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Traumatic brain injury (TBI) is one of the leading causes of disability worldwide, becoming

a heavy burden to the family and society. However, the complexity of the brain and the

existence of blood-brain barrier (BBB) do limit most therapeutics effects through simple

intravascular injection. Hence, an effective therapy promoting neurological recovery is

urgently required. Although limited spontaneous recovery of function post-TBI does

occur, increasing evidence indicates that exosomes derived from stem cells promote

these endogenous processes. The advantages of hydrogels for transporting drugs and

stem cells to target injured sites have been discussed in multitudinous studies. Therefore,

the combined employment of hydrogels and exosomes for TBI is worthy of further study.

Herein, we review current research associated with the application of hydrogels and

exosomes for TBI. We also discuss the possibilities and advantages of exosomes and

hydrogels co-therapies after TBI.
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INTRODUCTION

Every year, more than fifty million individuals worldwide suffer from traumatic brain injury
(TBI). One in two people will experience one or more brain injuries of varying degrees in their
lifetime (1). Many survivors of TBI left distinct types of permanent neurological deficits, which
affect their ability to take care of themselves in their daily lives. TBI brings a heavy economic
burden to the family and society. There are constantly new therapeutics verified in preclinical
trials. However, no current medical intervention explicitly improves the prognosis of TBI in
both preclinical and clinical trials (2). Traditional therapies only aim at several mechanisms
of TBI. More importantly, inefficiency and side effects limit the development and use of
these treatments.

Nevertheless, the emergence and rapid development of emerging treatment methods in recent
years may break the current dilemma. The extracellular matrix (ECM) is a substance with a specific
structure and function existing in all tissues and organs. It provides physical support for cells
and transduces signals associated with cell proliferation, adhesion, and migration (3). Hydrogels
can simulate ECM, and more vitally, can synergize with drugs or cell therapies. At present, the
advantages of hydrogels for the treatment of TBI were prominent in many preclinical trials. The
development and application of this new material have brought new hope for TBI treatment.
Additionally, exosomes (a kind of vesicles with membrane structure) have been proved to play a
vital role in intercellular communication. Therefore, research on exosome therapy in TBI also has
become a hot topic in recent years.
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In this review, we discuss recent advances that describe the
basic properties of hydrogels and consider the use of hydrogels
for the treatment of TBI and for amplification of effects of drugs
and cell therapies to improve neurological recovery after TBI.
Moreover, we discuss evidence of how unmodified or modified
exosomes affect neurological outcomes when used as therapy for
TBI. At last, we prospect opportunities for and challenges in a
combined hydrogel-based exosome therapy to applications for
TBI. It is worth noting that, as a part of the central nervous
system, the situation of spinal cord injury (SCI) is similar to
TBI. Therefore, in the review of the application of hydrogels and
exosomes, we also include research on the application in SCI.

PATHOPHYSIOLOGY OF TBI

According to damages of neuronal tissues, TBI can be divided
into two main categories: primary injury and secondary injury.
Primary injury occurs within seconds to minutes due to
direct mechanical forces. The primary injury could lead to
hemorrhages such as epidural hematoma, subdural hematoma,
subarachnoid hemorrhage, intraventricular hemorrhage; focal
cerebral contusions; traumatic axonal injury caused by shearing
of white matter tracts; and cerebral edema. The secondary injury
occurs after initial injury, characterized by the expansion of
damage from the center of the trauma (4). Given the irreversible
tissue damage and cell death caused by primary injury, we only
focus on the mechanism of secondary injury. So far, numerous
factors in secondary injury have been investigated, such as
excitotoxicity, oxidative stress, neuroinflammation, apoptosis,
axonal degeneration, and formation of cavity and glial scar (5)
(Figure 1).

HYDROGELS

Hydrogels are cross-linked macromolecular networks that
contain a large amount of water, making these materials
friendly to water-enriched biological environments (6). Early
work on hydrogels can be traced back to the mid-1930s (7).
Due to high moisture content and potentials for biomedical
applications, hydrogels have received a great deal of attention
in recent years. Hydrogels are held together in many ways
to form polymeric structures, including chemical bonds and
intermolecular forces. Natural polymers such as hyaluronic
acid (HA), gelatin, alginates, chitosan, pectin, collagen, and
fibrin can be directly employed to prepare hydrogels. However,
potential problems like immunogenicity and histocompatibility
may limit the applications of natural hydrogels. Additionally,
compared with natural hydrogels, synthetic hydrogels have
better controllability, histocompatibility, and immunogenicity
(8). Therefore, recent articles mainly report synthetic hydrogels.

STRUCTURE AND MECHANICAL
PROPERTIES OF HYDROGELS

Before preparing a hydrogel, the structure and mechanical
properties of the hydrogel should be considered, such as strength,

stiffness, mesh size, and porosity. The effects of hydrogels are
closely related to their characteristics, such as cytocompatibility,
histocompatibility, and the release of therapeutic agents. For
instance, the mechanical properties affect the viability and
function of encapsulated cells, associating with the efficiency of
cell therapy (9–16).

The mechanical strength and stiffness of hydrogels are
measured by the compressive modulus directly determined
by the cross-link density. And the percent composition of
monomers, the polymer molecular mass, and the total amount
of cross-linker are closely related to the hydrogels’ cross-link
density. Therefore, we can adjust the compressive modulus by
changing these properties (17–22). The mechanical strength of
hydrogels should match the target tissue. As for brain tissue,
the ideal hydrogel is soft. In other words, the brain cell prefers
the hydrogel with a low compressive modulus (≤3.8 kPa) (15).
Many studies have revealed that neurons tend to grow on
substrates with softer surfaces (0.1–1.0 kPa), while astrocytes and
oligodendrocytes prefer stiffer compressive moduli (0.5–10 kPa)
(10, 11, 23–28). These studies demonstrate that the mechanical
characteristic of hydrogels plays a vital role in the proliferation
and growth of brain cells. Due to the degradation and the loss of
cross-links, the compressive modulus of hydrogels will gradually
decrease, leading to the destruction of integrity (19, 29, 30). It
is rare to see adult brain tissue suffering stretching or shearing
force unless under extreme conditions. Thus, we believe that the
compressive modulus deserves more attention in the mechanical
properties of hydrogel when applied to TBI. As some studies
point out that, mild TBI, neuroinflammation, hypertension, and
even neural cell migration may cause a rise in the local or overall
pressure of brain tissue (31–33).

Mesh size is defined as the distance between the cross-
link points in the hydrogel, which is measured in angstroms
(Å), usually from 10 to 150Å (8). It is a nanoscopic physical
characteristic of the hydrogel, contributing to mechanical
properties like stiffness. Given the need for exchanging
nutrients and wastes with the surrounding environment, mesh
size is a vital agent to consider when designing hydrogels.
Moreover, diffusion rates are closely related to the size of the
molecule and the mesh, determining the exchange efficiency
of fluids and small molecules. By contrast, the migration of
larger molecules and cells is affected by the degradation of
hydrogels (34, 35).

The function of hydrogels also relates to macroscopic
architecture, like interconnected pores or the general shape
and size. Some cells and tissues serve functions based on
large spaces within hydrogels. Therefore, the pore size is
employed to measure the interior space of hydrogels. The
formation of the pore can be natural or intentional. Many
studies have successfully created varied sizes of pores by various
complex methods (36–42). The size of interconnected pores in
hydrogels regulates cell-specific growth and differentiation. Two
studies prove the neurite outgrowth promoted before hydrogels
degradation (41, 43). This characteristic can be deployed in
the reconstruction of neural circuits. The general shape should
be considered first when designing a hydrogel. Before gelation,
most hydrogels will form any shape desired because of their
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FIGURE 1 | Pathophysiology of TBI. (A) Some pathophysiology of secondary injury after TBI, such as formation of the cavity and glial scar, enriched activated

astrocytes and microglia, and decreased neurovascular units. (B) The possible advantages of hydrogels for exosome treatment in TBI, like filling the cavity, direct

access to the lesion, increased neurovascular units, and continuous release of exosomes. Then exosomes target various cellular and molecular pathophysiological

states, such as excitotoxicity, oxidative stress, neuroinflammation, and apoptosis.

mobility. To reconstruct a neural circuit, the hydrogel can be
made as a strand to link two remote regions. The size of
hydrogels must be considered due to the limited intracranial
space. The swelling of hydrogels mentioned in many studies
may lead to a sustained increase in size. But Lampe et al.
reported the restrained swelling of hydrogels induced by the
counterforce from surrounding brain tissue. And degradation
of hydrogels also slowed down the increase in size caused by
swelling (44).

APPLICATION OF HYDROGELS IN TBI

We review the literature on applications of hydrogels in TBI
treatment and divide them into three categories: 1. Hydrogel
alone; 2. Hydrogel as a drug delivery tool; 3. Hydrogel as a
cell therapy delivery tool. Due to the limited effect, there are
few reports about using hydrogel alone. Zhang et al. injected a
hydrogel form of urinary bladder matrix (UBM) derived from
porcine bladder tissue into the brains of TBI rats. They observed
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TABLE 1 | Drug delivery with hydrogels in TBI or SCI.

References Disease Model Drug Hydrogel base Characteristic of hydrogel

Qian et al. (46) TBI PBI,

mouse

Curcumin TM and PPSa
120 • Injectable

• Self-assembled

• MMPs- and ROS-responsive b

Jeong et al. (48) TBI CCI, rat HA-

DXMc

PEG-bis-AAd • Implantable

• Cross-link in response to ultraviolet

• Hyaluronidase/esterase affects amount of

dexamethasone released

He et al. (49) SCI Aneurysm

clip

compression,

rat

KAFAK/BDNFe HAMCf • Injectable

• Fast gelling at physiologic temperatures minimal

• Swelling properties

Maclean et al. (50) TBI PBI,

mouse

Fucoidan Fmoc-DIKVAVg • Injectable

• Self-assembled

• Cross-link in response to ultraviolet

• Promoting neurite outgrowth

• Similar modulus with various region of brain

Dong et al. (47) TBI N/A Ferulic

acid

Chitosan/gelatin/β-

glycerol

phosphate

• Injectable

• Thermosensitive

aTriglycerol monostearate and hydrophobic poly (propylene sulfide)120;
bmatrix metalloproteinases- and reactive oxygen species- responsive; cDexamethasone-conjugated hyaluronic

acid; dpoly (ethylene glycol)-bis-(acryloyloxy acetate); eKAFAK, Amino acid sequences; BDNF, brain-derived neurotrophic factor; fhyaluronan-methylcellulose; ga laminin-inspired

peptide sequence.

the good biocompatibility of UBM within the brain tissue, the
reduced volume of the lesion and the relief of myelin disruption,
improving vestibulomotor function (45). Similarly, Yun et al.
prepared a hydrogel form of ECM from normal porcine brain
tissue to inject into the brains of TBI mice, reducing lesion
volume and improving neuro-behavioral function (3). As the
focus of this review, we describe the related research of hydrogels
in drug and cell therapies in the following part.

DRUG DELIVERY WITH HYDROGELS

As excellent means of transportation with controllable
degradation behavior, hydrogels are suitable tools to deliver
drugs, playing significant roles at the target site within a specific
time according to requirements. Based on secondary injury
mechanisms post-TBI, factors such as oxidative stress and
neuroinflammation can persist for a long time. Therefore,
many studies on drug delivery with hydrogels in TBI use
antioxidant or anti-inflammatory drugs (Table 1). Qian
et al. developed an injectable TM/PC hydrogel composed of
triglycerol monostearate (TM), hydrophobic poly (propylene
sulfide) 120 (PPS120) and curcumin. They demonstrated that the
TM/PC (PPS120 and curcumin) hydrogel responded effective
immediately to the microenvironment after TBI, slowly releasing
the drug up to 14 days and significantly reducing the ROS
(46). The high porosity of hydrogels provides resident space
for molecules and permits the release of molecules from the
hydrogels’ network at different rates. Thus, the release profile
of the molecule can be modulated by mesh size changed by
the crosslinking density of hydrogels. Some researchers take
advantage of this feature to achieve the sustained release of

ferulic acid, significantly inhibiting the oxidative stress enhanced
in the early stage after TBI (47).

Compared to intravascular administration, the injectable
hydrogels bypass the BBB and direct contact with the injured
site. Moreover, the release rate of drugs in hydrogels can be
controlled. These characteristics of hydrogels may reduce the
amount of drug-using and avoid the occurrence of side effects.
It has advantages in the treatment of diseases like TBI where
damage factors exist for a prolonged period. Jeong et al. placed
dexamethasone in a hydrogel constructed by PEG-bis-AA/HA
[photo-cross-linkable poly (ethylene) glycol-bis-(acryloyloxy
acetate)/hyaluronic acid], demonstrating that compared with
traditional intraperitoneal injection, this new drug delivery
strategymarkedly reduced the dosage of dexamethasone, asmuch
as half above (48).

The formation of the cystic cavity post-TBI is common.
This unfavorable environment is one of the factors inhibiting
nerve regeneration. As a cavity implant with great plasticity, the
hydrogel can perfectly fill the capsule cavity owing to its physical
properties and create a favorable microenvironment beneficial to
nerve regeneration and functional recovery post-TBI. He et al.
have similar findings in the rat model of spinal cord injury (SCI).
As a drug delivery platform, the brain-derived neurotrophic
factor-modified hyaluronan-methylcellulose (HAMC) hydrogel
slowly released anti-inflammatory peptides and nerve growth
factors, which inhibited post-traumatic neuroinflammation and
promoted axon regeneration in a longer time (8 weeks) (49).
Although the formation of glial scars dominated by reactive
astrocytes is essential for limiting the spread of inflammation,
it is thought to hinder the regeneration of axons after trauma.
Maclean FL et al. have developed a new self-assembling peptide
hydrogel carrying anti-inflammatory macromolecule fucoidan.
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TABLE 2 | Tissue engineering scaffolds from hydrogels in TBI.

References Model Cell Drugs Hydrogel

base

Characteristic of hydrogel

Ma et al.

(53)

CCI, rat BMSCsa SDF-1b SA/Colc • Injectable

• Fast gelling (7min)

• High water content (>97%) low hemolysis rate (<1%)

• Good cytocompatibility

Alvarado-

Velez

et al. (54)

CCI, rat BMSCs FasL Agarose • Injectable

• Cross-link in response to temperature

• Reducing the cytotoxic CD8+ T cell population at the

transplantation site

Zheng

et al. (55)

Cryogenic,

rat

hAMSCsd SDF-1α GelMA-

imide

• Injectable

• Cross-link in response to blue light (405 nm)

• Low module (95Pa)

• High compression stress (5.2 kPa)

• Promoting the migration and differentiation of hAMSCs

Yao et al.

(56)

CCI, rat BMSCs GOX/HRPf GHg • Injectable

• High water content (>90%)

• Similar storage modulus with brain

• GOX regulates gelling time and the enzymatic

degradation rate

Zhang

et al. (57)

CCI, rat hUC-

MSCsh
N/A HA/SAi • Injectable

• Fast gelling (6min)

• High water content

• Appropriate rheological behavior

• Longer degradation time

Jahanbazi

Jahan-

Abad

et al. (58)

CCI, rat hNS/PCsj

and

hADSCsk

N/A PuraMatrix • Injectable

• Promoting cell incorporation, migration, and proliferation

• Resistance to proteolytic digestion

• High insolubility

• Apparent lack of cytotoxicity

Xu et al.

(59)

PBI, rat NSPCsl Sema

3Am

Matrigel • Implantable

• Longer degradation time

• Promoting cell migration and proliferation

Betancur

et al. (60)

CCI, rat NSCsn N/A CS-

GAGo

• Injectable

• Cross-link in response to ultraviolet

• Promoting FGF2n retention and maintaining the

undifferentiated state of NSCs

Shi et al.

(61)

PBI, rat hUC-

MSCs

and

astrocytes

BDNFp

and

CXCR4q

RADA16r • Injectable

• Self-assemble

• LOW cytotoxicity

• Excellent cytocompatibility

Xue et al.

(62)

CCI, rat NSCs

and

EPCss

N/A PuraMatrix • Injectable

• Promoting cell incorporation, migration, and proliferation

• Resistance to proteolytic digestion

• High insolubility apparent

• Lack of cytotoxicity

aBone marrow mesenchymal stem cell; bstromal cell-derived factor-1; csodium alginate/collagen type I; dhuman amniotic mesenchymal stromal cells; e imidazole groups-modified gelatin

methacrylate; fhorseradish peroxidase/glucose oxidase; gGelatin-Hydroxyphenyl; hhuman umbilical cord mesenchymal stem cells; ihyaluronic acid/sodium alginate; jhuman neural

stem/progenitor cells; khuman adipose-derived stromal/stem cells; l the neural stem/progenitor cells; msemaphorin 3A; nneural stem cells; ofibroblast growth factor 2; pbrain-derived

neurotrophic factor; qCXC chemokine receptor 4; ra self-assembling biocompatible peptide; sendothelial progenitor cells.

Compared with the untreated group, this hydrogel markedly
reduced glial scar formation. On the one hand, the hydrogel filled
the cyst left after trauma and supported the surrounding brain
tissue, avoiding further damage caused by the collapse of the
injured area. On the other hand, the presence of fucoidan reduced
reactive astrocytes production (50).

TISSUE ENGINEERING SCAFFOLDS FROM
HYDROGELS

Stem cell therapy is one of the options in TBI therapies. However,
the matrix environment caused by the secondary injury post-TBI
is not conducive to the growth and proliferation of stem cells,
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greatly affecting their survival after transplantation. Further, this
harmful environment may induce stem cells, such as endogenous
neuro stem cells, to differentiate into astrocytes instead of
neurons (51, 52). The possible immunogenicity of transplanted
stem cells also limits the application. However, at present, the
application of injectable hydrogels in TBI has brought dawn to
stem cell therapy. Injectable hydrogels provide a favorable niche
for enhancing stem cell therapy by improving the survival rate
of stem cells (53). We summarize the application of hydrogels as
stem cell scaffolds in TBI (Table 2).

One of the difficulties in stem cell therapy is that the
stem cell’s growth, proliferation, and differentiation require
a suitable microenvironment. But there are great differences
in the microenvironment of tissues in the human body.
Under pathological conditions, the damaged area accumulates
substances unfavorable for the survival of stem cells. Therefore,
the survival rate of implanted stem cells has been unsatisfactory
for a long time. As mentioned earlier, as a synthetic material,
hydrogels have strong plasticity. With the continuous
development of material science, we can now build hydrogels
with materials with different strengths and stiffness according to
tissue specificity. As the scaffold for stem cells, we can change
the mesh size and porosity of hydrogels to adapt stem cells
in different sizes. The porous structure is also conducive to
the exchange of nutrients, oxygen, and carbon dioxide and
the emission of metabolites, providing a friendly environment
for the survival, proliferation, and diffusion of stem cells (58).
Yao et al. believe stem cell scaffolds should have a series of
basic features that support the growth of transplanted cells
and match the microenvironment of brain tissue, including
rapid gelation process, high water content, porosity, and
appropriate rheological behavior and degradation properties.
The injectable hydrogel synthesized in this way will have low
immunogenicity and cause minimal inflammation in vivo. For
instance, the gelatin-hydroxyphenyl hydrogel of GO0.1UHRP0.5U
has sufficient moisture (more than 90%) and appropriate
rheological properties (100–1,000 Pa), meeting the physiological
characteristics of brain tissue and reducing frictional stimulation
to surrounding tissues. Proper gelation time (6min) also avoids
the loss of stem cells caused by longer gelation progress (56).
Zhang et al. point out that the rapid flow of cerebrospinal
fluid, the mechanical injury, and the reactive inflammation at
the lesion induce the high loss rate and low survival rate of
transplanted cells (57). Hydrogels mimic the function of the
extracellular matrix. The porous structure and suitable pore size
improve the survival rate of stem cells and affect the behavior
of transplanted cells, such as proliferation and differentiation,
promoting the growth of stem cells. Moreover, Xue et al. have
tried co-transplantation of neural stem cells and endothelial
progenitor cells. Results showed that revascularization, tissue
repair, and generation of neural cells were all improved (62).

Another advantage of hydrogels in stem cell therapy is that
hydrogels can carry with other macromolecular substances or
be modified by certain chemical groups during the synthesis
process. These macromolecular substances or chemical groups
give hydrogels additional functions, supporting the cellular
behaviors of stem cells. For example, SDF-1 and its receptor

CXCR4 are key molecules for the survival, migration, and
differentiation of many stem cells like neural stem cells or
mesenchymal stem cells. Therefore, some employed the slow-
release property of SDF-1 in the pores of hydrogels to
provide a suitable microenvironment for the survival, migration,
and differentiation of transplanted cells (53, 55, 61, 63).
Immunogenicity is one of the reasons for the low survival rate
of transplanted stem cells. Some researchers have made full
use of this advantage of hydrogels to reduce immune rejection.
Alvarado-Velez et al. designed a FasL-agarose hydrogel. The
sustained release of FasL at the injury site induced apoptosis
of CD8+ T cells, improving the survival rate of mesenchymal
stem cells (MSCs). Meanwhile, they demonstrated that the
neurotrophic factors NGF and BDNF significantly upregulated
when used FasL-agarose hydrogel, indicating a better therapeutic
effect promoted by prolongedMSC survival (54). However, some
have adopted distinct design ideas. Betancur et al. constructed
a CS-GAG hydrogel to maintain the undifferentiated state
of neural stem cells within 4 weeks. Undifferentiated stem
cells inhibited the proliferation of reactive astrocytes post-
TBI through paracrine action (60). Xu et al. constructed
a hydrogel containing semaphorin 3A (Sema3A) gradient,
inducing substantial migration of endogenous neural progenitor
cells into the hydrogel and promoting their differentiation to
regenerate cortical tissue (64).

EXOSOME

Current research suggests that exosomes as endosome-derived
membrane-bound vesicles can be released by cells in all living
systems under any conditions (65). Exosomes are composed
of uniform lipid bilayer membranes, containing several vital
proteins, including CD63, CD8, CD9, and endosomal membrane
proteins flotillin and ALIX. The most significant function
of exosomes is carrying macromolecular substances such as
proteins, lipids, and nucleic acids to participate in intercellular
communication. Among the cargo of exosomes, miRNA is the
most well-studied. And there is substantial evidence that miRNA
is central to the treatment effects of exosomes. Mature miRNAs
have a double-stranded structure, one or both of them will
bind to argonaute 2 (Ago2) and be integrated into the RNA-
induced silencing complex to cleave the target mRNA or inhibit
translational repression (66–68).

Several types of neural cells release exosomes. The
glutamatergic synaptic activity in mature neurons promotes
the release of exosomes which carry with molecules to
modulate neuronal function (65). Exosomes participate in
the communication between neurons and endothelial cells,
regulating the BBB (59). Oligodendrocytes and astrocytes also
communicate with neurons through exosomes (69). The release
of exosomes in oligodendrocytes and astrocytes is regulated
by the level of cytoplasmic calcium and the concentration of
potassium chloride, respectively. And glutamate released by
neurons increases exosomes production in oligodendrocytes
(70, 71). The exosomes containing the myelin proteins from
oligodendrocytes are often around axons, coordinating axon
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myelination (70, 72, 73). Moreover, oligodendrocyte exosomes
transfer superoxide dismutase and catalase to neurons to increase
the vitality of neurons under hypoxia-glucose deprivation (OGD)
conditions (72). There is evidence indicating that the extensive
action of astrocytes depends on the exosomes. The exosomes
carrying miR-26 released by astrocytes may inhibit glycogen
synthase kinase 3β, an effective inhibitor of axon remodeling and
synaptic plasticity (74, 75). In addition, some evidence suggests
that astrocytes exosomes transfer prion protein (PrP) to hypoxia
and glucose deprivation neurons to prevent neuronal death (76).

It was recorded for the first time that intravenous injection of
MSC-derived exosomes in rodent models with TBI significantly
increased neurovascular remodeling at the site of the lesion,
improving the neurological, behavioral, and cognitive outcomes.
The therapeutic gain is equivalent to MSC therapy (77–79).
Immunogenicity or histocompatibility also should be considered
for exosome therapy. Although there is currently limited data
reporting noticeable adverse immune reactions (65).

Exosome therapy is currently commonly administered via
intravenous or nasal. Many related studies support that
under the existing route of administration, exosomes need to
cross the BBB to interact with target cells in brain tissue
(80–84). Systemic administration of exosomes may promote
endogenous neural circuitry reconstruction, white matter
remodeling, oligodendrogenesis, angiogenesis, and neurogenesis
to improve neurological outcomes. In vitro studies show
that exosomes derived from MSCs or fibroblasts directly
strengthen the outgrowth of dendrites and axons (85, 86).
The exosomes from brain endothelial cells of rodents and
humans and neural stem cells of adult rodents have been
observed promoting neurogenesis and angiogenesis in the
process of injury recovery (87–89). In addition to directly
affecting nerve repair, exosomes also have indirect effects.
In a cerebral ischemia rat model, exogenous exosomes from
MSC stimulate astrocytes to release endogenous exosomes
assisting exogenous exosomes to promote the growth of cortical
neurons (90). Many studies have indicated that the intercellular
communication of exosomes participated in the inflammation
after brain injury (91–93). And the neuroinflammation was
downregulated by injecting MSC-derived exosomes (94, 95).
The preclinical study of the TBI model receiving exosome
therapy also describes the improved neurological function
during the recovery period (92). Moreover, exosomes transfer
microglia/macrophages toward anti-inflammatory phenotypes
directly by macromolecular substances, such as miRNAs and
proteins, or indirectly by upregulating pro-inflammatory factors,
such as TNF-α and IL-1β (83, 86, 89, 90, 96).

The main challenge of TBI exosome therapy currently is
to develop exosomes targeting specific cells in the central
nervous system more effectively than cell-derived exosomes.
The application of virus-derived peptides makes it possible for
exosomes to target specific cells. Exosomes expressing virus-
derived peptides can span the BBB, binding to the corresponding
receptors on the surface of cells and importing molecules such as
miRNA and siRNA (97–99). However, the virus-derived peptides
perhaps induce immune response (100). Studies have shown
that exosomesmodified by chemically synthesized peptides could

avoid immunogenicity (101, 102). Apparently, due to the capacity
of carrying and editing, treatment methods based on exosomes
have unlimited possibilities.

APPLICATION PROSPECTS OF
HYDROGEL WITH EXOSOMES IN TBI
THERAPIES

Although some studies have proved that exosomes take effects
by crossing the BBB and targeting specific cells, there is evidence
suggesting that the existing methods of administration fail to
improve the prognosis of TBI (103). An early study finished
by Harting et al. using intravenous injection of BMSC-derived
exosomes indicated that only a few exosomes would reach
the brain (104). In addition, under the traditional route of
administration, exosomes have short duration of action and
require frequent administration to achieve therapeutic effects,
limiting clinical transformation. Because of these limitations, it
is worthy to improve the delivery method of exosomes.

As we reviewed above, hydrogels have been extensively
studied as scaffolds for stem cell therapy of TBI, obtaining many
positive results. And the method of encapsulating exosomes
with hydrogels has been applied in several fields such as bone
and cartilage regeneration (105, 106), diabetic chronic wound
healing (107, 108), and cardiac repair (109, 110). Moreover,
some research on spinal cord injury (SCI) repair attempting
to embed exosomes into injectable hydrogels confirmed the
effective retention and slow release of exosomes at the target site,
with enhanced angiogenesis and neural function (111–114).

Here, we summarize the possible advantages of hydrogels
for exosome treatment in TBI: 1. Direct access to the lesion.
Compared to the application of exosomes via intravenous or
nasal routes, in situ injections of hydrogels can directly reach
the lesion and act at the injured site, avoiding the influence
of BBB, and improving the treatment efficiency of exosomes.
2. Filling the cyst cavity. The formation of the cystic cavity
post-TBI is quite common, unfavorable for nerve repair and
regeneration at the injured site. It is difficult to change this
with the traditional route of administration of exosomes, while
hydrogels can perfectly fill the cyst cavity and provide a better
microenvironment for nerve regeneration. 3. Editability. As a
synthetic material, hydrogels have excellent editability. Its pore
size can be controlled to adapt to varied sizes of exosomes by
selecting various materials and changing synthesis conditions. In
addition, it is foreseeable that by selectingmaterials with different
characteristics or adding different chemical group modifications,
hydrogels can also obtain additional capacities, such as regulating
the release conditions and release curves of exosomes and
creating a favorable microenvironment. Recently, Staufer et al.
developed a fully synthetic extracellular vesicle and demonstrated
its therapeutic function, remarking a new level of editability of
exosomes (115). In the future, by combining the two highly
programmable tools of hydrogels and exosomes, we have great
reason to believe that the treatment of TBI will usher in the dawn.

Of course, there are also foreseeable drawbacks in therapy
of using hydrogels and exosomes. 1. Although the advantage
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of hydrogels in the treatment of brain trauma is to fill the
cavity formed after trauma and directly contact the lesion, the
accompanying side effect of hydrogels may be the mechanical
damage to the surrounding brain tissue. Compared with the
traditional covalent gel, the dynamic hydrogel is injectable
and gelling in situ, substantially reducing mechanical damage
during implantation. However, injectable hydrogels are not
perfect. These hydrogels usually experience problems with
gelation kinetics, such as coagulating too quickly in the
syringe, gelling so slow that the drugs release prematurely,
or heterogeneous gelation caused by poor mixing. Therefore,
dynamic hydrogels capable of seamlessly transition between
solid-like and liquid-like during injection draw much attention
(6). 2. Risks of the implant. Most hydrogel matrices used recently
are synthetic materials, reducing the risk of rejection after
implantation compared with bio-derived materials. However,
risks of hydrogels still exist objectively, such as immune response
and infection. As for exosomes, immune reaction may also
be a disadvantage of our concern, as described above in this
review. 3. In addition, injectable hydrogels still have problems
to be solved before clinical trials. For example, most researchers
directly left empty cavities in TBI animal models, injecting
hydrogels into them. Although they present positive results,
it only illustrates that injectable hydrogels are suitable for
TBI patients who need surgery, which undoubtedly restricts
the application of hydrogels. However, the majority of TBI
patients only take conservative treatment in clinical. For such
patients, the validity and safety of injectable hydrogels need
more vivo trials.

Although the injectable hydrogel reduces mechanical damage
during implantation compared with the traditional gel, the
possibility of mechanical damage still exists objectively. We
believe that this damage is due to the material properties of
hydrogels. Some characteristics can help us evaluate and reduce
the mechanical damage. 1. The mechanical strength of hydrogels.
Matthew reveals that if the storage moduli of the hydrogel
similar to the brain (140–620 Pa), the hydrogel canmaintain tight
apposition to brain tissue (55). In addition, to prevent it from
being squeezed out by the surrounding tissue, the deformation
resistance of the hydrogel can be adjusted by the chemically

modified matrix. Yao et al. also proposes that the hydrogel
possesses high water content (>90%) and appropriate rheological
behavior (100–1,000 Pa) can reduce the frictional irritation to
the surrounding tissue (56). 2. Swelling behavior. When certain
materials such as HA are used for hydrogel preparation, the
hydrogel shows water intake capacity. The rapid and high
swelling behavior may stress the surrounding tissues, causing
secondary mechanical damage (116). However, we can choose a
different material ratio to synthesize hydrogels with appropriate
swelling ability to reduce this type of damage.

Based on the experience of hydrogels with drugs or stem
cell therapies before, the ideal characteristics for the hydrogel
include the following: 1. Be injectable and be able to gel
in situ. 2. Mechanical properties comparable to brain tissue
to minimize mechanical injury. 3. Be biocompatible and
biodegradable to reduce risks of immune response and support
tissue regeneration. 4. Be made of a material that appropriate
mesh size allows sustained release of exosomes (117).

CONCLUSION

We briefly review the pathophysiological mechanism of TBI and
describe the potential new treatment strategies for TBI. The
therapies for TBI are problematic due to the modes of drug or
cell delivery. Hydrogels have the potential of conveying drugs
or cells to the target injured sites and improving their effects.
The therapeutic gain of exosome therapy may be equivalent to
stem cell therapy. And the low immunogenicity of exosomes
suggests that the adverse effects associated with current stem cell
therapies can be reduced. Evidence from studies regarding the
employment of exosomes and hydrogels co-therapies in TBI are
lacking. Although we believe co-therapies employing exosomes
and hydrogels can potentially ameliorate TBI, it still needs to be
confirmed by thorough multitudinous studies in the future.
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