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Abstract RIPK1, RIPK3, ZBP1 and TRIF, the four mammalian proteins harboring RIP homotypic

interaction motif (RHIM) domains, are key components of inflammatory signaling and programmed

cell death. RHIM-domain protein activation is mediated by their oligomerization; however,

mechanisms that promote a return to homeostasis remain unknown. Here we show that autophagy

is critical for the turnover of all RHIM-domain proteins. Macrophages lacking the autophagy gene

Atg16l1accumulated highly insoluble forms of RIPK1, RIPK3, TRIF and ZBP1. Defective autophagy

enhanced necroptosis by Tumor necrosis factor (TNF) and Toll-like receptor (TLR) ligands. TNF-

mediated necroptosis was mediated by RIPK1 kinase activity, whereas TLR3- or TLR4-mediated

death was dependent on TRIF and RIPK3. Unexpectedly, combined deletion of Atg16l1 and Zbp1

accelerated LPS-mediated necroptosis and sepsis in mice. Thus, ZBP1 drives necroptosis in the

absence of the RIPK1-RHIM, but suppresses this process when multiple RHIM-domain containing

proteins accumulate. These findings identify autophagy as a central regulator of innate

inflammation governed by RHIM-domain proteins.

DOI: https://doi.org/10.7554/eLife.44452.001

Introduction
Programmed cell death plays a central role in dictating tolerogenic or immuno-stimulatory

responses. To leverage these pathways therapeutically, it is critical to understand how immune-sup-

pressive versus inflammatory modes of cell death (e.g. necroptosis and pyroptosis) are regulated.

RHIM-domain containing proteins have emerged as central nodes in inflammatory signaling medi-

ated by cytokines or microbial antigens (also known as microbe-associated molecular patterns/

MAMPs) (de Almagro and Vucic, 2015; Kajava et al., 2014; Pasparakis and Vandenabeele, 2015).

Receptor interacting protein kinase 1 (RIPK1) kinase activity drives caspase 8-dependent apoptosis

as well as pro-inflammatory necroptosis dependent on RIPK3 and its substrate mixed lineage kinase

domain like (MLKL) (Cho et al., 2009; He et al., 2009; Sun et al., 2012; Zhang et al., 2009;

Zhao et al., 2012). Additionally, the cytosolic adaptor Toll/IL-1 receptor (TIR) domain-containing

adaptor protein inducing interferon�b (TRIF) and innate sensor Z-DNA binding protein 1 (ZBP1) can

directly interact with RIPK1 and/or RIPK3 via their RHIM domains, thereby stabilizing downstream

signaling (He et al., 2011; Kaiser et al., 2013; Lin et al., 2016; Newton et al., 2016; Thapa et al.,

2016). While the role of these proteins in inflammation and cell death have been elucidated via
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genetic deletion, mechanisms which drive a return to homeostasis have remained poorly described

(Cuchet-Lourenço et al., 2018; Ito et al., 2016; Mocarski et al., 2014; Ofengeim et al., 2017;

Weinlich et al., 2017). RHIM-dependent oligomerization of TRIF, RIPK1, RIPK3 and ZBP1 is required

for their function, but this also results in the generation of amyloid-like structures which require regu-

lated turnover to prevent signal amplification (Kaiser et al., 2013; Li et al., 2012; Rebsamen et al.,

2009).

Selective autophagy targets the autophagic machinery to specific cargo via autophagy receptors.

Forms of selective autophagy have been identified in the turnover of organelles, cytosolic pathogens

and protein aggregates, ultimately driving their turnover via lysosomal degradation (Anding and

Baehrecke, 2017; Khaminets et al., 2016; Levine et al., 2011; Mizushima, 2007). Putative links

between autophagy and TNF-mediated necroptosis of epithelial cells have emerged, but contradic-

tory observations in primary versus transformed cells question how autophagy impacts necroptosis

in these models (Goodall et al., 2016; Matsuzawa-Ishimoto et al., 2017). In the current study, we

investigated the role of autophagy in innate immunity driven by macrophage activation. We found

that autophagy is critical for the turnover of highly insoluble complexes containing TRIF, RIPK1,

RIPK3 or ZBP1. Defective autophagy enhanced cytokine production and necroptosis driven by acti-

vators of RHIM-domain proteins. Unexpectedly, we observed that ZBP1 dampens necroptosis in a

context-specific manner, since deletion of Zbp1 in an autophagy deficient background exacerbated

necroptosis driven by TRIF. Thus, we identify autophagy as an upstream regulator of RHIM-domain

proteins and reveal a non-canonical, immunosuppressive function of ZBP1 upon defective

autophagy.

Results

Defective autophagy enhances RIPK1-dependent and independent
forms of macrophage death
We first asked whether TNF or TLR ligands promote cell death in autophagy-deficient macrophages

by deleting Atg16l1, a core gene in the autophagy pathway. Stimulation with TNF or TLR ligands

does not significantly induce death of wild-type macrophages, with the exception of TLR3 which can

drive caspase-8 mediated apoptosis via TRIF (Kaiser et al., 2013; Gentle et al., 2017;

Kawasaki and Kawai, 2014). However, combining inflammatory stimuli with caspase-inhibitors are

established methods to study inflammatory cell death via necroptosis in vitro and in vivo

(de Almagro and Vucic, 2015; Pasparakis and Vandenabeele, 2015; Weinlich et al., 2017).

Atg16l1 deficient bone marrow-derived macrophages (Atg16l1-cKO BMDMs) did not exhibit

increased sensitivity to TNF alone, but they were more sensitive than wild-type (Atg16l1-WT)

BMDMs to necroptotic stimulus of TNF plus pancaspase inhibitor zVAD-fmk (Figure 1A). Blocking

the kinase activity of RIPK1 with Necrostatin-1 (Nec-1) reduced death in both Atg16l1-WT and

Atg16l1-cKO BMDMs (Figure 1A), consistent with active RIPK1 engaging RIPK3 downstream of

TNFR1 (Newton et al., 2014). Death induced by TLR2, TLR3, TLR4, TLR7/8 or TLR9 ligands plus

zVAD-fmk was also enhanced by Atg16l1 deficiency (Figure 1B; Figure 1—figure supplement 1A).

While Nec-1 suppressed necroptosis by TLR2, TLR7/8 and TLR9 ligands in both genotypes, it was

less effective at preventing TLR3- or TLR4-mediated death in Atg16l1-cKO BMDMs compared with

Atg16l1-WT BMDMs (Figure 1B; Figure 1—figure supplement 1A). IL-1b release by Atg16l1-cKO

BMDMs was also elevated upon LPS-mediated necroptosis independent of RIPK1 inhibition (Fig-

ure 1—figure supplement 1B). The modest effect of Nec-1 in Atg16l1-cKO BMDMs may stem from

it blocking necroptosis due to autocrine TNF production, which was elevated upon Atg16l1 deletion

(Figure 1—figure supplement 1C), but not death due to other mechanisms activating RIPK3.

Core autophagy genes can contribute to autophagy-independent functions in innate immunity

(Codogno et al., 2011; Fletcher et al., 2018; Heckmann et al., 2017). Conclusive proof of autoph-

agy in suppressing necroptosis therefore requires a genetic approach assessing multiple autophagy-

related genes. We established a non-viral gene editing protocol in primary murine macrophages by

comparing CRISPR/Cas9-mediated deletion of enhanced green fluorescent protein (eGFP; schematic

in Figure 1—figure supplement 2A). Efficient gene knockdown was achieved in monocyte- and

bone marrow-derived macrophages (Figure 1—figure supplement 2B, eGFP deletion; Figure 1—

figure supplement 2C,D, Ptprc/CD45 deletion). We used this method in wild-type (WT) BMDMs to
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Figure 1. Defective autophagy enhances RIPK1-dependent and independent necroptosis. (A, B) Cell death assayed by Propidium Iodide (PI) staining

and live-cell imaging for 12–16 hr (n = 5). BMDMs from mice of the indicated genotypes were treated with combinations of TNF/zVAD/Nec-1 (A) or

PolyI:C/zVAD/Nec-1 and LPS/zVAD/Nec-1 (B). (C) Immunoblots confirming deletion of autophagy genes in BMDMs of indicated genotypes using RNP

electroporation. NTC = non targeting control gRNA. (D, E) Cell death assayed under combinations of PolyI:C/zVAD/Nec-1 (D) or LPS/zVAD/Nec-1 (E)

treatment (n = 4). Data in (A, B) are representative of four independent experiments; (C–E) are representative of two independent experiments.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Bar graphs depict mean.

DOI: https://doi.org/10.7554/eLife.44452.002

The following source data and figure supplements are available for figure 1:

Source data 1. Defective autophagy enhances RIPK1-dependent and independent necroptosis.

DOI: https://doi.org/10.7554/eLife.44452.005

Figure supplement 1. Elevated cell death and cytokine production by Atg16l1-cKO BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.003

Figure supplement 1—source data 1. Elevated cell death and cytokine production by Atg16l1-cKO BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.006

Figure supplement 2. CRISPR-mediated deletion of genes in primary BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.004

Figure supplement 2—source data 2. CRISPR-mediated deletion of genes in primary BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.007
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delete canonical autophagy genes Atg14l, Rb1cc1 (encoding FIP200) and Atg16l1, as well as Rubcn

(encoding Rubicon), the principal gene associated with LC3-associated phagocytosis (LAP)

(Heckmann et al., 2017) (Figure 1C). Deletion of Atg14l and Rb1cc1 significantly enhanced PolyI:C/

zVAD- or LPS/zVAD-induced necroptosis, whereas Rubcn deletion resulted in cell death levels com-

parable to Atg16l1-WT controls (Figure 1D,E). As with loss of Atg16l1, Atg14l and Rb1cc1-deficient

BMDMs maintained elevated levels of cell death upon Nec-1 treatment (Figure 1D,E). These results

demonstrate that canonical autophagy suppresses TLR3/4-induced necroptosis in BMDMs and

uncover a RIPK1 kinase-independent mode of cell death by TLR3/4 activation when autophagy is

perturbed.

TRIF and RIPK1 drive necroptosis in Atg16l1-deficient macrophages
To characterize mode of cell death in Atg16l1-cKO BMDMs, we performed CRISPR-mediated dele-

tion of necroptosis mediators Ripk3 and Mlkl as well as Gsdmd (Gasdermin d), the final executor of

pyroptosis (Kayagaki et al., 2015; Sarhan et al., 2018; Shi et al., 2015). Deletion of Ripk3 and Mlkl

but not Gsdmd prevented LPS/zVAD- and TNF/zVAD-induced death in both Atg16l1-WT and

Atg16l1-cKO BMDMs, confirming that macrophage death was due to necroptosis (Figure 2A,B; Fig-

ure 2—figure supplement 1A). Recently, Gsdmd- and caspase-1-independent secondary pyroptosis

mediated by Nlrp3 and Pycard (encoding ASC) was described in murine bone-marrow derived den-

dritic cells (BMDCs) (Schneider et al., 2017). However, neither Nlrp3 nor Pycard knockdown pre-

vented RIPK1 kinase-independent cell death in Atg16l1-cKO BMDMs (Figure 2—figure supplement

1B,C). Therefore, secondary pyroptosis does not appear to contribute to the death of Atg16l1-cKO

BMDMs treated with LPS/zVAD or PolyI:C/zVAD. As expected, knockdown of Ticam1 (encoding

TRIF) in Atg16l1-WT or Atg16l1-cKO BMDMs also decreased necroptosis induced by PolyI:C/zVAD

or LPS/zVAD, although additional inhibition of RIPK1 provided a more complete rescue of cell death

(Figure 2C–E). TLR3 only signals via TRIF (reviewed in Kawasaki and Kawai, 2014), so the added

protection offered by Nec-1 to wild-type cells is consistent with incomplete knockdown of Ticam1

(Figure 2C).

TNF and type I interferons are proposed to license necroptosis in murine macrophages

(Sarhan et al., 2019; Siegmund et al., 2016), so we tested whether pharmacological blockade of

these cytokines would rescue necroptosis in Atg16l1-deficient BMDMs. Cells were pre-treated for 36

hr with a control antibody (anti-Ragweed), TNFR2-Fc to block TNF, or anti-IFNAR1 to block Inter-

feron-a Receptor 1, and then a necroptosis stimulus was applied. TNFR2-Fc attenuated necroptosis

of Atg16l1-WT BMDMs comparably to Nec-1, especially with TLR2 or TLR9 ligands or TNF itself (Fig-

ure 2—figure supplement 2A,E,F), but also with TLR3, TLR4 or TLR7 ligands (Figure 2—figure sup-

plement 2B,C,D). In contrast, TNFR2-Fc failed to inhibit necroptosis in Atg16l1-cKO BMDMs treated

with TLR2, TLR7 or TLR9 ligands (Figure 2—figure supplement 2A,D,E), despite inhibiting necrop-

tosis induced by TLR3 or TLR4 ligands or TNF comparably to Nec-1 (TNFR2-Fc, Figure 2—figure

supplement 2B, C, F). Thus, while TNF contributes to enhanced necroptosis of Atg16l1-deficient

BMDMs, activation of RIPK1 contributes more to this phenotype, perhaps indicating the involvement

of multiple death receptors.

Consistent with the results of McComb et al. (2014), pharmacological blockade of IFNAR1 pre-

vented TLR2, TLR3, TLR4, or TLR9-induced necroptosis in Atg16l1-WT BMDMs (Figure 2—figure

supplement 2A,B,C,E). IFNAR1 blockade also decreased TLR3- or TLR4-induced necroptosis of

Atg16l1-deficient BMDMs more than Nec-1 (Figure 2—figure supplement 2B,C). However, it only

provided modest protection to Atg16l1-cKO BMDMs treated with TLR2, TLR7, or TLR9 ligands or

TNF (Figure 2—figure supplement 2A,D,E,F). Accordingly, phosphorylation of STAT1, which is

associated with Type I interferon signaling, was increased in Atg16l1-cKO BMDMs following LPS/

zVAD treatment (Figure 2—figure supplement 2G). These data indicate that signaling by Type I

interferons contributes to enhanced necroptosis of Atg16l1-deficient BMDMs, particularly with

ligands that activate TRIF.

Loss of autophagy results in accumulation of active forms of TRIF,
RIPK1 and RIPK3 during necroptosis
We asked whether loss of Atg16l1 caused TRIF, RIPK1, or RIPK3 to accumulate in necroptotic

BMDMs, as this would provide direct biochemical evidence that autophagy promotes their turnover.
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Figure 2. RIPK3, MLKL and TRIF are required for RIPK1-independent necroptosis in Atg16l1-deficient BMDMs. (A-E) Immunoblot (A, C) and cell death

assays (B, D, E) of BMDMs from mice of indicated genotypes treated with combinations of LPS/zVAD/Nec-1 following CRISPR-mediated deletion of

RIPK3, MLKL or GSDMD (A, B) (n = 4) or TRIF (C–E) (n = 6). Cell death assayed by PI staining and live-cell imaging for 12–16 hr. Data in (A, B) are

representative of three independent experiments; (C, D, E) are representative of four independent experiments. **p<0.01, ***p<0.001, ****p<0.0001.

Bar graphs depict mean. NTC = non targeting gRNA.

DOI: https://doi.org/10.7554/eLife.44452.008

The following source data and figure supplements are available for figure 2:

Source data 1. RIPK3, MLKL and TRIF are required for RIPK1-independent necroptosis in Atg16l1-deficient BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.010

Figure supplement 1. RIPK3 and MLKL drive RIPK1-dependent, TNF-mediated necroptosis; TRIF drives RIPK1-independent, PolyI:C-mediated

necroptosis in Atg16l1-cKO BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.009

Figure supplement 1—source data 1. RIPK3 and MLKL drive RIPK1-dependent, TNF-mediated necroptosis; TRIF drives RIPK1-independent, PolyI:C

mediated necroptosis in Atg16l1-cKO BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.011

Figure supplement 2. TNF and Type I interferon license necroptosis in BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.013

Figure supplement 2—source data 2. TNF and Type I interferon license necroptosis in BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.012
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TRIF appeared to be monomeric in untreated BMDMs of both genotypes, running as a single band

in the detergent (NP-40) soluble fraction below the 100-kDa mark in an SDS-PAGE gel (Figure 3A,

B). LPS was sufficient to elicit a smear of NP40-insoluble, slower migrating TRIF species that was far

more prominent in Atg16l1-cKO BMDMs than in Atg16l1-WT BMDMs (Figure 3B). CRISPR-knock-

down of Ticam1 (encoding TRIF) in Atg16l1-cKO cells confirmed that the high-MW species were

TRIF (Figure 3B, Atg16l1-cKO, Ticam1-gRNA sample). High-MW species of autophosphorylated

RIPK1 (p-RIPK1, Ser166/Thr169) as well as total RIPK1 largely accumulated in the NP-40 insoluble

fraction after treatment with LPS plus zVAD; these were more abundant in Atg16l1-cKO BMDMs

than in Atg16l1-WT BMDMs (Figure 3C,D). Slower migrating species of both autophosphorylated

RIPK3 (Thr231/Ser232) and total RIPK3 in the insoluble fraction after treatment with LPS plus zVAD

were also elevated in Atg16l1-cKO BMDMs when compared with Atg16l1-WT BMDMs (Figure 3E,

F). Knockdown of Ticam1 decreased the amount of autophosphorylated RIPK3 and autophosphory-

lated RIPK1 in Atg16l1-cKO cells (Figure 3D,F). Loss of Atg16l1 did not appear to affect the abun-

dance of monomeric TRIF, RIPK1, or RIPK3 in the detergent soluble fraction (Figure 3A,C,E),

suggesting that autophagic turnover specifically regulates levels of activated/modified forms of

TRIF, RIPK1 and RIPK3. Consistent with reduced autophagic turnover of RHIM proteins enhancing

TLR4-induced necroptosis, Atg16l1-cKO BMDMs treated with LPS plus zVAD contained more MLKL

phosphorylated at Ser345, a marker of necroptosis (Sun et al., 2012; Cai et al., 2014; Chen et al.,

2014; Dondelinger et al., 2014; Wang et al., 2014), when compared to their wild-type counter-

parts (Figure 4—figure supplement 1A).

Measuring the kinetics of cell death revealed that LPS/zVAD-induced necroptosis killed more

than 80% of Atg16l1-cKO BMDMs within 3 hr of treatment, compared to approximately 50% of

Atg16l1-WT BMDMs (Figure 4A, Figure 4—figure supplement 1B). Interestingly, Atg16l1-deficient

BMDMs were more sensitive than Atg16l1-WT BMDMs to TLR3 engagement alone without zVAD

(Figure 4—figure supplement 1C), consistent with TLR3 and TRIF having the capacity to assemble a

death-inducing signaling complex that activates caspase-8 (Zinngrebe et al., 2016). We analyzed

TRIF, RIPK1 and RIPK3 in the detergent-insoluble fraction in the first 6 hr after treatment with LPS/

zVAD, and found that high-MW forms of TRIF accumulated transiently and with similar kinetics in

both genotypes, peaking at 1 hr, and to a greater extent in the absence of Atg16l1 (Figure 4B).

Accumulation of autophosphorylated, high-MW RIPK1 and RIPK3 peaked at 2 hr after LPS/zVAD

treatment in both genotypes, with greater accumulation in Atg16l1-cKO BMDMs (Figure 4C,D).

Autophosphorylated RIPK1 and RIPK3 were also ubiquitinated with Met1- or Lys63-linked chains,

with greater abundance in Atg16l1-cKO BMDMs (Figure 4E). Indeed, accumulation of ubiquitinated

protein aggregates is a hallmark of defective autophagy (Kwon and Ciechanover, 2017;

Dikic, 2017).

To confirm that accumulation of modified forms of TRIF, RIPK1 and RIPK3 occurred due to defec-

tive lysosomal turnover via autophagy, pharmacological inhibition of lysosomal function was per-

formed in WT BMDMs during necroptosis. Consistent with our genetic models, treatment of WT

BMDMs with Bafilomycin A1, an inhibitor lysosomal vacuolar H-ATPases, resulted in accumulation of

high-MW forms of TRIF and RIPK1 in detergent insoluble fractions during LPS/zVAD-mediated nec-

roptosis over 6 hr (Figure 4—figure supplement 2A–C). In contrast, basal turnover of low-MW TRIF,

RIPK1, and RIPK3 was not perturbed in a reproducible manner by Bafilomycin A1. For comparison,

inhibition of proteasomal degradation with MG-132 caused a very subtle increase in low-MW TRIF

and RIPK1, whereas RIPK3 appeared unaffected Figure 4—figure supplement 2D–F). Collectively,

these data indicate that lysosomal turnover via autophagy is critical for preventing the accumulation

of active TRIF, RIPK1 and RIPK3, and its loss exacerbates necroptotic signaling.

The autophagy receptor TAX1BP1 prevents TRIF-mediated necroptosis
Having demonstrated a role for core autophagy genes in macrophage necroptosis (Figure 1), we

analyzed autophagic flux in WT BMDMs during LPS-mediated necroptosis. LC3, a critical component

of the mature autophagosome membrane that receives autophagic cargo, is lipidated during the

process of autophagy. Additionally, selective autophagy receptors which can potentially associate

with cytosolic substrates are trafficked to autophagosomes as a consequence of autophagic flux

(Anding and Baehrecke, 2017; Dikic, 2017). Treatment with LPS/zVAD in the presence of Bafilomy-

cin A1 to halt autophagic flux revealed accumulation of lipidated LC3B (LC3-II) in WT BMDMs (Fig-

ure 4—figure supplement 2G). Levels of the autophagy receptors SQSTM1/p62, TAX1BP1 and
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Figure 3. Loss of Atg16l1 drives accumulation of detergent insoluble, high molecular weight TRIF, RIPK1, RIPK3

and enhances RIPK1/RIPK3 phosphorylation. (A, B) Immunoblots of TRIF in Atg16l1-WT and Atg16l1-cKO BMDM

lysates following 4 hr of treatment with indicated combinations of LPS/zVAD/Nec-1 and enrichment of NP-40

soluble (A) or insoluble (B) fractions. (C, D) immunoblots for autophosphorylated RIPK1 (Ser166/Thr169, p-RIPK1)

and total RIPK1 in Atg16l1-WT and Atg16l1-cKO BMDM lysates following 4 hr of treatment with indicated

Figure 3 continued on next page
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CALCOCO1 were elevated upon Bafilomycin A1 treatment, especially in the detergent-insoluble

fraction (Figure 4—figure supplement 2G,H). These data suggest that autophagic flux was ongoing

during necroptosis and that autophagy receptors accumulated in the same subcellular compartment

as active TRIF, RIPK1 and RIPK3. We and others have observed that the selective autophagy recep-

tor TAX1BP1 suppresses TRIF abundance and TRIF-dependent IFNb production in BMDMs

(Samie et al., 2018; Yang et al., 2017). These findings are consistent with our unbiased proteomics-

based identification of SQSTM1/p62, TAX1BP1 and CALCOCO1 as candidate selective autophagy

receptors in BMDMs during TLR4 activation (Samie et al., 2018). Immunoblotting revealed accumu-

lation of SQSTM1/p62, TAX1BP1 and CALCOCO1 with varying kinetics after treatment with LPS/

zVAD, and loss of Atg16l1 further increased the levels of these receptors in the detergent-insoluble

fraction (Figure 5A,B). We utilized CRISPR-mediated knockdown of these autophagy receptors in

WT BMDMs to assess their role in necroptosis induced by ligands that engage TRIF (Figure 5C).

Loss of Tax1bp1 enhanced BMDM death by either PolyI:C/zVAD or LPS/zVAD treatment. Necropto-

sis in both settings was only partially blocked by Nec-1. In contrast, knockdown of Sqstm1 or Cal-

coco1 did not increase TLR3- or TLR4-induced necroptosis in BMDMs (Figure 5D). Thus, the

autophagy receptor TAX1BP1 suppresses BMDM necroptosis downstream of TRIF.

Accumulation of ZBP1 protects against necroptosis in Atg16l1-deficient
macrophages
We recently identified the RHIM-domain containing protein ZBP1 as one of the most highly accumu-

lated proteins in Atg16l1-deficient macrophages (Samie et al., 2018). Loss of Atg16l1 resulted in

basal accumulation of ZBP1 as shown by a cycloheximide-chase assay (Figure 6A). In contrast to

TRIF, RIPK1 and RIPK3, basal turnover of ZBP1 was attenuated by lysosomal inhibition, because

treatment with Bafilomycin A1, but not MG132, resulted in ZBP1 accumulation in WT BMDMs (Fig-

ure 6—figure supplement 1A). ZBP1 also accumulated during LPS/zVAD-induced necroptosis, and

this was enhanced by Atg16l1 deletion (Figure 6—figure supplement 1B). No high-MW forms of

ZBP1 were detected using currently available reagents. The role of the Za1/Za2- or RHIM-domains

of ZBP1 in its accumulation will need to be addressed in future studies.

ZBP1 has been shown to promote cell death upon accumulation of endogenous or viral nucleic

acids (Thapa et al., 2016; Kesavardhana et al., 2017; Kuriakose et al., 2016; Maelfait et al.,

2017), or genetic deletion of RIPK1-RHIM (Lin et al., 2016; Newton et al., 2016). Thus, we hypoth-

esized that elevated ZBP1 might engage RIPK3 and contribute to enhanced necroptosis in Atg16l1-

deficient BMDMs. However, CRISPR-mediated deletion of Zbp1 in Atg16l1-cKO BMDMs (Figure 6B)

further enhanced LPS/zVAD-induced necroptosis, and this death was prevented by deletion of

Ticam1 but not by Nec-1 (Figure 6C; Figure 6—figure supplement 1C). Therefore, contrary to

expectations, ZBP1 appears to suppress TRIF-mediated necroptosis (Figure 6C). Notably, loss of

Zbp1 did not impact the death of autophagy-sufficient BMDMs, suggesting that levels of ZBP1 must

cross a certain threshold before suppressing TRIF-dependent necroptosis. To more thoroughly char-

acterize the sensitization conferred by Zbp1 loss, we measured cell death after performing a dose-

titration of LPS in the presence of 20 mM zVAD. CRISPR-mediated deletion of Zbp1 alone did not

impact cell death at any dose of LPS (Figure 6D), but combined with defective autophagy, Zbp1

deletion sensitized cells to necroptosis at low doses of LPS, even in the presence of Nec-1

(Figure 6E). Thus, overabundant ZBP1 can antagonize TRIF-mediated necroptosis in Atg16l1-defi-

cient macrophages. We confirmed our CRISPR-based observations by generating conditional-knock-

out mice lacking Atg16l1 (Atg16l1-cKO; Zbp1-WT) or Atg16l1 and Zbp1 (Atg16l1-cKO; Zbp1-cKO)

in myeloid cells. Consistent with our earlier results, Zbp1 deletion accelerated LPS/zVAD-mediated

Figure 3 continued

combinations LPS/zVAD/Nec-1 and enrichment of NP-40 soluble (C) or insoluble (D) fractions. (E, F) immunoblot

assay for autophosphorylated RIPK3 (Thr231/Ser232, p-RIPK3) and total RIPK3 in Atg16l1-WT and Atg16l1-cKO

BMDM lysates following 4 hr of treatment with indicated combinations of LPS/zVAD/Nec-1 and enrichment of NP-

40 soluble (E) or insoluble (F) fractions. Representative data shown from three independent experiments. In all

immunoblots, CRISPR-mediated TRIF deletion was performed in Atg16l1-cKO BMDMs followed by LPS/zVAD

treatment as a negative control. *=non specific bands (n.s.).

DOI: https://doi.org/10.7554/eLife.44452.014
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Figure 4. Overabundance of TRIF, phosphorylated and ubiquitinated RIPK1 and RIPK3 coincides with accelerated necroptosis of Atg16l1 deficient

BMDMs. (A) Kinetic measurement of cell death over 18 hr of LPS/zVAD treatment (n = 5). (B) Immunoblot of TRIF in NP-40 insoluble fractions of BMDM

lysates over 6 hr of LPS/zVAD treatment. (C, D) Immunoblots of autophosphorylated and total RIPK1 (C), RIPK3 (D) in NP-40 insoluble fractions of

BMDM lysates treated as in (B). (E) Immunoblots of autophosphorylated RIPK1, RIPK3 and ubiquitin in BMDM lysates following immunoprecipitation of

M1 or K63-ubiquitinated proteins after 4 hr of LPS/zVAD treatment. Data in (A) are representative of four independent experiments; (B–D) are

representative of three independent experiments; (E) are representative of three independent experiments. *=P < 0.05.

DOI: https://doi.org/10.7554/eLife.44452.015

The following source data and figure supplements are available for figure 4:

Source data 1. Overabundance of TRIF, phosphorylated and ubiquitinated RIPK1 and RIPK3 coincides with accelerated necroptosis of ATG16L deficient

BMDMs.

DOI: https://doi.org/10.7554/eLife.44452.018

Figure supplement 1. Enhanced MLKL activation and accelerated cell death in Atg16l1 deficient BMDMs following LPS- or PolyI:C-mediated

necroptosis.

DOI: https://doi.org/10.7554/eLife.44452.016

Figure supplement 1—source data 1. Enhanced MLKL activation and accelerated cell death in ATG16L1 deficient BMDMs following LPS- or PolyI:C-

mediated necroptosis.

DOI: https://doi.org/10.7554/eLife.44452.019

Figure supplement 2. Lysosomal function and autophagic flux drive turnover of active TRIF, RIPK1 and RIPK3 during necroptosis.

Figure 4 continued on next page
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necroptosis of Atg16l1-deficient macrophages (Figure 6—figure supplement 1D). ZBP1 deficiency

did not affect the accumulation of TRIF in the detergent insoluble fraction of Atg16l1-cKO BMDMs

treated with LPS/zVAD (Figure 6F), arguing that ZBP1 interferes with signaling events further down-

stream. Indeed, compared to Atg16l1-cKO BMBMs, BMDMs lacking both Atg16l1 and Zbp1 con-

tained more high MW species of autophosphorylated RIPK1 (Figure 6G) and autophosphorylated

RIPK3 (Figure 6H) after treatment with LPS/zVAD.

Combined deletion of Atg16l1 and Zbp1 in myeloid cells accelerates
LPS-mediated sepsis
Beyond cellular necroptosis, myeloid-specific loss of Atg16l1 sensitizes mice to LPS-mediated sepsis

in vivo (Samie et al., 2018). Since Zbp1 deletion enhanced TRIF-mediated necroptosis in Atg16l1-

cKO BMDMs ex vivo, we asked whether loss of Atg16l1 and Zbp1 in myeloid cells would further

exacerbate LPS-mediated sepsis. Intraperitoneal administration of LPS (10 mg per kg body weight)

reproduced the previously observed sensitization of Atg16l1-cKO mice. Combined loss of Atg16l1

and Zbp1 significantly accelerated morbidity, with double-knockout mice succumbing to LPS-driven

mortality by 14 hr. Loss of Zbp1 alone did not impact morbidity (Figure 7A; Figure 7—figure sup-

plement 1A). Atg16l1 deficiency in myeloid cells exacerbated LPS-induced IL-1b and TNF in the

serum, and the amount of IL-1b was yet higher in Atg16l1-cKO; Zbp1-cKO double-knockout mice

(Figure 7B). Together, these results demonstrate that: 1) autophagy regulates ZBP1 abundance in

macrophages, 2) elevated ZBP1 suppresses necroptosis when autophagy is perturbed, and 3) loss of

both Atg16l1 and Zbp1 in myeloid cells accelerates LPS-mediated inflammation, enhancing morbid-

ity in vivo.

Discussion
Macrophages represent primary cellular sensors of the innate immune system. During an inflamma-

tory response, these phagocytes are armed to either propagate or resolve inflammation via antigen

uptake and presentation, cytokine production, or induction of programmed cell death. Here, we

show that defective autophagy in macrophages leads to an accumulation of modified RIPK1, RIPK3,

and TRIF in response to pro-inflammatory signals, precipitating inflammation and necroptosis in a

stimulus-dependent manner (Figure 7—figure supplement 1B,C). While RIPK1, RIPK3 and TRIF are

well-established signaling factors required for necroptosis, our understanding of ZBP1 in this context

is less developed. Recent studies have expanded on cytosolic nucleic-acid sensing by ZBP1

(Thapa et al., 2016; Kesavardhana et al., 2017; Kuriakose et al., 2016; Maelfait et al., 2017;

Guo et al., 2018). ZBP1 was also shown to drive RIPK3-mediated necroptosis when the RIPK1-RHIM

domain was mutated in vivo (Lin et al., 2016; Newton et al., 2016). However, its role in other forms

of innate signaling is not known. Using an optimized protocol for CRISPR-mediated gene editing in

primary macrophages, we revealed context-specific roles of TRIF and ZBP1 in regulating necroptosis

and inflammatory cytokine production (Figure 7—figure supplement 1C). Specifically, we noted

that TRIF can promote RIPK1 kinase-independent, RIPK3-dependent necroptosis when its accumula-

tion is not checked by autophagy. TRIF can engage RIPK3 directly without the need for

RIPK1 (Kaiser et al., 2013; Newton et al., 2016), so a scaffolding role for RIPK1 is unlikely. This

notion cannot be confirmed genetically because RIPK1-deficiency alone triggers macrophage death

(Newton et al., 2016). ZBP1 contains multiple RHIM-domains that support formation of amyloid-like

structures (Li et al., 2012; Rebsamen et al., 2009). Accumulation of ZBP1 induced by defective

autophagy may perturb optimal TRIF- or RIPK3- signaling via RHIM-mediated interference. Conclu-

sive evidence for this possibility requires the mutation of ZBP1-RHIM domains in autophagy-deficient

cells.

In mammalian cells, RHIM-dependent stacking of RIPK1 and RIPK3 has been described as a key

feature of the necrosome (Li et al., 2012). RHIM-dependent accumulation of TRIF is also

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.44452.017

Figure supplement 2—source data 2. Lysosomal function and autophagic flux drive turnover of active TRIF, RIPK1 and RIPK3 during necroptosis.

DOI: https://doi.org/10.7554/eLife.44452.020
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Figure 5. The autophagy receptor TAX1BP1 protects against necroptosis by TLR3 or TLR4 ligands. (A, B) Immunoblots of indicated autophagy

receptors in total (A) or NP-40 insoluble fractions (B) of BMDM lysates over 6 hr of LPS/zVAD treatment. (C) Immunoblots confirming CRISPR-mediated

deletion of indicated autophagy receptor genes in wild-type BMDMs. (D) Cell death assayed by PI staining and live-cell imaging for 12–16 hr following

treatment with indicated ligands. Data in (A, B) are representative of three independent experiment; (C, D) are representative of four independent

experiments. **p<0.01, ****p<0.0001. Bar graphs depict mean. NTC = non targeting control gRNA.

DOI: https://doi.org/10.7554/eLife.44452.021

The following source data is available for figure 5:

Source data 1. The autophagy receptor TAX1BP1 protects against necroptosis by TLR3 or TLR4 ligands.

DOI: https://doi.org/10.7554/eLife.44452.022
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Figure 6. Elevated ZBP1 in Atg16l1-deficient BMDMs suppresses TRIF-mediated necroptosis. (A) ZBP1 turnover in Atg16l1-WT and Atg16l1-cKO

BMDMs following cycloheximide (CHX) treatment for indicated time points. Representative immunoblot (top), ZBP1 quantification by densitometry

(bottom) normalized to ZBP1 band intensity in WT samples at 0 hr. (B, C) immunoblot (B) and cell death (C) assays of BMDMs from mice of indicated

genotypes treated with combinations of LPS/zVAD/Nec-1 following CRISPR-mediated deletion of Zbp1, Ticam1 or both (n = 4). (D, E) cell death

assayed in Atg16l1-WT or Atg16l1-cKO BMDMs following CRISPR-mediated Zbp1 deletion and a dose titration of LPS in the presence of 20 mM zVAD

and/or 30 mM Nec-1 (n = 4). Dot-plots depict mean ±S.D. (F–H) immunoblots depicting accumulation of TRIF (F), autophosphorylated and total RIPK1

Figure 6 continued on next page
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acknowledged as a pre-requisite for TRIF-mediated inflammatory signaling (Gentle et al., 2017).

Biophysical characteristics of RHIM-domain protein complexes include a highly insoluble nature and

resistance to denaturation/degradation (Fowler et al., 2007; Kleino et al., 2017; Lamour et al.,

2017). Ubiquitination of cytosolic proteins is an established mechanism of substrate-identification by

selective autophagy, and TRIF, RIPK1 and RIPK3 are ubiquitinated during inflammatory signaling

(Yang et al., 2017; Choi et al., 2018; de Almagro et al., 2017). Although ubiquitinated RIPK1, and

RIPK3 were more abundant after LPS/zVAD-induced necroptosis when autophagy was compro-

mised, further investigation is needed to define the components of the selective autophagy machin-

ery that drive the turnover of RHIM-domain proteins, and to determine whether ubiquitination is a

critical step in this process.

Necroptosis is acknowledged as a potent pro-inflammatory mode of cell death, but there is an

incomplete understanding of its role in normal tissue homeostasis and anti-microbial immunity.

Genome-wide association (GWA) and functional studies have revealed that defects in autophagy

promote inflammatory diseases such as Crohn’s disease, rheumatoid arthritis, lupus and neurode-

generation (Levine et al., 2011; Mizushima, 2007; Matsuzawa-Ishimoto et al., 2017; Samie et al.,

2018). Our findings provide a potential link between defective autophagy and necroptotic signaling,

with autophagy promoting the turnover of RHIM-containing proteins.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(M. musculus)

Atg16l1loxP/loxP PMID: 24553140 Dr. Aditya Murthy
(Genentech, Inc)

Genetic reagent
(M. musculus)

Zbp1loxP/loxP Newton et al., 2016 Dr. Kim Newton
(Genentech, Inc)

Commercial
assay or kit

Mouse monocyte
isolation kit

Miltenyi Biotec Cat#: 130-100-629

Peptide,
recombinant
protein

Cas9 V3 IDT Cat#: 1081058 10 mg per
reaction

Peptide,
recombinant
protein

murine TNFa Peprotech Cat#: 315-01A 50 ng/ml

Continued on next page

Figure 6 continued

(G), autophosphorylated and total RIPK3 (H) in NP-40 insoluble lysates of BMDMs lacking both Atg16l1 and Zbp1 following induction of necroptosis via

LPS/zVAD for 3 hr. Top panels represent short exposures; middle panels represent long exposures. *=non specific band. Data (A) are representative of

four independent experiments, densitometry is pooled from four independent experiments. Data in (B, C) are representative of three independent

experiments; (D–H) are representative of two independent experiments. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Bar graphs depict mean.

NTC = non targeting control gRNA.

DOI: https://doi.org/10.7554/eLife.44452.023

The following source data and figure supplements are available for figure 6:

Source data 1. Elevated ZBP1 in ATG16L1 deficient BMDMs suppresses TRIF-mediated necroptosis.

DOI: https://doi.org/10.7554/eLife.44452.025

Figure supplement 1. Loss of Atg16l1 leads to ZBP1 accumulation; deletion of Zbp1 in Atg16l1-cKO BMDMs enhances TRIF-mediated necroptosis and

RIPK3 activation.

DOI: https://doi.org/10.7554/eLife.44452.024

Figure supplement 1—source data 1. Loss of Atg16l1 leads to ZBP1 accumulation; deletion of Zbp1 in Atg16l1-cKO BMDMs enhances TRIF-mediated

necroptosis and RIPK3 activation.

DOI: https://doi.org/10.7554/eLife.44452.026
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Peptide,
recombinant
protein

Pam3CSK4 Invivogen Cat#: tlrl-pms 1 mg/ml

Peptide,
recombinant
protein

PolyI:C (LMW) Invivogen Cat#: tlrl-picw 10 mg/ml

Peptide,
recombinant
protein

LPS-EB ultrapure
(E. coli O111:B4)

Invivogen Cat#: tlrl-3pelps 100 ng/ml

Peptide,
recombinant
protein

R848 (Resiquimod) Invivogen Cat#: tlrl-r848 1 mg/ml

Peptide,
recombinant
protein

CpG-ODN 1826 Invivogen Cat#: tlrl-1826 5 mM

Peptide,
recombinant
protein

zVAD-fmk Promega Cat#: G7232 20 mM

Chemical
compound, drug

Necrostatin-1 Enzo Life Sciences Cat#:
BML-AP309-0100

30 mM

Chemical
compound, drug

Bafilomycin A1 Sigma Cat#: B1793 100 nM

Chemical
compound, drug

MG132 Sigma Cat#: M7449 2 mM

Peptide,
recombinant
protein

FcR-Block BD biosciences Cat#: 5331441

Chemical
compound, drug

Fixable viability
dye efluor780

Invitrogen Cat#: 65–0865

Antibody anti-CD62L
PerCP Cy5.5
Rat monoclonal

BD biosciences Cat#: 560513
RRID: AB_10611578

Flow cytometry

Antibody anti-CCR2 APC R and D Systems Cat#: FAB5538A
RRID: AB_10645617

Flow cytometry

Antibody anti-F4/80 efluor450
Rat monoclonal

eBioscience Cat#: 48-4801-82
RRID: AB_1548747

Flow cytometry

Antibody anti-CSF1R BV711
Rat monoclonal

Biolegend Cat#: 135515
RRID: AB_2562679

Flow cytometry

Antibody anti-Ly6G BUV395
Rat monoclonal

BD biosciences Cat#: 565964
RRID: AB_2739417

Flow cytometry

Antibody anti-CD11b BUV737
Rat monoclonal

BD biosciences Cat#: 564443
RRID: AB_2738811

Flow cytometry

Antibody anti-MHCII (IA/IE) PE
Rat monoclonal

eBioscience Cat#: 12-5322-81
RRID: AB_465930

Flow cytometry

Antibody anti-Ly6C-PECy7
Rat monoclonal

eBioscience Cat#: 25-5932-82
RRID: AB_2573503

Flow cytometry

Antibody anti-CD45 FITC
Rat monoclonal

eBioscience Cat#: 11-0451-82
RRID: AB_465050

Flow cytometry

Antibody anti-F4/80 BV421
Rat monoclonal

Biolegend Cat#: 123131
RRID: AB_10901171

Flow cytometry

Antibody anti-CD11b BUV395
Rat monoclonal

BD biosciences Cat#: 563553
RRID: AB_2738276

Flow cytometry

Antibody anti-ATG16L1
Mouse monoclonal

MBL international Cat#: M150-3
RRID: AB_1278758

Immunoblot

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody anti-ATG14L
Rabbit polyclonal

MBL international Cat#: PD026
RRID: AB_1953054

Immunoblot

Antibody anti-FIP200
Rabbit monoclonal

Cell Signaling
Technology

Cat#: 12436
RRID: AB_2797913

Immunoblot

Antibody anti-Rubicon
Mouse monoclonal

MBL international Cat#: M170-3
RRID: AB_10598340

Immunoblot

Antibody anti-TRIF
Host: Rat

Genentech, Inc Cat#: 1.3.5 Immunoblot

Antibody anti-MLKL
Host: Rabbit

Genentech, Inc Cat#: 1G12 Immunoblot

Antibody anti-p-MLKL
Rabbit monoclonal

Abcam Cat#: ab196436
RRID: AB_2687465

Immunoblot

Antibody anti-RIPK1
Mouse monoclonal

BD biosciences Cat#: 610459
RRID: AB_397832

Immunoblot

Antibody anti-p- RIPK1
Host: Rabbit

Genentech, Inc Cat#: GNE175.DP.B1 Immunoblot

Antibody anti-RIPK3
Rabbit polyclonal

Novus Biologicals Cat#: NBP1-77299
RRID: AB_11040928

Immunoblot

Antibody anti-p-RIPK3
Host: Rabbit

Genentech, Inc Cat#: GEN-135-35-9 Immunoblot

Antibody anti-GSDMD
Host: Rat

Genentech, Inc Cat#: GN20-13 Immunoblot

Antibody anti-LC3B
Rabbit polyclonal

Cell Signaling
Technology

Cat#: 2775
RRID: AB_915950

Immunoblot

Antibody anti-CALCOCO1
Rabbit polyclonal

Proteintech Cat#: 19843–1-AP
RRID: AB_10637265

Immunoblot

Antibody anti-TAX1BP1
Rabbit monoclonal

Abcam Cat#: ab176572 Immunoblot

Antibody anti-p62
Guinea pig polyclonal

Progen biotechnic Cat#: gp62-c
RRID: AB_2687531

Immunoblot

Antibody anti-NLRP3
Rabbit monoclonal

Cell Signaling
Technology

Cat#: 15101
RRID: AB_2722591

Immunoblot

Antibody anti-ASC
Rabbit monoclonal

Cell Signaling
Technology

Cat#: 67824
RRID: AB_2799736

Immunoblot

Antibody anti-STAT1
Rabbit monoclonal

Cell Signaling
Technology

Cat#: 14995
RRID: AB_2716280

Immunoblot

Antibody anti-p- STAT1
Rabbit monoclonal

Cell Signaling
Technology

Cat#: 7649
RRID: AB_10950970

Immunoblot

Antibody anti-M1-polyubiquitin
linkage specific
antibody

Genentech, Inc N/A Immuno
precipitation

Antibody anti-K63-polyubiquitin
linkage specific
antibody

Genentech, Inc N/A Immuno
precipitation

Antibody Anti-Ubiquitin
Mouse monoclonal

Cell Signaling
Technology

Cat#: 3936
RRID: AB_331292

Immunoblot

Antibody anti-beta Actin Cell Signaling
Technology

Cat#: 3700
RRID: AB_2242334

Immunoblot

Antibody anti-rabbit IgG HRP
Goat polyclonal

Cell Signaling
Technology

Cat#: 7074
RRID: AB_2099233

Immunoblot

Antibody anti-mouse IgG HRP
Horse polyclonal

Cell Signaling
Technology

Cat#: 7076
RRID: AB_330924

Immunoblot

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody anti-rat IgG HRP
Goat polyclonal

Cell Signaling
Technology

Cat#: 7077
RRID: AB_10694715

Immunoblot

Antibody Anti-Ragweed Genentech, Inc N/A Inhibition

Antibody Anti-mIFNAR1
Mouse monoclonal

Leinco
Technologies

Cat#: I-401
RRID: AB_2737538

Inhibition

Antibody mTNFR2-Fc
Mouse Fc

Genentech, Inc N/A Inhibition

Tools (software) Image J Immunoblot
densitometry

Tools (software) Graphpad
Prism 7

Graphpad Data visualization
and statistics

Mice
Myeloid-specific deletion of Atg16l1 was achieved by crossing Lyz2-Cre + mice with Atg16l1loxP/loxP

mice (described in 45). Conditional targeting of the Zbp1 locus was generated in C57BL/6NTac ES

cells (Taconic) by introduction of loxP-sites flanking the ATG-containing exon 1, spanning the Zbp1

5’UTR and exon one corresponding to NCBI37/mm9 chr2:173,043,537–173,045,687 (described in

12). A 3xFLAG-tag was inserted in-frame with the ATG. Addition of the 3xFLAG-tag did not compro-

mise ZBP1 function, since it failed to rescue the previously described lethality of Ripk1-RHIM mutant

mice (Guo et al., 2018) (Supplementary file 1). Myeloid-specific deletion of Zbp1 was achieved by

crossing Lyz2-Cre + mice with Zbp1loxP/loxP mice. Combined deletion of Atg16l1 and Zbp1 was gen-

erated by crossing the above two strains of mice. eGFP-reporter mice were obtained from Jackson

labs (strain 57BL/6-Tg(CAG-EGFP)1Osb/J, Stock No: 003291). None of the in vivo experiments were

randomized. No statistical method was used to pre-determine group sample size, and investigators

were not blinded to group allocations or study outcomes.

LPS-driven sepsis
Intraperitoneal administration of LPS (E. coli O111:B4, Sigma L2630) was performed at 10 mg/kg dis-

solved in a maximum of 200 mL sterile phosphate-buffered saline (PBS). Mice were monitored for

morbidity and body temperature every 4 hr for the first 14 hr, followed by monitoring at 24 and 48

hr. Blood was obtained at 4 hr post LPS-administration for serum cytokine analysis. Experiments

were performed using age- and sex-matched cohorts from a single colony. All protocols were

approved by the Genentech Institutional Animal Care and use Committee; all studies were executed

by following relevant ethical regulations detailed in animal use protocols (internal protocol 18–1823).

Cell culture
Murine monocytes were obtained from femoral bone marrow by negative selection using a mono-

cyte isolation kit (Miltenyi Biotec). Monocyte-derived macrophages were cultured in macrophage

medium [high glucose Dulbecco’s Minimum Essential Media (DMEM) + 10% FBS+GlutaMAX

(Gibco) +Pen/Strep (Gibco) supplemented with 50 ng/ml recombinant murine macrophage-colony

stimulating factor (rmM-CSF, Genentech)]. Bone marrow-derived macrophages were generated by

culture of total femoral bone marrow in macrophage medium on 15-cm non-TC treated plates for 5

days (Petri dish, VWR). Fresh medium was added on day 3 without removal of original media. On

day 5, macrophages were gently scraped from dishes, counted and re-plated on TC treated plates

of the desired format for downstream assays. After overnight culture in macrophage medium, assays

were performed on day 6 BMDMs. CRISPR-edited BMDMs were treated on day 10 to permit com-

plete protein loss of targeted genes. BMDMs were stimulated with 50 ng/ml murine TNFa (Pepro-

tech), 1 mg/ml Pam3CSK4, 10 mg/ml poly(I:C) LMW, 100 ng/ml ultra-pure LPS unless otherwise

stated (LPS, E. coli 0111:B4), 1 mg/ml R848 or 5 mM CpG-ODN 1826 (all from Invivogen). zVAD-fmk

was added at 20 mM (Promega). Necrostatin-1 (Nec-1) was added at 30 mM (Enzo Life Science).

DMSO was added at 0.1% as vehicle control (Sigma). For cell death assays, BMDMs were plated at 2
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� 104 cells/well in flat-bottom 96-well plates. The following day, cells were stimulated as indicated

to induce necroptosis. BMDM viability was assessed by propidium iodide (PI, Invitrogen) staining

using live-cell imaging, measuring PI-positive cells per mm2 (Incucyte systems, Essen Biosciences).

Percent cell death was calculated by dividing PI-positive cells per mm2 with total plated cells per

mm2. Total cell plated cells were enumerated by independently plating BMDMs and staining with a

nuclear dye fluorescing in the same channel as PI (Nuclear-ID Red, Enzo Life Science) or addition of

0.1% Triton X-100 in the presence of PI. Time points between 12 and 16 hr were used to compare

cell death unless otherwise stated. ZBP1 turnover measured by cycloheximide-chase assays was
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Figure 7. Combined loss of myeloid-specific Atg16l1 and Zbp1 accelerates LPS-mediated sepsis in mice. (A)

Kaplan-Meier survival plots for mice following challenge with 10 mg/kg LPS administered intraperitoneally.

Statistical analysis Figure 7—figure supplement 1A was performed using log-rank test (Figure 7—figure

supplement 1; Figure 7—figure supplement 1A). (B) Serum cytokine measurements of IL-1b and TNFa

performed by ELISA following 4 hr of intraperitoneal LPS administration at 10 mg/kg. Data in A are representative

of two independent experiments. Data in B are pooled from two independent experiments. *p<0.05, **p<0.01,

***p<0.001, ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.44452.027

The following source data and figure supplement are available for figure 7:

Source data 1. Accelerated morbidity conferred by double deficiency of ATG16L1 and ZBP1 in myeloid cells fol-

lowing LPS-mediated sepsis in mice.

DOI: https://doi.org/10.7554/eLife.44452.029

Figure supplement 1. Accelerated morbidity conferred by double deficiency of ATG16L1 and ZBP1 in myeloid

cells following LPS-mediated sepsis in mice.

DOI: https://doi.org/10.7554/eLife.44452.028
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performed with 100 mg/ml CHX in DMSO for the indicated time points (Sigma). ZBP1 degradation

assays in WT BMDMs were performed using 100 nM Bafilomycin A1 (Sigma) or 2 mM MG132 (Sigma)

for the indicated time points.

Gene editing
CRISPR/Cas9-mediated deletion of genes was performed by electroporation of Cas9 RNP in mono-

cytes and BMDMs. Briefly, 5 � 106 primary monocytes from the bone marrow or day five cultured

BMDMs were electroporated with recombinant Cas9 (IDT) complexed with gene-specific guide

RNAs (Supplementary file 2). Briefly, locus-specific crRNAs were annealed with tracrRNAs at a 1:1

stoichiometric ratio at 95˚C for 5 min followed by complexing with recombinant Cas9 at a 3 mL:1 mL

gRNA:Cas9 ratio per guide RNA to generate the RNP complex. two guide RNAs were combined

per gene. Cells were resuspended in 20 mL nucleofector solution P3 and RNP complex added. This

mixture was aliquoted into 16-well nucleofector strips (Lonza) and electroporated using program

CM-137 (4D-Nucleofector, Lonza). Following electroporation, cells were grown in non-tissue culture

treated dishes (VWR) for an additional 5 days in macrophage media. On day 5, cells were scraped

from dishes and re-plated as required for functional assays in tissue-culture treated multi-well plates.

Flow cytometry
Monocyte-derived macrophages or BMDMs were harvested and washed in cold PBS. Cells were

incubated in Fc-block reagent (BD biosciences) and fixable viability dye eFluor 780 (Invitrogen) for

15 min at 4˚C in cold PBS. Monocyte-derived macrophages were washed once and stained with the

following antibodies: anti-CD62L PerCp-Cy5.5 (BD biosciences), anti-CCR2 APC (R and D Systems),

anti-F4/80 efluor450 (eBioscience), anti-CSF1R BV711 (Biolegend), anti-Ly6G BUV395 (BD bioscien-

ces), anti-CD11b BUV737 (BD biosciences), anti-MHCII(I-A/I-E) PE (eBioscience) and anti-Ly6C PE-

Cy7 (eBioscience). BMDMs were washed once and stained with the following antibodies: anti-CD45

FITC (eBioscience), anti-F4/80 BV421 (Biolegend), anti-CD11b BUV395 (BD biosciences). Stained

cells were analyzed on by flow cytometry using a BD FACS CANTO instrument. Loss of eGFP or

CD45 was assessed by gating on live F4/80 + macrophages using FlowJo X.

ELISA
BMDM cell culture medium or murine serum was analyzed for measurement of cytokines IL-1b and

TNFa (eBioscience) by ELISA following manufacturer’s protocols.

Immunoblotting
To assay CRISPR-mediated gene deletions, cell pellets were lysed in RIPA buffer +protease and

phosphatase inhibitors (Roche). Supernatants were obtained after high speed centrifugation and

protein concentration measured using the BCA assay (Thermo Fisher). To perform detergent soluble

and insoluble fractionation, cell pellets were lysed in 1% NP-40 lysis buffer (150 mM NaCl, 20 mM

Tris-HCl pH 7.5, 1% NP-40, 1 mM EDTA, protease and phosphatase inhibitors). Lysates were flash

frozen on dry-ice, thawed on ice and vortexed for 10 s followed by centrifugation at 1000 g for 10

min to remove nuclear pellets. Supernatants were centrifuged at 15000 rpm (or highest speed) for

15 min in a refrigerated table-top centrifuge. Resultant supernatants were collected as NP-40 soluble

fractions. NP-40 insoluble pellets were resuspended in 1% NP-40 lysis buffer supplemented with 1%

SDS. The suspension was homogenized by passing through a 26-gauge needle, and protein quantifi-

cation performed using BCA assay. To assess ubiquitination, cells were lysed under denaturing con-

ditions with lysis buffer (9 M urea and 20 mM HEPES, pH 8.0) containing 1 mM sodium

orthovanadate, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerolphosphate and incubated for 20

min with vigorous shaking at 900 rpm at room temperature. Following incubation, cell lysates were

centrifuged for 10 min at 14,000 rpm. Lysates were then diluted two times with buffer (20 mM

HEPES, pH 8.0) containing Roche protease inhibitor cocktail, 100 mM PR-619 (SI9619, Life Sensors)

and 100 mM 1,10-phenanthroline (SI9649, Life Sensors) and used for immunoprecipitation with ubiq-

uitin chain-specific antibodies and protein-A/G beads overnight at 4˚C as previously described in

Goncharov et al. (2018). SDS-PAGE was performed using a 4–12% gradient Bis-Tris gel (Novex), fol-

lowed by protein transfer onto PVDF membranes and antibody incubation. Immunoblots were

detected by enhanced chemiluminescence (western lightning-plus ECL, Perkin Elmer). Antibodies
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used: anti-Atg16l1 (MBL international), anti-Atg14l (MBL international), anti-FIP200 (Cell Signaling

Technology), anti-Rubicon (MBL), anti-TRIF (Genentech), anti-MLKL (Genentech), anti-RIPK1 (BD Bio-

sciences), anti-pSer345 MLKL (Abcam), anti-pSer166/Thr169 RIPK1 (Genentech), anti-RIPK3 (Novus

Biologicals), anti-pThr231/Ser232 RIPK3 (Genentech), anti-GSDMD (Genentech,), anti-LC3B (Cell Sig-

naling Technology), anti-Calcoco1 (Proteintech), anti-Tax1bp1 (Abcam), Sqstm1/p62 (Progen bio-

technic), anti-NLRP3 (Cell Signaling Technology), anti-ASC (Cell Signaling Technology), anti-STAT1

(Cell Signaling Technology), anti-pTyr701 STAT1 (Cell Signaling Technology), anti-M1 polyubiquitin

linkage-specific antibody (Genentech), anti-K63 polyubiquitin linkage-specific antibody (Genentech),

anti-b-actin (Cell Signaling Technology), anti-rabbit IgG-HRP (Cell Signaling Technology), anti-mouse

IgG-HRP (Cell Signaling Technology), anti-rat-HRP Ig (Cell Signaling Technology). ImageJ was used

to quantify immunoblot density.

Statistical analysis
Pairwise statistical analyses were performed using an unpaired Student’s two-sided t-test to deter-

mine if the values in two sets of data differ. Correction for multiple-comparisons was performed

using the Holm-Sidak method with a = 0.05. Scatterplot bars and connected dot plots present

means of data. Analysis of kinetic (time) or LPS dose-response datasets were performed using two-

way ANOVA followed by multiple comparison testing. Line graphs and associated data points repre-

sent means of data; error bars represent standard deviation from mean. For LPS-mediated sepsis

studies, a log-rank (Mantel-Cox) test was used to assess significance of the differences between indi-

cated groups in their survival. GraphPad Prism seven was used for data analysis and representation.
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