine (75 mg/min)
was administered over 5–7-min by continuous infusion; the
infusion was discontinued after 5min (or when no further
changes were observed in the EEG over a 30–60 sec interval).
The total doses (mean ± SD) of (R,S)-ketamine, (S)-ketamine,
and (R)-ketamine were 275 ± 25mg, 140 ± 21mg, and 429 ±

37mg, respectively. Serum ketamine concentrations associated
with regaining consciousness and orientation were consistent
with an (S):(R) isomer potency ratio of 4:1 [Table 1; (15)].
With regards to psychomotor function impairment, the (S):(R)
potency ratio varied from 3:1 to 5:1. After comparable degrees
of CNS depression as measured by electroencephalography,
(S)-ketamine was associated with a more rapid recovery of
psychomotor skills than (R,S)-ketamine.

In contrast, the ketamine concentration (and corresponding
dose) required to provide acute pain relief is markedly less.
In healthy adult volunteers, a single bolus dose administered
intravenously of either 0.125 or 0.25 mg/kg produces peak
plasma concentrations of ∼60 ng/ml [∼0.25µM] and 175 ng/ml
[0.74µM], respectively (16), while a single dose of 0.5
mg/kg administered intramuscularly results in an average
peak concentration of 240 ± 50 ng/ml [1.0 ± 0.2µM] (17).
Regardless of the route of administration, marked analgesia is
seen at concentrations < 250 ng/ml (< 1.1µM) (16–18). It
is worth noting that the concentration of ketamine associated
with analgesia is 2–3× of that required for its antidepressant
effects in patients with treatment-resistant major depression
(following 0.5 mg/kg (R,S)-ketamine infused over 40min,
average peak plasma concentration was 128 ± 44 ng/ml [0.54
+ 0.19µM] (19), which is comparable to population model
estimates of 72.5–96.6 ng/ml [0.31–0.41µM] for the treatment-
approved intranasal dose of 56mg (S)-ketamine (20); see also
Table 2).

Hyperpolarization-activated cyclic nucleotide-regulated type
1 (HCN1) ion channels have recently gained attention as
highly relevant molecular targets for a wide range of general
anesthetics (22), including ketamine (23, 24). HCN channels,
of which there are four isoforms (HCN1-4), belong to the KV

channel superfamily, and are responsible for the generating the
“pacemaker” current Ih (25–29). The channels assemble as homo-
and hetero-tetramers [with only HCN2-3 disfavored (30)] and
are present throughout the nervous system (31, 32).

In HEK293 cells transiently transfected with mouse
(m)HCN1, (R,S)-ketamine and S-ketamine significantly shifted
the V1/2 (i.e., the voltage required for half-maximal current
activation) to more hyperpolarized potentials (as measured by
the 1V1/2) with EC50s of 8.2 ± 1.2µM and 4.1 ± 1.2µM,
respectively, with corresponding maximal 1V1/2 values of
−11.9 ± 0.7mV and −14.5 ± 0.9mV (23). Even at their EC50s,
both (R,S)-ketamine and (S)-ketamine left-shifted the V1/2 by
∼4–5mV, which would limit membrane repolarization following
hyperpolarization, thereby preventing a neuron from reaching
action potential threshold. Of note, HCN1 and HCN2 will freely
co-assemble given the opportunity in vitro (30, 33) and in vivo
(34), and the effect of ketamine on mHCN1-mHCN2 heteromers
was comparable to that on mHCN1 homomers (23). These
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FIGURE 2 | Primary metabolites of ketamine. Ketamine exists in (S) and (R) configurations (see Figure 1). Each is metabolized to several primary metabolites, with the

relevant hepatic enzymatic pathways shown in red (primary pathways are indicated by solid arrows, secondary/minor pathways by dotted arrows). Data from (9, 10).

TABLE 1 | Time to behavioral recovery and corresponding serum ketamine concentrations in healthy human volunteers.

Orientation variable (R,S)-ketamine S(+)-ketamine R(-)-ketamine

Time (min) µg/ml Time (min) µg/ml Time (min) µg/ml

[µM] [µM] [µM]

Opened eyes 11 ± 3 2.6 ± 0.7 8 ± 1 1.2 ± 0.3* 7 ± 2 5.2 ± 0.8*

[10.9 ± 2.9] [5.0 ± 1.3] [21.9 ± 3.4]

Squeezed hands 22 ± 8 1.6 ± 0.5 12 ± 3 1.0 ± 0.3 9 ± 2* 4.1 ± 0.9*

[6.7 ± 2.1] [4.2 ± 1.3] [17.2 ± 3.8]

Oriented to person 33 ± 11 1.2 ± 0.3 14 ± 2* 0.9 ± 0.2 10 ± 2* 3.9 ± 0.8*

[5.0 ± 1.3] [3.8 ± 0.8] [16.4 ± 3.4]

Oriented to person, place, time 45 ± 10 1.0 ± 0.1 21 ± 2* 0.7 ± 0.2* 18 ± 3* 2.7 ± 0.5*

[4.2 ± 0.4] [2.9 ± 0.8] [11.4. + 2.1]

Psychomotor test

Analogue scales 161 ± 21 0.4 ± 0.1 150 ± 22 0.2 ± 0.03* 123 ± 19 0.7 +0.2*

[1.7 ± 0.4] [0.8 ± 0.1] [2.9 ± 0.8]

Trigger test 164 ± 17 0.4 ± 0.1 87 ± 13* 0.3 ± 0.1* 65 ± 9* 1.1 ± 0.3*

[1.7 ± 0.4] [1.3 ± 0.4] [4.6 ± 1.3]

Symbol–digits 178 ± 19 0.4 ± 0.1 122 ± 29 0.2 ± 0.1* 104 ± 19* 0.8 +0.3*

[1.7 ± 0.4] [0.8 ± 0.4] [3.4 ± 1.3]

Time distortion 118 ± 24 0.5 ± 0.2 74 ± 12* 0.3 ± 0.1* 57 ± 20* 1.2 ± 0.8

[1.7 ± 2.1] [1.3 ± 0.4] [5.0 ± 3.4]

*P < 0.05 compared to racemate. Data (n = 5 subjects (male); mean ± SD) from White et al. (15).

observations raise the intriguing possibility that modulation of
HCN1 channel function contributes to the efficacy of ketamine
as an antidepressant [for reviews see (35, 36)], which in turn may

be a critical determinant in whether short-term administration
of ketamine can prevent the conversion of acute postsurgical
pain to chronic postsurgical pain.
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TABLE 2 | Average plasma concentrations of ketamine and selected metabolites in patients with treatment resistant depression following 40min infusion of 0.5 mg/kg

(R,S)-ketamine.

Time (min) Concentration (ng/ml, [µM])

40 80 110 230 1,440

Metabolite

Bipolar depression

(R,S)-ketamine 177.23 ± 53.8 83.21 ± 28.17 60.02 ± 25.01 27.63 ± 14.52 9.19 ± 10.92

[0.75 ± 0.23] [0.35 ± 0.12] [0.25 + 0.11] [0.12 + 0.06] [0.04 ± 0.05]

(R,S)-norketamine 63 ± 24.82 69.96 ± 19.98 63.35 ± 20.55 43.49 ± 16.88 14.36 ± 9.27

[0.27 ± 0.10] [0.29 ± 0.08] [0.27 ± 0.09] [0.18 ± 0.07] [0.06 ± 0.04]

(R,S)-dehydroxynorketamine 28.07 ± 18.72 48.07 ± 26.43 50.5 ± 27.44 43.08 ± 23.76 16.87 ± 13.51

[0.12 ± 0.08] [0.20 ± 0.11] [0.21 ± 0.12] [0.18 ± 0.1] [0.07 ± 0.06]

Major depressive disorder

(R,S)-ketamine 204.13 ± 101.46 93.5 ± 31.06 65.03 ±23.17 33.86 ± 19.04 BLQ

[0.86 ± 0.43] [0.39 ± 0.13] [0.27 ± 0.1] [0.14 ± 0.08]

(R,S)-norketamine 55.52 ± 33.87 73.54 ± 31.86 62.74 ± 26.78 46 ± 22.97 12.39 ± 8.47

[0.23 ± 0.14] [0.31 ± 0.13] [0.26 ± 0.11] [0.19 ± 0.1] [0.05 ± 0.04]

(R,S)-dehydroxynorketamine 7.52 ± 4.8 12.02 ± 6.19 13.27 ± 6.92 10.17 ± 6.65 BLQ

[0.03 ± 0.02] [0.05 ± 0.03] [0.06 ± 0.03] [0.04 ± 0.03]

BLQ, below limits of quantitation. Data from Zarate et al. (21). Patients with treatment resistant depression included those with major depressive disorder (MDD; n = 45) and bipolar

depression (BD; n = 22).

USE OF KETAMINE IN PAIN STATES

Acute Pain
Ketamine gained Food and Drug Administration approval in
1970 for the clinical use as an anesthetic in humans. Since that
time, ketamine has been used for purposes beyond its role as an
anesthetic. One of the primary uses has been in the perioperative
setting, where it can serve as both part of an anesthetic “cocktail”
and as a means of managing acute pain. Its use at subanesthetic
doses for acute pain management is so prevalent that consensus
guidelines have recently been developed (1). Ketamine’s likely
mechanism of action in acute pain is via its antagonism of
the N-methyl-D-aspartate (NMDA) receptor, where it is a non-
competitive antagonist with an IC50 of 1.6µM (Table 3).

The noncompetitive antagonism of NMDA reduces
glutamate release, and the resulting reduction in this excitatory
neurotransmitter attenuates pain sensation transmission [for
review, see (58)]. While this is likely the predominant mode
of action underlying its effectiveness in acute pain reduction,
ketamine does not exclusively act upon the NMDA receptor.
It has known activity on µ-opioid receptors, acetylcholine
receptors, and hyperpolarization activated cyclic nucleotide-
regulated channels, among others (Table 3). These targets may
also be critical mediators of acute pain reduction. Numerous
studies have demonstrated that the use of perioperative ketamine

reduces postsurgical pain scores and opioid consumption

(59–62). Based on meta-analysis of available studies, the use

of ketamine in the perioperative setting for the reduction of
moderate to severe acute pain rises to Grade B level, such that
there is moderate to high certainty that there will be moderate
to substantial benefit (1). This has been supported by a recent

meta-analysis and systematic review of ketamine use following
breast surgery. Here, the authors found that ketamine reduced
wound pain during the first 6 and 24 h after surgery, and also
decreased opioid consumption during the first 24 h (63). Taken
together, there is considerable evidence of the efficacy of using
ketamine, particularly in the perioperative setting, for the
treatment of acute pain.

Chronic Pain
While the evidence for the use of ketamine in acute pain,
and the proposed mechanisms of action, appear clear, there is
considerably more debate about the efficacy of ketamine use in
chronic pain. Much of this uncertainty likely revolves around
the variability in patient condition, dosing regimen, mode of
administration, and issues surrounding monitoring. Given the
preponderance of chronic pain, and its impact on quality of life
and lost productivity, clarification surrounding these points is
critical. This is especially true given the problems associated with
long term opioid use and the potential for abuse.

Abundant evidence for its potential use in treating chronic
pain come from preclinical animal studies. Many chronic
pain states, especially those that are neuropathic in nature,
demonstrate elements of central sensitization. The prevailing
theory for ketamine’s chronic pain effects are by attenuating
the effects of central sensitization via its antagonism of NMDA
receptor activity; however, there is considerable debate about
the mechanism(s) of action of ketamine and its metabolites for
their ability to attenuate chronic pain. In a recent study, multiple
intraperitoneal injections of the ketamine metabolite (2R,6R)-
hydroxynorketamine [(2R,6R)-HNK] results in reduction in
mechanical allodynia for several days in multiple chronic pain
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FIGURE 3 | Neuroanatomical and functional networks relevant to ketamine’s dissociate properties. (A) Map illustrating the relative anatomic position of the

temporoparietal junction (TPJ) and the inferior parietal lobe (IPL). Maps are depicted on the flattened brain surface of the PALS atlas (109). Legend and image modified

from Geng and Vossel (110) Figure 2 with permission under the terms of the Creative Commons Site License (https://creativecommons.org/licenses/by/4.0/). (B)

Relevant structures that comprise the posterior medial cortex (PMC) as determined by whole-brain activation profiles. Image modified from Bzdok et al. (111) Figure 4

with permission. (C) Shown are two dissociated networks (A and B) near the default mode network (DMN) in a single subject. The dashed boxes highlight nine cortical

zones where neighboring representations of the two networks were found, including: 1) dorsolateral prefrontal cortex (PFC), 2) inferior PFC, 3) lateral temporal cortex,

4) inferior parietal lobule (IPL) extending into the temporoparietal junction (TPJ), 5) posteromedial cortex (PMC), 6) midcingulate cortex, 7) dorsomedial PFC, 8)

ventromedial PFC, and 9) anteromedial PFC. Note the proximity of zones 4 (TPJ/IPL) and 5 (PMC). Legend and image modified from Braga and Buckner (112) Figure

3 with permission under the terms of the Creative Commons Site License (https://creativecommons.org/licenses/by/4.0/). (D) Regions of interest that form the default

mode network. Image modified from Krönke et al. (113) Figure 1 with permission.

and postoperative pain models. Interestingly, ketamine itself
did not produce this sustained pain relief (64). An early paper
comparing ketamine, its active metabolite norketamine, and
selective inhibitors of the NR2 subunit of the NMDA receptor,
found that while these selective inhibitors could provide chronic
pain relief, they were significantly less potent than ketamine
(65). This points to non-NMDA-mediated effects contributing to
the attenuation of chronic pain. Taken together, the preclinical
animal studies support the efficacy of ketamine to provide relief
of chronic pain; however, they further highlight the complexity of

the proposed mechanism(s). Once again, non-NMDA ketamine
targets, such as HCN1 channels, cholinergic, aminergic, and
opioid receptors, as well as downstream modulation of signaling
pathways such brain derived neurotrophic factor (BDNF) and
others, may be critical components of these effects on chronic
pain. In contrast to other analgesics, the effects of ketamine
appear to be uncoupled from its pharmacokinetics, with effects
persisting at points where plasma concentrations of ketamine and
its metabolites are low or undetectable (66). The mechanism(s)
accounting for these persistent effects are not fully understood;
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TABLE 3 | Ketamine and putative biological targets.

Site Value (µM) Type Action Species References

Acetylcholine receptors

M1 45 Ki ND Human (37)

α2β2 92 IC50 Antagonist Human (38)

α2β4 29 IC50 Antagonist Human (38)

α3β2 50 IC50 Antagonist Human (38)

α3β4 9.5 IC50 Antagonist Human (38)

α4β2 72 IC50 Antagonist Human (38)

α4β4 18 IC50 Antagonist Human (38)

α7 3.1 IC50 Antagonist Rat (39)

Dopamine receptors

D2 0.5 Ki Agonist Human (40)

>10 Ki ND (41–43)

Estrogen receptors

ERα 0.34 Ki ND Human (44)

Glutamate receptors

NMDA 0.25–0.66 Ki Antagonist Human (41, 45)

1.6 IC50 Antagonist Rat (46)

Opiate receptors

MOR 42 Ki Antagonist Human (47)

MOR2 12.1 Ki Antagonist Human (48)

KOR 28 Ki Antagonist Human (47)

25 Ki Agonist (49)

Sigma receptors

σ2 26 Ki ND Rat (50)

Transporters

NET 82–291 IC50 Inhibitor Human (51, 52)

DAT 63 Ki Inhibitor Rat (51)

Ion channels

Calcium

channels

α1G (CaV3.1) 1,200 IC50 inhibitor Rat (53)

Potassium channels

BK 4.1–230 IC50 Inhibitor Rat (GH3 cells) (54)

HCN1 8–16 EC50 Inhibitor Mouse (23)

KATP 62.9 Ki Inhibitor Rat (55)

SK2 470 KD Inhibitor Rat (56)

Sodium channels

Skeletal (hSkM1;

NaV1.4)

(S)-ketamine: 191 IC50 Inhibitor Human (57)

(R)-ketamine: 387

Neuronal (brain

IIa; NaV1.2)

(S)-ketamine: 529 IC50 Inhibitor Rat (57)

(R)-ketamine: 648

however, they suggest that connectivity changes in specific brain
networks may contribute to the long-lasting pain relief. Putative
brain networks promoting these effects are discussed below.
Further preclinical studies will be needed to untangle the complex
role of ketamine in chronic pain.

Sufficient preclinical evidence supports the use of ketamine
in chronic pain relief. Unfortunately, many human studies
have been poorly controlled and underpowered, resulting in
a lack of clarity regarding human efficacy for this condition.

In randomized controlled, double-blind studies, ketamine was
found to provide better pain relief than placebo in subjects with
mixed neuropathic pain; however, this improvement was often
short in duration and inconsistent across trials (67–69). Similar
trials in subjects with traumatic spinal cord injury, phantom
limb pain, or postherpetic neuralgia show similar improvements,
though often not demonstrating long-lived effects (70–72). Based
on an analysis of these and other studies, recent consensus
guidelines on the use of intravenous ketamine for chronic pain
have been developed (4). They concluded that the best evidence
for efficacy, rising to the level of Grade B evidence, is for
the treatment of complex regional pain syndrome. Evidence
for other pain conditions is weak with low certainty, and
additional well-designed trials are needed. To date, the use
of ketamine in chronic pain management is limited by the
apparent need for frequent administration, the need for long
duration of administration, the disparate results of clinical trials,
and the failure to identify treatment approaches that may be
curative (66, 73).

TRANSITION FROM ACUTE TO CHRONIC
PAIN AND THE DEVELOPMENT OF
CHRONIC POSTSURGICAL PAIN

An intriguing question is to what extent ketamine may be
able to prevent the transition from acute to chronic pain.
Determining the potential for ketamine use in this regard is
predicated on a better understanding of how this transition
occurs. Measurements of the prevalence of chronic pain vary
widely depending on the methods used for calculation and the
means by which pain is classified as chronic; however, reasonable
estimates may indicate that 20% of the general population suffer
from some form of chronic pain (74). In order to better study
and address means of treatment, the International Association
for the Study of Pain (IASP) has defined chronic pain as pain that
lasts or recurs for longer than 3 months (75). The development
of chronic pain, and the transition from an acute pain state
into a chronic state, is multimodal, encompassing physiological,
neurobiological, psychological, and psychosocial factors. One
of the most common instances of the chronification of acute
pain is chronic postsurgical pain (CPSP). Nearly 10% of all
surgical procedures result in CPSP sufficient to cause functional
impairment (76). Based on this estimate, more than 30 million
people annually may be at risk of developing CPSP (77). While
this clearly has a significant impact on quality of life and loss
of productivity, it is also a significant driver of the current
opioid crisis (78). As in other forms of chronic pain, CPSP can
have alternative definitions. The current consensus definition,
as evidenced by its inclusion in International Classification of
Disease (79), is:

Chronic postsurgical pain is chronic pain developing or increasing

in intensity after a surgical procedure and persisting beyond the

healing process, (i.e., at least 3 months after surgery). The pain is

either localized to the surgical field, projected to the innervation

territory of a nerve situated in this area, or referred to a dermatome

(after surgery/injury to deep somatic or visceral tissues). Other
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causes of pain including infection, malignancy etc. need to be

excluded as well as pain continuing from a pre-existing pain

problem. Dependent on type of surgery, chronic postsurgical pain

often may be neuropathic pain.

As mentioned above, the transition from acute to chronic pain is
driven by many elements. At the molecular level, animal models
of chronic pain have demonstrated changes along the entire
length of the pain circuit, from the peripheral sensory neurons
to disinhibition in the dorsal horn of the spinal cord and higher-
level processing in the brain (80, 81). In CPSP, the tissue damage
caused during surgery initiates a cascade of events that can drive
change in this circuit. Among these is the release of glutamate and
the change inNMDA receptor composition and activation.While
the exact mechanism(s) that result in CPSP are still not clear, it is
likely due to peripheral and central sensitization initiated, at least
in part, by these acute changes and by the degree and persistence
of the postsurgical acute pain (82). In one study looking at pain
following thoracic surgery, uncontrolled postoperative pain was
the primary risk factor for developing CPSP (83).

The choice of anesthetic and analgesics used in the
perioperative setting has been proposed to play a role in the
development of CPSP. Curiously, the use of high-dose opioids
for pain relief results in hyperalgesia, an increase in postoperative
pain, and ultimately the use of higher amounts of opioids
(82). Given that the degree and persistence of postsurgical
pain has been linked to the development of CPSP, this suggest
that postsurgical opioid use may in fact trigger this condition.
As discussed above, studies have demonstrated that the use
of perioperative ketamine reduces post-surgical pain scores
and opioid consumption (59–62), pointing to the potential for
ketamine to prevent the development of CPSP by reducing the
use of opioids. In addition to reducing opioid hyperalgesia,
preoperative ketamine use has been shown to inhibit dorsal
horn sensitization and NMDA wind-up as well as activating
inhibitory modulation (84, 85). Each of these are a viable putative
mechanism for how ketamine might prevent the development of
CPSP. The risk factors associated with the development of CPSP,
beyond the degree of postsurgical pain discussed above, may
point to other unexpected targets of ketamine’s actions. Given the
planned nature of surgical procedures, prevention may present
an ideal means of combating CPSP, and the ability to identify
those at highest risk is therefore essential.

RISK FACTORS FOR THE DEVELOPMENT
OF CHRONIC POSTSURGICAL PAIN

Given the prevalence and ramifications of CPSP, significant
effort has gone in to understanding the risk factors associated
with its development. Several preoperative characteristics have
been linked to an increased risk of CPSP across numerous
surgical types. A recent systematic review and meta-analysis
following breast and thoracic surgery identified some common
characteristics (86). Among these was a younger age, an
association between moderate to severe acute pain and CPSP,
and an association between preoperative chronic pain and
CPSP. These results seem to be broadly generalizable to other

types of surgical procedures. For example, a recent prospective
study identified similar risk factors for developing chronic
pain following colorectal surgery (87). Sensitization of the
pain pathways resulting from preoperative pain may lead to
neuropathic pain and may contribute to the high incidence
of CPSP in patients with high levels of preoperative pain
(88). In addition to the degree of post- and preoperative pain,
several psychological traits showed an association with CPSP.
Among these are higher levels of anxiety, depression, and pain
catastrophizing. This is consistent with prior systematic reviews
that found significant associations between CPSP and depression,
anxiety, catastrophizing, mental health, kinesiophobia (i.e., the
fear of pain resulting from movement), and self-efficacy (89).
Among these, state anxiety was the biggest predictor. State
anxiety is anxiety in response to a specific dangerous or
threatening situation, and in many cases may be associated with
the planned surgery itself. State anxiety and pain catastrophizing
have recently been the focus of CPSP interventional efforts
(90). Among these approaches have been both pre- and post-
operative behavioral therapies, which have shown some evidence
for effectiveness at improving postoperative pain (91, 92). These
results highlight that both chronic and acute psychological
factors may be predictive of increased risk of developing
CPSP. As such, targeting these risk factors via perioperative
interventions, both psychological and pharmacological, may
prevent the development of CPSP.

MOLECULAR MECHANISMS
CONTRIBUTING TO THE
ANTIDEPRESSANT ACTIONS OF
KETAMINE

Ionotropic Glutamate Receptors
As discussed above, ketamine administration has clear
antidepressant activity. The molecular mechanism(s) of
this activity is a matter of intense interest, with arguments
made for, and against, involvement of ionotropic glutamate
receptors. In acutely prepared rat brain slices, ketamine, in a
concentration-dependent manner, rapidly increased the slope
of the field excitatory postsynaptic potential (fEPSP) at Schaffer
collateral (SC)-CA1 synapses with an EC50 of 0.053µM, and this
was accompanied by a significant increase in the phosphorylation
of the AMPA receptor GluA1 subunit (93). Preincubation of the
slice with the protein kinase A (PKA) inhibitor H89 blocked
both ketamine-induced potentiation of the fEPSP and GluA1
Ser845 phosphorylation. In the forced swim test (FST; in which
a low immobility time is an indicator of an antidepressant-like
response), a single intraperitoneal injection of ketamine (10
mg/kg) significantly reduced immobility in Sprague-Dawley rats.
Compared with CA1 tissue from placebo treated rats, ketamine
again increased GluA1 phosphorylation and abundance. In
GluA1 S845A knock-in mice (wherein the serine to alanine
substitution renders that site resistant to PKA phosphorylation),
however, ketamine: 1) failed to enhance SC-CA1 fEPSPs in
slices from GluA1 S845A mice (but strongly enhanced fEPSPs
in slices from wild-type littermates), 2) failed to increase the
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membrane surface expression of GluA1 in GluA1 S845A mice,
and 3) failed to reduced immobility of GluA1 S845A mice in the
FST but significantly did so in wild-type mice. To test whether
presynaptic modifications contributed to the observed synaptic
potentiation, the effects of ketamine were examined using a
conditional gene knock-out strategy wherein deletion of the
GluN1 (NR1) subunit of the NMDA receptor was restricted to
CA3 neurons (whose axons give rise to the Schaffer collaterals).
In vitro, ketamine failed to potentiate the fEPSP in brain slices
from CA3 GluN1-null mice (but did so in CA1 GluN1-null
mice). In vivo, ketamine reduced the latency to feeding and
duration of immobility in the FST in CA3 GluN1 null, but
not CA1 GluN1-null, mice. Collectively, these observations
strongly support a role for postsynaptic AMPA receptors and
presynaptic NMDA receptors as necessary for the antidepressant
activity of ketamine, and the importance of AMPA receptors as
targets is in agreement with the demonstration that activation
of AMPA receptors is required for both the acute and sustained
antidepressant effects of (2R,6R)-hydroxynorketamine (94).
The role of NMDA receptor blockade in this process, however,
is complicated by other observations demonstrating that the
anti-depressant effects of (R,S)-ketamine and its enantiomers
appear to be independent of NMDA blockade [(11, 94); for
review, see (95, 96)]. Regardless of the exact role of NMDA
receptors per se, the question remains as to upstream regulation
of ionotropic glutamate receptor function.

Hyperpolarization-Activated Cyclic
Nucleotide (HCN)-Regulated Ion Channels
HCN channels are expressed across the cell membrane, including
at the axon terminal (97–103), where they regulate both
inhibitory (99) and excitatory (101, 102) transmitter release.
Zhang and colleagues examined whether HCN channels might
contribute to the effects described above (93). Application of
the pan-HCN isoform blocker ZD7288 occluded ketamine-
induced SC-CA1 EPSC potentiation as well as increases in GluA1
phosphorylation and expression. Correspondingly, in HCN1 null
mice, the fEPSP was not potentiated following application of
ketamine. At the behavioral level, ketamine had no effect on
either the sucrose preference or novelty-suppressed feeding test
(both of which assess depression-like behaviors) in HCN1-null
mice whereas both showed significant improvement in wild-type
mice. These data demonstrate that HCN1 channels are necessary
for the antidepressant activity of ketamine.

In order to discuss the role of ketamine-mediated inhibition of
HCN channels in humans, we first need to consider the following
question: Does the baseline state of awareness at the time of
ketamine administration influence its antidepressant activity?
This question was partly addressed in a prespecified analysis
of the Prevention of Delirium and Complications Associated
with Surgical Treatments (PODCAST) study (104), which was
an international, multicenter, double-blind, randomized clinical
trial that compared two doses of sub-anesthetic ketamine (0.5
mg/kg and 1 mg/ kg; low- and high-dose, respectively) with
placebo for the prevention of postoperative delirium and pain
in older adults (age > 60 years) undergoing major cardiac and

non-cardiac surgery (105). Of critical importance, ketamine was
administered after induction of general anesthesia (i.e., once
loss of consciousness was achieved). Patients were screened for
symptoms of depression at baseline using the Patient Health
Questionnaire 8 (PHQ-8) scale and tested again on postoperative
day (POD) 3 and ∼POD 30. Patients were dichotomized into
two groups—those with “symptoms suggestive of depression”
and those “without symptoms of depression” based on a
score of 10 or higher on a 0–24 PHQ-8 scale (106). The
Consort flowchart of subjects indicates that 670 individuals
completed the PHQ-8 questionnaire; of that number, 221 were
allocated to the placebo group, 226 to the low-dose group,
and 223 were allocated to the high-dose group, with 137,
130, and 128 subjects, respectively, completing the PHQ-8
on POD 30 for use in the final analysis. The proportion
of subjects with symptoms suggestive of depression was not
statistically different among the three groups (placebo−8.1%,
low-dose−10.6%, and high-dose−9.9%). Surprisingly, neither
dose of ketamine improved PHQ-8 scores at either time point.
Thus, administration of ketamine following anesthetic-induced
loss of consciousness does not improve symptoms of depression.
Of course, symptoms of depression is not the same as a
diagnosis of major depression, but a subanesthetic dose of
(R,S)-ketamine does improve typical/melancholic and atypical
symptoms of depression (as measured by the Montgomery-
Asberg Depression Rating Scale (MADRS; for general depressive
symptoms), MADRS5 (for typical/melancholic symptoms), and
the Scale for Atypical Symptoms (SAS, for atypical symptoms)
in patients with treatment-resistant major depressive disorder of
bipolar depression (107).

Multiple factors could have led to a negative result, among
which are the lack of a true diagnosis of major depression,
confounding effects of general anesthetics, and insufficient
sample size. Which brings us back to the original question:
Might the state of awareness at time of administration matter?
Subanesthetic doses of ketamine profoundly alter states of
consciousness without producing loss of consciousness. In
healthy adult volunteers (7 male, 8 female), subanesthetic
ketamine (0.5 mg/kg infused over 40min) produced a variety
of cognitive/affective experiences associated with altered states
of consciousness (108). Terms associated with a positive
experience were: experiences of unity, spiritual experience,
blissful state, insightfulness, complete imagery, audiovisual
synesthesia, changed and meaning of precepts; terms associated
with a negative experience were: disembodiment, impaired
control and cognition, and anxiety; finally, neutral terms
(i.e., neither positive nor negative) were: transcendence of
time and space, and ineffability (Table 4). Notably, ketamine
administration resulted in a decrease in alpha power (as
measured by high-density electroencephalography) in the
precuneus and the temporoparietal junction (TPJ; based on
source analysis) that correlated with measures of dissociation
(disembodiment, transcendence of time and space). Changes
in activity in the TJP is relevant to the observed affective
experience. Anatomically, the human TPJ is commonly described
as being situated at the intersection of the posterior end of
the superior temporal sulcus, the lateral occipital cortex, and
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TABLE 4 | Terms and definitions pertaining to altered states of consciousness.

Term Definition Experience/

mood

Experiences of

unity

Eternal oneness, beyond

contradictions, merging of

self and environment

Positive

Spiritual

experience

Religious cognition, sense

of awe, presence of a higher

power

Positive

Blissful state Experiences of boundless

pleasure, which may include

bliss, peace, and love

Positive

Insightfulness Profound, clear, original

thoughts

Positive

Complex imagery Vivid complex visual

patterns such as scenes

and imagery; from past

experiences or fantasy,

occurring with eyes closed

or total darkness

Positive

Elementary

imagery

Seeing regular patterns with

eyes closed or in total

darkness

Positive

Audiovisual

synesthesia

Audiovisual abnormalities

including shapes, colors of

things, or both changing

with sounds and noises

Positive

Changed meaning

of percepts

Everyday things gain a

special and strange

meaning; things get more

emotionally engaging

Positive

Disembodiment Floating, being out-of-body,

not having a body

Negative

Impaired control

and cognition

Cognitive difficulty and

disorganization, decreased

agency, paralysis, isolation

Negative

Anxiety Fear, terror, distortion,

threat, strangeness

Negative

Transcendence of

time and space

Loss of usual sense of time,

space, and current location,

including being outside of

time, no spatial boundaries,

and timelessness

-

Ineffability The experience cannot be

adequately described or

done justice to with words

-

Terms and definitions per Vlisides et al. (108).

the inferior parietal lobule (IPL) (Figure 3A) (110, 114, 115).
The superior aspect of the TPJ overlaps the neighboring IPL,
which consists of two major gyri: the supramarginal gyrus (SMG;
corresponding to Broadman area (BA) 40) and the angular
gyrus (AG; corresponding to BA 39) (115) (Figure 3A). While
the TPJ and IPL overlap, they are not synonymous (115). The
TPJ participates in a variety of attentional processes (114–117),
including bodily self-identification, self-location, first-person
perspective (118), and when perturbed, dissociation and the
sensation of “out-of-body” experience (119, 120). Intriguingly, in

patients with major depressive disorder, functional connectivity
between the TPJ and default mode network (DMN) is reduced
(121); the importance of this observation is discussed further in
Section What Does Functional Imaging Tell Us About Ketamine,
Depression, and the Treatment of Chronic Pain?. Highlighting
the notion that timing is everything is the observation in
mice that ketamine administered 1 week, but not 1 month or
1 h, before administering a contextual fear conditioning (CFC)
paradigm exhibited reduced freezing behavior as compared to
control animals. In contrast, when administered following CFC
or during extinction, ketamine had no effect on subsequent fear
expression (122). Thus, the timing of pre-stress event dosing
is a critical determinant of its efficacy, and this point must be
considered when designing prospective clinical trials in humans.

Is the experience of dissociation relevant vis-à-vis ketamine’s
antidepressant effects? This question was explicitly addressed
in a systematic review that examined the relationship between
subjective effects induced by a single dose of ketamine and
treatment response in patients with major depressive disorder
(123). In this analysis, the authors searched the PsycINFO,
Embase, and PubMed electronic databases for peer-reviewed
journal articles published between 1 January 2000 and 31 May
2019. Per the Methods, “Search terms were combined using logic
gates to produce a single query: [((ketamine) OR esketamine)]
AND ((((((((((((((((dissociation) OR mystical) OR psychedelic)
OR psychotomimetic) OR altered states of consciousness) OR
oceanic boundlessness) OR 5D- ASC) OR hallucinogen rating
scale) OR phenomenology of consciousness inventory) OR
hood’s mysticism scale) OR mystical experience questionnaire)
OR clinician administered dissociative symptoms scale) OR
CADSS) OR BPRS) OR Brief Psychiatric Rating Scale) OR peak
experience)) AND ((depression) OR depressive disorder)”. The
search retrieved an initial 556 articles; of that number, 343 were
duplicates, 203 were determined to be irrelevant or did not
otherwise meet inclusion criteria, and 2 were analyses of the same
data set, resulting in 8 studies being included in the final analysis.
Three of the four largest included studies analyzed (124–126),
representing ∼55% of the pooled sample, observed a weak to
moderate degree of association between the antidepressant and
dissociative/hallucinogenic effects of ketamine. While certainly
not conclusive, these results preclude summarily dismissing the
premise that dissociation is a prerequisite for the efficacy of
ketamine as an antidepressant. Intriguingly, recent work has
observed an association between ketamine-induced analgesia
(in healthy adult volunteers) and dissociation as measured
by changes in external perception (as it relates to the
misapprehension of external stimuli or surroundings, including
body parts, which was obtained from the Bowdle questionnaire,
a validated list of 13 items developed to quantify the psychedelic
effects of ketamine in healthy volunteers) (127).

Supporting the conjecture that dissociation is relevant to
the antidepressant properties of ketamine are the results of
Vesuna and colleagues (128). In a technical tour de force, the
authors made a number of important observations using both
rodent models of depression and brain-wide depth electrode
recordings from a patient with epilepsy. Administration of a
subanesthetic dose of ketamine (50 mg/kg, intraperitoneal) to
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Thy1-GCaMP6s-expressing mice resulted in the emergence of a
slow-wave rhythm (1–3Hz) in the retrosplenial, but not visual,
cortex as measured by wide-field microscopy. These results were
recapitulated by phencyclidine (PCP) and dizocilipine (MK-801),
both of which are NMDA receptor antagonists that can produce
a dissociated state, but not by memantine (also an NMDA
receptor antagonist that produces dissociation) or lysergic acid
diethylamide (LSD). These results point to mechanisms beyond
NMDA receptors in driving this retrosplenial slow-wave rhythm.
Using two photon Ca2+ imaging and engineered mouse lines
in which GCaMP6m was restricted to specific cortical layers
(Cux2-CreER for layer 2/3 and Rbp4-Cre for layer 5), they next
demonstrated that the slow retrosplenial rhythm arose in layer 5.
In parallel, 32-channel single unit electrophysiology recordings
from deep brain regions revealed correlation of spike firing
between the retrosplenial cortex and nearly all brain regions prior
to ketamine administration. Following ketamine administration
there was a marked reduction in spike correlation between
the retrosplenial cortex and somatosensory cortex, subiculum,
ventral/anteromedial thalamus, and the red nucleus; in contrast,
the correlation in spike firing increased between the laterodorsal
thalamus and the anteroventral thalamus and those regions
with the retrosplenial cortex. At the behavioral level, ketamine
had no effect on reflexive behavior (as measured by paw-flick
on a hot-plate test) but it abolished affective/emotional (as
measured by paw-lick) and motivational (as measured by jump-
to-escape test) behaviors. With regards to escape and social
interactions, ketamine suppressed both tail-suspension escape
responses and resident-intruder interactions. Ketamine-induced
changes in affective behaviors were dose dependent such that
they were preserved at a dose of 13 mg/kg but not at 25 mg/kg.
Correspondingly, the ketamine-induced slow wave oscillation
(1–3Hz) observed using wide-field and two photon imaging
was again detected in the retrosplenial cortex using in situ fiber
photometry at the 25, but not 13, mg/kg dose, strongly suggesting
that this slow rhythm was causally linked to ketamine-induced
dissociation. Importantly, the pattern of behavioral responses
induced by ketamine were not recapitulated by other classes of
drugs (analgesics: buprenorphine, lidocaine; hallucinogens: LSD;
anxiolytics: diazepam) known to effect subsets of these effects; the
only drug that mirrored ketamine was PCP.

But is the ketamine-induced slow wave rhythm necessary
and sufficient to induce dissociative behaviors? To answer
this question, layer 5 neurons in the retrosplenial cortex
were optogenetically activated at 2Hz in eNpHR3.0/CHR2
(eNPAC) mice (128). Dissociation-like (i.e., affective paw-
licking, time to escape, rearing, tail-suspension escape behavior),
but not reflexive (nor changes in righting-reflex or open-
field), behaviors were observed in response to low frequency
stimulation; stimulating other cortical regions in which eNPAC
was also expressed (deep somatosensory cortex) failed to induce
dissociative behaviors. Thus, a slow-wave rhythm in layer 5
retrosplenial cortical neurons, whether induced by ketamine or
optogenetic activation, appears to be causal with respect to the
disconnect between sensory and affective behaviors.

We now return to the role of HCN channels in mediating
the antidepressant effects of ketamine. If the retrosplenial

slow wave rhythm is necessary to induce dissociation, what
is the molecular basis of that rhythm? As suggested by the
results of Zhang et al. (93) discussed above, one plausible
target are HCN channels. As noted previously, HCN channels
and are present throughout the nervous system, including the
retrosplenial cortex (31, 32). The molecular underpinning of
the slow rhythm was explicitly examined using gene targeting
strategies in which HCN1 or NMDA receptor expression was
selectively disrupted in retrosplenial cortical neurons (via local
injection of AAVdj-Ef1a-Cre and AAVdj-Ef1a-DIO-GCaMP6m
viruses into the retrosplenial cortex of adult homozygous floxed-
channel [HCN1 or GRIN1] transgenic mice) (128). In both
groups of animals, ketamine-induced slow-wave oscillations
were significantly reduced as compared to wild-type mice.
Correspondingly, ketamine again abolished affective (paw-
licking) but not reflexive (paw-flicking) behaviors in floxed
mice whereas the affective response was restored in response
to injection of the Cre virus into the retrosplenial cortex of
HCN1-floxed mice. In aggregate, these results firmly establish
a role for ketamine mediated-inhibition of HCN1 channels in
both the retrosplenial slow-wave rhythm and the accompanying
behavioral dissociation.

In humans, the retrosplenial cortex is one region within
the posterior cingulate cortex, which in turn is part of the
posteromedial cortex (PMC), and the PMC is thought to be a
homologous structure to the rodent retrosplenial cortex (129).
The PMC consists of: Brodmann area (BA) 7m (mesial parietal
area of the precuneus), BA 23a, b, c (posterior cingulate),
BA 29–30 (retrosplenial cortex), and BA 31 (transition zone
between BA 7m and 23c (Figure 3B) (111, 130–132). As a
core node in the default mode network (DMN), changes in
activity in the PMC have been linked to various neuropsychiatric
condition (e.g., Alzheimer’s disease/mild cognitive impairment,
schizophrenia, depression and anxiety, epilepsy, autism spectrum
disorder, attention deficit/hyperactivity disorder) as well as to
self-referential thinking (111, 132, 133).

The relationship between the retrosplenial slow-wave
rhythm and the behavioral dissociation observed in mice
was also examined in a human patient with epilepsy using
brain-wide intracranial electrodes that enabled intracranial
electroencephalography/stereoelectroencephalography for both
diagnostic recording and focal stimulation (128, 134). During
pre-seizure auras, a distinct slow-wave (3.4Hz) patten of activity
was observed in the PMC bilaterally. During these auras,
the patient reported an experience highly reminiscent of a
dissociated state (135) as suggested by the following comments:

“I was listening to two parts of my brain speak to each other in a

way that a third part of my brain, which I considered to be me, was

able to listen.”

“What would it feel like if someone else were to come into your

head?... What I considered me shrank to this other part of me where

the other parts of my brain that were talking, I stopped considering

them me.”

“...where in this 3D space am I?... I took a blanket...I threw it

over my body, just to see, because I knew that when I don’t feel it, I
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don’t consider it me and immediately my legs were no longer a part

of me...

Critically, brief stimulation (50Hz, 2–10mA, total duration
1.3 ± 0.47 s; mean ± SEM) of foci associated with seizure
activity in the right PMC evoked a report of a dissociative
aura-like experience resembling that which preceded seizure
onset. Comments reported during stimulation of the right
PMC included:

“Felt similar to the seizure beginning.”

“Felt like an aura.”

“It’s like I’m about to have a seizure.”

Similarly, the same stimulation protocol applied to the left PMC
also produced a sense of dissociation, albeit one without the
negative overtones of an impending seizure. Comments reported
during stimulation of the left PMC included:

“This feeling of being disconnected from something...that was a

little pleasant”.

“It’s like being weightless in your own mind as a personality.”

“...maybe the same way a pilot can lose control of a plane. Like

they can be forced out of the cockpit or to not control it... but still

see what’s happening to the whole plane, that’s kinda what just

happened. I got pulled out of...the pilot’s chair, but I could still see all

the gauges... You can see the information flowing – you can’t control

it, but you can see it.”

Together, the mouse and human data provide a compelling
argument for ketamine-mediated inhibition of HCN1 channels
as the basis for deep brain slow-wave oscillatory activity as the
genesis of the dissociated behavioral state. It is important to note
here that the results reported by Vlisides et al. describing a role
for the TPJ and precuneus in underlying the dissociative effects of
ketamine (108) are not discordant with the role proposed for the
PMC by Vesuna et al. (128) as both TPJ and PMC are adjacent
brain regions (Figure 3C) and are critical nodes in the default
mode network (DMN) (115, 132), and as such, are functionally
linked (Figure 3D).

Highlighting a role for ketamine-mediated inhibition of HCN
channels as underling ketamine’s antidepressant/dissociative
effects is provided in the study by Anand et al. (136). Here, (R,S)-
ketamine (0.26 mg/kg, iv bolus followed by a 90-min infusion of
0.65mg/kg) was administered to healthy volunteers (n= 16) after
having been administered lamotrigine (300mg, oral dose) or
placebo 2 h prior to receiving ketamine. Lamotrigine (Lamictal R©;
GlaxoSmithKline, Brentford, UK) is an antiepileptic drug with
a complex mechanism of action that includes inhibition of
NaV, CaV2.1 and CaV2.2 channels (137); interestingly, however,
lamotrigine increases HCN-dependent current Ih amplitude at
or near resting membrane potential and markedly shifts the
V1/2 to a more depolarized value (∼-83 and ∼-11mV, control
and lamotrigine, respectively) (138). After 60min of ketamine
administration, plasma levels were ∼155 ng/ml [∼0.65µM,
which is comparable to that required for its antidepressant
effects in patients with treatment-resistant major depression
(19)]. As expected, ketamine increased dissociative symptoms

(as measured by the Clinician-Administered Dissociative States
Scale, CADSS, which assesses symptoms of dissociation—
notably, impairments in body, environmental, and time
perception, memory impairment, and feelings of unreality)
and pretreatment with lamotrigine significantly attenuated this
effect. Similarly, ketamine significantly increased the positive
symptoms of schizophrenia score (as measured by the Brief
Psychiatric Rating Scale (BPRS) positive symptoms subscale),
and this effect, too, was limited by lamotrigine. Other ketamine-
induced changes in neuropsychiatric/neurobehavioral measures
were also significantly blunted. These results, along with those
of Vesuna et al. (128), underscore not only the well-known
dissociative properties of subanesthetic ketamine, but that such
dissociation is HCN-channel dependent.

WHAT DOES FUNCTIONAL IMAGING TELL
US ABOUT KETAMINE, DEPRESSION, AND
THE TREATMENT OF CHRONIC PAIN?

The Default Mode Network
(DMN)–Anatomic and Functional
Considerations
The human brain decodes, interprets, and creates meaning
of the external world by means of functional networks that
connect disparate brain regions (139–146). It has long been
known that functional networks map onto known large-scale
brain systems, including the motor (147), auditory (148), and
visual systems (149), as well as higher-level systems, such as
those for executive control (150). Numerous networks have been
identified and include: dorsal attention (DAN), fronto-parietal
(FPN), parietal memory (PMN), salience (Sal), default mode
(DMN), contextual association (CAN), ventral attention (VAN),
medial visual (mVis), lateral visual (lVis), leg somatomotor
(lSM), face somatomotor (fSM), hand somatomotor (hSM),
auditory (Aud), premotor (PMot), and cingulo-opercular (CON)
(151). The DMN, which is comprised of the medial prefrontal
cortex (MPFC), medial temporal lobes (MTLs), and posterior
cingulate cortex (PCC)/retropslenial cortex (RSC) (145, 152), is
preferentially activated when an individual is not engaged with
the external world (153); it is what the brain does when it is
not specifically focused on doing anything else but is considering
oneself [ex., remembering, considering hypothetical social
interactions, thinking of one’s own future (153)]. Perturbations
in these networks, including the DMN, are often associated with
disorders of thought and consciousness (133, 153–158). What,
then, does ketamine do to the DMN?

Ketamine Disrupts DMN Connectivity to
Other Brain Networks
In healthy adult volunteers, (S)-ketamine (0.25 mg/kg infused
over 45min) decreases functional connectivity of the DMN
to the “dorsal nexus” [DN; identified as a “bilateral dorsal
medial prefrontal cortex region showing dramatically increased
depression-associated functional connectivity with large portions
of a cognitive control network (CCN), the default mode network
(DMN), and a rostral affective network (AN)” and to the
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pregenual anterior cingulate (PACC) and medioprefrontal cortex
(MPFC) via the posterior cingulate cortex (PCC)] (159). Notably,
the breakdown of the DMN that is observed at “light to
moderate” levels of (R,S)-ketamine-induced sedation [median
(range)–Ramsay Scale (RS): 2 [2–3], University of Michigan
Sedation Scale (USMMS): 1.5 [0–2]: RS: 1 = anxious, agitated,
or both; 2 = cooperative, oriented, and calm; 3 = response to
command only, clear but slow; 4= evident response to glabellum
stimulation or to loud auditory stimulation; 5 = slow response
to glabellum stimulation or to loud auditory stimulation; and
6 = no response; UMSS: 0 = awake and alert; 1 = lightly
sedated, tired, appropriate response to conversation and/or to
sounds; 2 = moderate sedation, drowsy, easily aroused by tactile
stimulation; 3 = deep sedation, deep sleep, aroused only by
strong physical stimulation; and 4 = impossible to arouse) are
rather unique, with tenuous, if any, effects on other networks,
including executive control, salience, auditory, and visual (160).

Correspondingly, (S)-ketamine, at estimated plasma
concentrations between 0.25 and 0.48µg/ml (1.1–2.0µM),
increased connectivity between the executive control network
(ECN) and parts of the anterior cingulum and superior frontal
gyrus but decreased connectivity between the salience network
(SN) and the calcarine fissure. Subjects (n = 17, healthy adult
males) routinely reported feelings of “oceanic boundlessness”
(i.e., dissolution of ego boundaries associated with positive
emotions), “dread of ego dissolution” (a distressing experience
of depersonalization, thought disorder and loss of body
control), “visionary restructuralization” (e.g., visual illusions
and hallucinations), “auditory alterations” (e.g., illusions and
hallucinations) and “vigilance reduction.” Interestingly, only
visionary restructuralization correlated with changes in a single
network (DMN) (161). When thinking about the relevance of
these observations vis-à-vis the relationship between subjective
effects induced by a single dose of ketamine and treatment
response (108, 123, 128), it is important to remember that the
ketamine concentrations here are comparable to those achieved
in subjects with major depressive illness (Table 2). The subjective
experiences reported here are not dissimilar to the dissociated
state reported during pre-seizure auras and in response to
electrical stimulation of the PMC in the patient with epilepsy
(128, 134), and emphasize the commonality and potential
relevance of the experience to symptomatic relief in patients
with depression.

Ketamine Disrupts Depression-Associated
Patterns of Functional Connectivity
But what impact does ketamine have on network function in
individuals with depression? In patients with post-traumatic
stress disorder (PTSD; n = 11, 10 female), (R,S)-ketamine
(0.5 mg/kg) significantly improved symptoms of PTSD and
depression; the improvement was greater than that achieved
with the anxiolytic midazolam, indicating that simply relieving
the anxiety component of their symptoms was insufficient
to achieve maximal benefit (162). Symptomatic improvement
correlated with an increase in functional connectivity between
the ventromedial (vm)PFC (and as noted the PFC is part of

the DMN) and the amygdala [a brain region fundamental
to anxiety (163)]. These results agree with other studies in
which it was demonstrated that ketamine-induced improvements
in symptom severity in subjects with treatment-resistant
depression were associated with network-dependent changes in
connectivity (both increased and decreased) during emotional
processing (164–167). Previous work has shown that major
depressive disorder is associated with hyperconnectivity within
the DMN (168, 169), and it has been postulated that the
antidepressant efficacy of ketamine hinges on its ability to
“[reverse] the maladaptive affective- and default mode network–
driven hyperconnectivity that typifies depression” (170). But
simply examining changes in functional magnetic resonance
imaging (fMRI) activity as measured by blood-oxygen-level
dependent (BOLD) signals in single (or even multiple) networks
may not tell the whole story (139, 171).

Neurons generate action potentials (both spontaneous and
stimulus-evoked) in response to membrane depolarization,
which in turn give rise to local field potentials (LFPs). LFPs
can be measured at the scalp using electroencephalography,
and as they are continuously present can be organized by
frequency (in Hz): slow, < 1; δ, 1–4; θ, 5–8, α, 9–12;
α, 13–25; γ, 26–80 (172). It is thought that the complex
interplay of these rhythms is the basis for attention and
cognition (173, 174), that when disrupted, results in disorders
in thought and attention (175). These rhythms can be observed
using multiple approaches, including magnetoencephalography
(MEG) (176). In subjects with major depressive disorder (MDD),
(R,S)-ketamine (0.5 mg/kg infused over 40min) was again
observed to improve symptoms; connectivity was measured
using MEG in both healthy volunteers and individuals with
MDD. Applying connectivity analysis (wherein the correlation
between waves is examined), MDD subjects who responded
to ketamine displayed increased cross-frequency connectivity
in δ-α and δ-γ bands whereas MDD non-responders (and
healthy controls) showed a decrease in connectivity (177).
These results suggest not only that there may be functional
subtypes of MDD but reinforce the proposition that ketamine-
modulation of δ oscillations is instrumental in mediating its
beneficial effect.

The Interface Between Depression, Brain
Dynamics, and Ketamine-Induced
Neuropathic Pain Relief
This then brings us to the final question as to the impact of
ketamine on functional connectivity and the consequences
of any such modulation on neuropathic pain. In adults with
diverse etiology (traumatic injury, postherpetic neuralgia,
vasculitis, stroke, spinal cord injury, scleroderma, syringomelia)
neuropathic pain, (R,S)-ketamine (0.5–2.0 mg/kg/hr for 6
h/day over 5 consecutive days (mean dose 1.1 mg/kg/hr) with
dose individually titrated to achieve maximal pain relief (while
minimizing adverse effects to a tolerable level) significantly
improved pain scores (measured using thermal quantitative
testing) in 14/30 (46.7%) of subjects (“Responders”) while
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16/30 (53.3%) did not experience improvement (“Non-
Responders”) (178). In contrast to healthy control subjects,
both Responders and Non-Responders had significantly
higher anxiety, depression, and pain catastrophizing scores
but significantly lower resiliency scores. Along similar lines,
pain rumination (a subscale in the Pain Catastrophizing Scale)
in patients with chronic pain (but not in healthy controls)
was positively correlated to mPFC functional connectivity with
posterior cingulate cortex/precuneus, retropslenial cortex, medial
thalamus, and periaqueductal gray/periventricular gray (179).
These data are concordant with the observation that chronic
postsurgical pain is significantly associated with depression,
anxiety, catastrophizing, mental health, kinesiophobia, and
self-efficacy (89). At baseline (i.e., pre-ketamine administration),
Responders had greater connectivity between the DMN and the
descending antinociceptive pathway [which is comprised of the
prefrontal cortex, subgenual anterior cingulate cortex (sgACC),
periaqueductal gray (PAG), and the rostral ventromedial medulla
(RVM) (180, 181)] than did Non-Responders or healthy controls,
and the magnitude of connectivity correlated with percentage
of pain relief (178). In contrast to the greater strength of the
connection between the DMN and descending pathway in
subjects with neuropathic pain who experience pain relief in
response to ketamine, other subjects with neuropathic pain and
who respond to ketamine have significantly lower functional
connectivity between the mPFC and precuneus (182). Opposing
directional changes in connectivity only serve to reinforce the
premise that the “pain connectome” is a dynamic construct
(183), one which can be modified (184).

Finally, Kucyi et al. (181) examined the relationship between
antinociceptive and DMN networks during “mind wandering.”
What they found was the following:

“(i) pain-induced default mode network (DMN) deactivations were

attenuated during mind wandering away from pain;

(ii) functional connectivity fluctuations between the DMN

and periaqueductal gray (PAG) dynamically tracked spontaneous

attention away from pain; and

(iii) across individuals, stronger PAG–DMN structural

connectivity and more dynamic resting state PAG–DMN

functional connectivity were associated with the tendency to mind

wander away from pain.”

Notably, “mind wandering” has been defined as a state of
“perceptual decoupling,” or “disengagement of attention from
perception” (181). Conceptually, this may not be all that
different from many of the terms associated with ketamine-
induced altered states of consciousness (Table 4) or of an out-
of-body experience.

CONCLUSION

Previously conducted meta-analyses indicated that evidence of
efficacy for ketamine in preventing the development of CPSP
was lacking (185, 186). However, more recent meta-analyses

and guidelines indicate that ketamine can reduce or prevent
the development of CPSP (1, 5). These disparate results may
be explained, at least in part, by the multiple molecular targets
through which ketamine can exert its effects on both acute and
chronic pain. While NMDA may be presumed to be the primary
mediator, non-NMDA targets, such as HCN1 channels, may in
fact be critical. The retrosplenial slow-wave rhythm elicited by
subanesthetic levels of ketamine is not driven by its NMDA
activity, and the relationship between this slow-wave rhythm and
the behavioral dissociation is clear.

Much remains to be determined about the precise means
by which subanesthetic ketamine alters functional brain
connectivity and how this impacts chronic and neuropathic pain;
however, the emerging data from both preclinical animal studies
and human clinical studies clearly implicates changes in brain
activity that result in a sense of dissociation. Given these results,
subanesthetic doses of ketamine prior to anesthetic induction
(or following full recovery of consciousness postoperatively)
may be necessary to elicit this effect. If the hypothesis that
induction and awareness of the dissociated state is a necessary
feature for the antidepressant effects of ketamine, and that it is
those effects which are critical in preventing the development
of chronic postsurgical pain, then several points should be
remembered: 1) roughly 50% of patients with major depressive
disorder/treatment resistant depression experience symptomatic
relief from ketamine, which will necessitate increasing sample
size, and 2) fMRI may more accurately identify patients at risk
given baseline differences in connectivity between ketamine
responders and non-responders, and the use of fMRI as
a screening tool may result in selection of an appropriate
patient population.

It is quite possible that ketamine will not prevent the

development of CPSP in all patients. Identifying those
patients in whom ketamine may prove beneficial will be
necessary in future studies. Those studies should at least assess

known preoperative risk factors (i.e., depression, anxiety,
catastrophizing, kinesiophobia, self-efficacy) and stratify
accordingly. While numerous reports have suggested that fMRI
studies might also serve as a suitable biomarker for identifying
those individuals at risk for CPSP, as well as those who might
derive benefit from ketamine, the routine incorporation of fMRI
studies for this purpose is not realistic for logistical (i.e., need
to obtain the study and have results interpreted preoperatively)
and economic (they are expensive) reasons. Results from EEG
studies suggest that increases in connectivity, most notably in
δ-α and δ-γ bands, might be a suitable predictive biomarker;
whether such changes can be easily detected using simple
bifrontal scalp EEG measurements (as can be obtained using
commercially available processed EEG devices such as the
Masimo SedLine R© or the Medtronic BISTM brain monitoring
system) would need to be determined. Rigorously designed
prospective clinical trials are needed to test these hypotheses
before attempting to incorporate these approaches into routine
clinical practice.
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