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SUMMARY

Computationally understanding the molecular mechanisms that give rise to cell
signaling responses upon different environmental, chemical, and genetic pertur-
bations is a long-standing challenge that requires models that fit and predict
quantitative responses for new biological conditions. Overcoming this challenge
depends not only on goodmodels and detailed experimental data but also on the
rigorous integration of both. We propose a quantitative framework to perturb
and model generic signaling networks using multiple and diverse changing envi-
ronments (hereafter ‘‘kinetic stimulations’’) resulting in distinct pathway activa-
tion dynamics.We demonstrate that utilizingmultiple diverse kinetic stimulations
better constrains model parameters and enables predictions of signaling dy-
namics that would be impossible using traditional dose-response or individual ki-
netic stimulations. To demonstrate our approach, we use experimentally identi-
fied models to predict signaling dynamics in normal, mutated, and drug-treated
conditions upon multitudes of kinetic stimulations and quantify which proteins
and reaction rates are most sensitive to which extracellular stimulations.

INTRODUCTION

One of the longest standing challenges of modeling in systems biology has been to make accurate quan-

titative predictions for cell signaling responses over time, upon genetic mutations, when subjected to var-

iable drug concentrations, and under time-varying changes of environment (Fujita et al., 2010; Handly et al.,

2016; Rowland et al., 2011; Sorre et al., 2014; Lim and Bruce Mayer, 2017). Examples of environmental per-

turbations that change over time that cells experience (defined as ‘‘kinetic stimulations’’) include changes in

levels of hormones (Kubota et al., 2012; Steiner et al., 1982), growth factors (Fujita et al., 2010; Sorre et al.,

2014), morphogens (Briscoe and Small, 2015; Huang et al., 2017), cytokines (Oyler-Yaniv et al., 2017), or

extracellular stressors such as oxidative stress (Goulev et al., 2017) or osmolarity (Granados et al., 2017;

Mitchell et al., 2015; Young et al., 2013). These environmental changes can modulate signaling dynamics

in pathways in both healthy and disease tissue (Akhurst and Hata, 2012; Cildir et al., 2016; Hanahan and

Weinberg, 2000; Hata and Chen, 2016; Hotamisligil and Davis, 2016). Therefore, understanding and pre-

dicting signal transduction network behavior will be a critical step to identify unknown regulatory mecha-

nisms, to distinguish between proteins and reaction rates that are sensitive to kinetic stimulations, and to

detect and treat abnormal regulation that occurs in a large number of human diseases.

A key obstacle that prevents predictive modeling of cell signaling is the gross mismatch between the pre-

ponderance of biological complexity and the sparsity of quantitative experimental data (Handly et al., 2016;

Janes and Lauffenburger, 2013; Vanhaelen et al., 2017). As a consequence, most current models of signal

transduction pathways suffer from lack of dynamic richness in the data resulting in either too simple (Adler

and Alon, 2018; Csete and Doyle, 2002; Muzzey et al., 2009) or too complex (Grob et al., 2019; Klipp et al.,

2005; Romers et al., 2020) models with limited predictive power (Handly et al., 2016; Janes and Lauffenbur-

ger, 2013). To address the disparity between biological complexity and lack of richness in experimental

data, one paradigm has been to devise experiments with higher content (e.g., sequencing or multiplexed

single-cell imaging) or higher throughput (e.g., flow cytometry or parallelized microfluidics) in hope that

large amounts of data will eventually fill the gap between mechanistic and predictive understanding (Efre-

mova et al., 2020; Labib and Kelley, 2020). These approaches have been helpful to quantify RNA or protein

abundances or phosphorylation states of many proteins using the minimal number of time points to better
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constrain complex models (Kinney et al., 2019). Another approach has been to fit computational models to

experiments at steady state in different environments (Hao and O’Shea, 2012), to dose-response curves

measured with sudden step-like perturbations (Shaw et al., 2019), to repetitive pulsatile perturbations of

different frequencies (Albeck et al., 2013; Ashall et al., 2009; Hersen et al., 2008; Mettetal et al., 2008; Mitch-

ell et al., 2015; Rahi et al., 2017; Wang et al., 2012; Zhang et al., 2019), or to individual spatial gradients

(Huang et al., 2017) or design optimal experiments that constrain parameters for a specific perturbation

profile (Apgar et al., 2008; Bandara et al., 2009; Casey et al., 2006; Faller et al., 2003; Hagen et al., 2013).

In addition, pioneering studies have further demonstrated that individual and different kinetic stimulations

can dramatically affect intracellular signaling dynamics to create distinct cell phenotypes (Fujita et al., 2010;

Granados et al., 2017; Kubota et al., 2012; Muzzey et al., 2009; Shimizu et al., 2010; Sorre et al., 2014; Thie-

micke et al., 2019; Twohig et al., 2019; Wang et al., 2012; Young et al., 2013). However, from these previous

studies, it is not understood how parameter uncertainty, model predictions, andmodel identification quan-

titatively depend on the amount and type of experimental data.

Here we systematically explore how multiple, kinetically distinct inputs can activate signaling pathways to

achieve diverse signaling responses, and we show that this diversity of input-output relationships is key to

the identification of predictive models for complex biological pathways (Figure 1). To demonstrate the

feasibility of this task, we infer several models from single-cell time-lapse microscopy data for cell signaling

in the conserved High Osmolarity Glycerol (HOG/p38) pathway, a prototypical mitogen-activated protein

Figure 1. Kinetic Stimulation of Signaling Pathways Is Required to Identify Predictive Models and Phenotypes

(A) Different extracellular kinetic stimulations (left) activate a signaling pathway (middle) and result in distinct dynamic kinase signaling and nuclear

localization (right).

(B) MAPK Hog1 nuclear localization dynamics upon step increases in NaCl to different final concentrations.

(C) Hog1 dynamics upon step, linear, or quadratic increases from 0 to 0.4 M NaCl. Lines are means, and shaded areas are the standard deviation of multiple

biological replicates (Transparent Methods).

(D–F) (D) Schematic overview of model identification based on models’ predictions utilizing kinetic cell stimulations. (E) Schematic overview of signaling

models of different complexity where pathways are modeled with ordinary differential equations (ODE) (Figure S1; Transparent Methods). Themiddlemodel

is defined as the ‘‘true model’’ to simulate synthetic data for pathway response (defined as the activation of node x4). Different models were fitted to the same

data to identify parameters. (F) Thesemodels were then used tomake predictions for pathway activation, depicted as black solid line, upon a different kinetic

input, which resulted in different responses for different models (colored lines).

(G) Diverse kinetic perturbations corresponding to step (t0), root (
ffiffi

t
p

), linear (t1), quadratic (t2), quint (t5), and heptic (t7) changes over time (left) are applied to

the true model (middle) resulting in synthetic signaling activation dynamics (right). In synthetic signaling data, lines are means and shaded areas are the

standard deviation of simulated replicates (Transparent Methods).

(H) Diverse kinetic inputs reaching different final concentrations plus four alternating stimulations result in 58 distinct simulated datasets for each model.

These datasets are used to train models and test their predictions. The alternating stimulations include a staircase input, two pulsatile inputs, and a

sinusoidal oscillatory input (Figures S3E–S3H).

See also Figures S1–S3 and Table S1.
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kinase (MAPK) pathway in the yeast Saccharomyces cerevisiae that is important for stress adaptation and

cell survival (Figure 1A) (Cuadrado and Nebreda, 2010; Saito and Posas, 2012; Thiemicke et al., 2019). This

eukaryotic model system includes the most relevant features of signaling networks, including a terminal

signaling protein (Hog1) and a branched protein network that comprises membrane sensors, phosphore-

lays, kinases, phosphatases, autoregulation, and feedback and feedforward loops that are found in the ma-

jority of signaling pathways (Lim and Bruce Mayer, 2017). With this system, it has been previously demon-

strated experimentally that changing the extracellular osmolyte concentrations over time results in distinct

Hog1 activation dynamics as pathway response output (Figures 1B and 1C) (Ferrigno et al., 1998; Hersen

et al., 2008; Mettetal et al., 2008; Mitchell et al., 2015; Thiemicke et al., 2019). Because of these attributes

that are common in many signal transduction pathways in eukaryotic cells, we now seek to explore what

general implications the diversity of multiple input-to-output dynamics can have on the possibility to iden-

tify predictive signaling models and the regulatory mechanisms that are sensitive to kinetic environmental

perturbations.

RESULTS

Parametrizing Signaling Models with Experimental Data Enables Predictions of Pathway

Responses upon Kinetic Stimulations

As the HOG model pathway combines universal signaling network features as outlined earlier, it serves as a

blueprint tobuild predictive signalingmodels of varying complexity (Figures 1A–1E). Previouspublishedmodels

have limitations in that they are too simple and lack molecular detail (Hersen et al., 2008; Muzzey et al., 2009) or

that they are too complex having too many parameters to estimate (Klipp et al., 2005). Furthermore, other

models are too specific, and their complexity is difficult to adapt when seeking to identify predictive models

from finite amounts of experimental data (Granados et al., 2017; Schaber et al., 2012; Zi et al., 2010). To circum-

vent the challenge of variable complexity, we specify a class of expandable network topologies outlined in Fig-

ures 1E and S1K. In this class, model nodes are defined based on branching points in the Hog1 pathway starting

from the Hog1 kinase, and complexity of the pathway can be increased by separating nodes into sub-nodes

(Figure 1E, left to right) (Transparent Methods). For example, the representative model in Figure 1E (middle)

resembles a simplified branched signaling pathway consisting of four nodes, including one activating and

one repressing sensor protein, constant basal regulators, and a negative feedback loop from the terminal kinase

to an upstream signaling branch (Figures S1A). In the context of the HOG pathway, the node x1 represents the

SLN1 branch including the proteins Sln1, Ypd1, Ssk1, and Ssk2/Ssk22. The SLN1 branch utilizes a two-compo-

nent phosphorelaymechanism to transmit its signal, with b1 representing the constant deactivation of the SLN1

branch (Hohmann et al., 2007;Maeda et al., 1994). The node x2 describes the SHO1branch of the HOGpathway

that utilizes protein kinases to relay its information. The SHO1 branch consists of the proteins Sho1, Msb2, Hkr1,

Opy2, Cdc42, Ste20/Cla4, Ste11, and Ste50, with b2 modeling the basal deactivation of the SHO1 branch

(Tatebayashi et al., 2015). The SHO1 branch is also regulated by the Hog1 kinase through a feedback loop

(Hao et al., 2007; O’Rourke and Herskowitz, 1998; Westfall and Thorner, 2006). The node x3 represents an

MAPKK such as Pbs2 that integrates information flow from two branches and has basal regulation (b3) through

phosphatases such as Ptc1/2/3. Last, x4 represents a terminal kinase such as Hog1 that is activated by Pbs2.

Hog1 is deactivated through phosphatases Ptc1/2/3 and Ptp2/3 (Mattison and Ota, 2000; Warmka et al.,

2001; Young et al., 2002). Deactivation of Hog1 via constitutively active phosphatases is modeled as the act

of basal deactivator b4 on x4.

We parametrized these representative biologically inspired models (Transparent Methods) by fitting them

to experimental Hog1 nuclear localization data (Figures 1B and S1K–S1M). Using experimentally con-

strained parameters for each model, we predicted Hog1 signaling dynamics upon different kinetic stimu-

lation profiles and evaluated each model’s ability to predict independent experimental Hog1 dynamics.

The model (Figure 1E, middle) and the parameter set (Table S1) resulting in the smallest prediction error

was defined as the ‘‘truemodel’’ and the ‘‘true parameters,’’ respectively. From this model, we simulate syn-

thetic signaling data upon diverse kinetic stimulations for the remainder of this study. Using a knownmodel

for this task, rather than additional experiments, allows us to systematically and quantitatively establish how

diverse kinetic stimulations impact model identifiability and predictive power in a controlled setting where

ground truth knowledge is available to check performance.

Diverse Kinetic Cell Stimulations Result in Distinct Pathway Activation Dynamics

With a specified ‘‘true model,’’ we can now rigorously explore diverse kinetic inputs to pathway dynamics

(Figure 1G). We simulated 54 synthetic datasets (Figures 1H, and S2) under a wide range of physiologically
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feasible and mutually independent kinetic stimulation profiles (see Transparent Methods) such that each of

the 54 profiles stimulates the pathway to express a unique temporal behavior. Our simulated data (Figures

2 and S2) qualitatively and quantitatively capture the main characteristics of measured dynamics for Hog

and other signaling pathways, including modulation of activation level, diversity of signaling dynamics, de-

layed onset of activation, variable time to reach maximum activation, perfect adaptation, and measure-

ment error observed in experiments (Figures 1B and 1C). Each signaling dataset covers the same duration

and sampling range and has the same amount of data. However, different datasets may constrain model

parameters to different extents that, in turn, could lead to predictions of different accuracy. To compare

the performance of kinetic stimulations, we also simulated signaling activation dynamics upon staircase,

pulsatile, and sinusoidal stimulation inputs (Figures 1H, datasets 55–58, and S3).

Lack of Kinetic Stimulation Diversity Limits Model Prediction Power

To explore what effects different stimulations have on model predictive power, we fit the true model to

many independent sets of simulated data with experimentally realistic noise (Transparent Methods). The

results of model fit simultaneously for two steps of 0.2 and 0.3 M NaCl is shown in Figure 2A (red). After

confirming that these fits had converged to maximize the likelihood of observing the training data (Figures

S1G–S1J; Transparent Methods), we then predicted the remaining 54 datasets for steps as well as all other

kinetics (blue) (Figure 2). Comparison of the fits and predictions to the corresponding training and testing

data shows that the quality of predictions is nearly as good as fits for the same type of kinetics (Figures 2A

and 2J, blue), but predictions become worse for different types of kinetics (Figures 2B–2F, 2G–2I, 2K, and

2L). This raises the question if the lack of predictability is due to the lack of data or due to limited kinetic

diversity in the training data.

To address the possibility of having too little data, we fit the model to six-step (t0) data simultaneously (Fig-

ure 3A, red), and we predicted the signaling dynamics upon all remaining kinetic stimulations (48 datasets).

We compared model predictions of signaling dynamics for linear kinetic stimulations (t1) or nonlinear ki-

netic stimulations (t9) of different final concentrations to their corresponding synthetic data (Figure 3A,

blue or green, respectively, compared to gray). After convergence, each set of model fits resulted in

poor predictions for all datasets except for testing data collected using the same kinetic type as the training

data. This observation was the same for subsequent training datasets with homogeneous input types (Fig-

ures S3A–S3C). Comparing how model predictability depends on the amount of training data of the same

type illustrates that simply collectingmore data of the same type does not automatically result in improved

predictability (Figures 3B and S3A–S3C, right). Rather, the specific kinetics upon which the cells are stim-

ulated may be of greater importance.

Diversified Kinetic Stimulations Better Constrain Model Parameters and Improve Model

Predictions

To address the importance of kinetic diversity in training data, we fit signaling dynamics for different kinetic

stimulations (t0�t7) of a given final concentration (Figure 3C, red), and we predicted the signaling dynamics

for the remaining kinetic stimulations (Figure 3C, blue and green). Comparing model predictions of

signaling dynamics for linear kinetic stimulations (t1) or nonlinear kinetic stimulations (t9) of several different

final concentrations with their corresponding synthetic data (Figures 3C and S3D, blue or green, respec-

tively, compared with gray) indicates that all the predictions are substantially improved and are nearly as

good as the fits, whereas the amount of training data is still the same as in Figure 3A. Quantitatively

comparing how model predictability depends on the amount of different types of training data illustrates

that kinetically diverse training data substantially improve predictability under all test kinetics (Figure 3D,

blue, yellow, or green quantified from testdata1, testdata2, or testdata3).

Our results indicate that a minimum of five diverse training datasets are sufficient to achieve average pre-

diction errors within 75% of the standard deviation of data, and six diverse datasets result in average pre-

diction errors within 51% of the standard deviation of the data. For amore stringent evaluation of generality

and extensibility, we then challenged the various trained models with entirely different sets of novel alter-

nating stimulations including staircase, pulsatile, or complex sinusoidal oscillatory inputs (testdata4) (Fig-

ures 3E–3G and S3E–S3H). After training using six steps (Figures 3A and S3I), six t5 kinetics (Figure S3J), or

six diverse kinetics (Figures 3C and S3K), we compared model predictions with their corresponding simu-

lated data for four alternative stimulations (S3E–S3K, purple compared with gray). Finally, we fit each of the

11 different training datasets and predict the remaining data (Figure 3H). Each of the 11 different training
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datasets contains the same amount of data and fits equally well to its respective training data, but training

using diverse kinetics led to far better predictions in comparison to any of the other sets of perturbations

(Figure 3H). A comprehensive comparison of model predictions with all testdata under each of the 11

different training conditions is given in Video S1. A detailed analysis demonstrates that when using training

data restricted to a single type, prediction errors increase as test data deviate away from kinetically similar

training data (Figures 4A and S4A–S4I).

To better understand why multiple diverse kinetic stimulations result in better predictions and reduced

predictions uncertainties, we next sought to analyze the effects of different training inputs on prediction

errors (Figures 4B and S3A–S3D). By comparing predictions for an increasing number of training data,

we find that prediction errors decrease with increase in the amount of training data regardless of the

Figure 2. Models Trained Using Same Kinetic-Type Inputs Fail to Predict Pathway Response to Other Kinetics

(A–F) Models trained using step inputs fail to predict pathway response to kinetic stimulations. Gray lines show synthetic pathway activation dynamics over

time at different kinetic inputs as indicated inside each panel: step (t0, A), root (
ffiffi

t
p

, B), linear (t1, C), quadratic (t2, D), quint (t5, E), and heptic (t7, F) input

kinetics over time each to increasing final concentrations of 0.10, 0.20, 0.30, and 0.50 M. (A) Model fit simultaneously to steps of 0.2 and 0.3 M data are shown

in red. (A–F) Predictions under all other conditions are shown in blue. Predictions in (E) and (F) of all four concentrations overlap. Thick lines and shaded areas

show median and interquartile range out of 10 independent fits and their corresponding predictions, respectively. As shown as an inset in (A), the first,

second, and third quartiles are used to plot shaded error bars where the thick line and upper and lower shaded areas represent Q2, (Q3-Q2), and (Q2-Q1),

respectively. This convention is used throughout the article.

(G–L) Similar to (A–F), models trained using quadratic inputs fail to predict pathway response to other kinetics.

See also Figure S2.
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training data type, but the prediction improvement is much faster when using diverse training data (Fig-

ure 4B). We applied both frequentist and Bayesian analyses to explore how variability in parameters and

predictions arises from different experimental settings. For the frequentist analysis, we developed a Fisher

Information Matrix (FIM) analysis framework to directly estimate the expected uncertainties of maximum

Figure 3. Kinetic Stimulation Improves Model Predictions

(A) Simultaneous fits (red) to six simulated step input response of different concentrations (gray) and subsequent model predictions of signaling dynamics

upon different concentrations of linear input stimulations (predictions1 in blue, testdata1 in gray) or different concentrations of nonlinear inputs of the shape

t9 (predictions3 in green, testdata3 in gray).

(B) Box plots of fit and prediction errors when an increasing number of step inputs is used to train the model.

(C) Simultaneous fit (red) to six different kinetic input stimulations of the same final concentration (gray) andmodel predictions for different concentrations of

linear input stimulations (predictions1 in blue, testdata1 in gray) or different concentrations of nonlinear input stimulations of the shape t9 (predictions3 in

green, testdata3 in gray). In (A and C), thick lines and shaded areas in gray show the mean and the standard deviation of synthetic data. Thick lines and

shaded areas in red, blue, and green show median and interquartile range of 10 independent fits and their corresponding predictions, respectively.

(D) Box plots of fit and prediction errors when an increasing number of diverse kinetics (t0 t7) is used to train the model. For (B and D), squares and error bars

show median and first and third quartiles, respectively. Horizontal dotted black line denotes the standard deviation of the simulated data. Fit or prediction

errors (FE or PE1-PE4) are the mean absolute difference of the fit or predictions and their corresponding synthetic data over time (Transparent Methods). Fit

error (FE) statistics are drawn from ntrain datasets over 10 independent fits (103 ntrain errors) where ntrain = 1,2,.6 is the number of datasets used to train the

model. Similarly, PE1, PE2, and PE3 are drawn from prediction errors of testdata1 (36-ntrain datasets over 10 independent fits), testdata2 (12 datasets over 10

independent fits), and testdata3 (6 datasets over 10 independent fits), respectively (Figure 1H).

(E–G) (E) Upon a sinusoidal oscillatory stimulation input (Figure S3H), model predictions (examples of P4 in purple) compared with testdata4 (gray) under (F)

six steps versus (G) six diverse kinetics training.

(H) Full boxplots of fit (FE) and predictions errors (PE1, PE2, PE3, and PE4) compared with standard deviation of the synthetic data (horizontal dashed line)

when six datasets of each kinetics (or equivalent) are used to train the model. Quantifications are from 10 independent fits for each condition. PE4 is

prediction errors quantified from alternating stimulations that consist of staircase, pulsatile1, pulsatile2, and sinusoidal oscillatory inputs (Figures S3E–S3H).

When either of the alternating stimulations is used as training data, PE4 is quantified over the other three alternating stimulations.

See also Figure S3 and Video S1.
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likelihood estimations (MLE) when performing multiple independent replicas of the same experiment de-

signs (Apgar et al., 2010; Fox and Munsky, 2019; Hagen et al., 2013; Komorowski et al., 2011) (Transparent

Methods). We verified the FIM computation by performing MLE parameter searches for 1,000 simulated

datasets per experiment design (Transparent Methods), and we found that 95% confidence intervals of

MLE pairwise parameters match their 95% confidence intervals predicted by the FIM analysis (Figures

4C, 4D, S4J, and S4K). The verified FIM analysis shows that MLE estimates will have the least uncertainty

when trained with diverse kinetic profiles when compared with homogeneous profiles (compare ellipses

in Figures S4K and S4J, respectively). This improvement is explained by the fact that different kinetic pro-

files constrain different combinations of parameters resulting in different parameters uncertainties (Figures

4F and S4L–S4O), as shown for a specific pair of parameters (l11,l12) that defines the regulation of the

Figure 4. Kinetically Diverse Stimulations Constrain Model Parameters Substantially Better than Homogeneous Kinetic Types

(A) Comprehensive quantification of prediction errors of each kinetic stimulation type when five datasets of any given type is used to train the model (lighter

colors denote smaller errors).

(B) Comparison of prediction errors (Predictions3) under increasing amounts of training data of the same kinetic type (e.g., step, linear, quadratic) or diverse

kinetic types (0.3 and 0.7 M). Horizontal dotted black line denotes the standard deviation of the simulated data.

(C–E) Verification of FIM using MLEs. Under each of six step versus six diverse 0.7 M kinetics training, total model uncertainty is estimated by determinant of

(C) FIM�1, (D) covariancematrix of MLEs, and (E) covariancematrix of Bayesian posterior. Analyses in (C–E) are all performed with four free model parameters

(l11, l13, l15, l21) (see Transparent Methods and Figures S4J and S4K).

(F) Parameter uncertainty of the model estimated as inverse of determinant of FIM (i.e., D-Optimality) when the model is fit to all six of each dataset.

(G) Ellipses are representative 95% confidence intervals for a representative pair of parameters estimated from FIM�1. Colors correspond to the five different

sets of experiments considered in (F).

(H) FIM optimal experimental design by minimizing the determinant of inverse FIM determines D-Optimal experiments for increasing number of datasets

(n = 1,2, .6) among all possible combinations (36 choose n) (purple) compared with steps (black) or diverse 0.7 M (blue).

(I) Comparison of prediction errors (Predictions1, Predictions2, and Predictions3) under increasing amounts of training data of the steps, diverse 0.7 M, and

D-Optimal experiments. Results are from three independent model fits and their corresponding predictions. Horizontal dotted black line denotes average

standard deviation of the simulated data.

(J–L) Bayesian analysis to quantify model parameters posterior and predictions under different kinetics. Under (J) six steps, (K) six diverse 0.7 M, and (L) six D-

Optimal training kinetics, model fits (red) and predictions (green) for 100 parameters sets sampled from Bayesian posterior are compared with their

corresponding training and test data (gray). Results are from multiple independent chains (steps 3, diverse 3, and D-Optimal 7 chains) (see Transparent

Methods). The values for the determinant of covariance of posterior (average over all independent chains), average fit errors (<FE>), and average prediction

errors (<PE>) are given for each condition. The <FE> and <PE > quantifications are from 100 samples from posteriors of each independent chain. FE are from

six training datasets; PE are from the remaining 52 test datasets (Figure 1H).

See also Figure S4.
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terminal kinase through the activity of phosphatases (Figure 4G). Next, we employed a complementary

Bayesian analysis to quantify the posterior uncertainty of parameters given a single set of training data

(see Transparent Methods). In agreement with the frequentist analysis, we found that posteriors for homo-

geneous inputs were much broader than those found for the diverse input signals (Figure 4E).

Because the frequentist FIM analysis requires no data generation or fitting, it is many orders of magnitude

more computationally efficient than the Bayesian analysis. Using the verified FIM to estimate the expected

uncertainty for a given combination of input kinetics, we could next explore all possible combinations (36

choose n) for up to n kinetic inputs (2,391,495 total). Through this exhaustive search, we found that the D-

Optimal (i.e., the set of experiments expected to minimize the determinant of FIM�1) combination of n = 6

kinetic inputs was a diverse combination composed of inputs of two steps to 0.5 and 0.7 M (t0), one root to

0.7 M (Ot), one quadratic to 0.5 M (t2), and two heptics to 0.5 and 0.7 M (t7). This optimal experiment further

reduces total parameter uncertainty compared with steps or the original diverse kinetics (Figure 4H).

Comparing the determinants of covariance of the posterior (Det(cov)) for all parameters using the Bayesian

approach, we find that the posterior for the FIM D-Optimal inputs was tighter when compared with diverse

and homogeneous step input signals (compare Det(cov) in Figures 4J–4L).

We next applied these frequentist and Bayesian perspectives to ask how parameter uncertainty affects predic-

tion accuracy. To answer this question from the frequentist perspective (i.e., how sensitive are predictions to the

spread of MLE-based estimations corresponding to different replicas of the same experiment), we sampled

parameter sets from a multivariate distribution centered at the true parameters and distributed with a covari-

ance matrix equal to the inverse FIM. To answer this question from the Bayesian perspective (i.e., how sensitive

are predictions to parameter uncertainty after constraining to a single replica experiment), we usedMonteCarlo

to sample parameter sets from the posterior distribution (see Transparent Methods). In both cases, we found

that predictions based upon models fit to the diverse data as well as the FIM D-Optimal design provided

much tighter andmore accurate estimates of behaviors in unseen testing conditions (Figures 4I–4L). Our results

indicate that six-step training datasets achieve an average prediction error within 143% of the standard devia-

tion of data. In comparison, six diverse and six D-Optimal datasets result in average prediction errors within 79%

and 87% of the standard deviation of the data (compare <PE>/std in Figures 4J–4L). We find that with the opti-

mally designed experiments, a combination of three diverse experiments (comprised of one step (t0), one

quadratic (t2), and one heptic (t7) input), constrain the parameters sufficiently well to make predictions within

70% of the standard deviation of the data (Figure 4I). For clarity, results in Figure 4I are obtained using the fre-

quentist approach while those in Figures 4J–4L are obtained using the Bayesian approach.

These results indicate that signaling models built based on one type of kinetic stimulations may be predic-

tive under different intensities of that same kinetic input, but they are likely to fail to predict pathway re-

sponses upon other types of kinetic stimulations. This is important to consider because most computa-

tional models to date are often parametrized with measurements performed under constant stimulation

profiles (Hao and O’Shea, 2012; Shaw et al., 2019). We find that training the model simultaneously with

diverse kinetics constrains parameters better and improves predictions substantially.

Diverse Kinetic Stimulations Improve Identification of Model Structures

Next, we examined how kinetically different cell stimulations affect model structure identifiability (e.g., the

number and mechanisms of interacting signaling proteins), and we sought to elucidate the contribution of

specific signaling proteins to overall dynamic signaling responses. Figures 5 and S5 show fits (red) and pre-

dictions (blue, yellow, green, and purple) of five models with varying complexity to six different signaling

response dynamics. This analysis is performed using datasets that are simulated from model M3. Simpler

models were built by removing one or two regulatory elements from M3 to form M2 or M1, respectively, to

simulate two mutants of the true model where the corresponding kinase activities are removed resulting in

loss of feedback regulations (Figures S5A–S5C). A more complex model was built by adding two extra

regulation elements to the true model, which could represent unknown regulatory elements yet to be

discovered such as feedbacks from the terminal kinase to the upstream kinases (Figure S5D, model M4)

(Suzuki et al., 2020). Finally, another complex model is generated by adding an entirely new signaling

branch consisting of a third sensor node and introducing three additional regulatory elements to the

true model that could correspond to SHO1 sub-branches in the HOG pathway (Figure S5E, model M5) (Ta-

tebayashi et al., 2015). As expected, the simplest model cannot fit all data simultaneously (Figures 5A, S5A,

and S5B, red), whereas the true model and the more complex models both fit well to the simulated data
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(Figures 5B, 5C, and S5C–S5E, red). In each case, multiple MLEs were performed and models were then

used to make four sets of predictions (Figures 5D–5I, blue, green, yellow, purple) (see Transparent

Methods). As expected, the simple model does not predict well (Figures 5D and 5G), whereas the medium

and complex model predictions are consistent with the true responses, but with an increasing level of pre-

diction uncertainties (Figures 5E, 5F, 5H, and 5I).

We next performed systematic cross-validation of fits to specific input-output responses and prediction

validation analyses using other datasets to explore how identification of a predictive model structure

(e.g., selecting amongmodels M1 toM5) depends on the specific types of training and validation data (Fig-

ures 5J–5L, S5F, and S5G). In all cases, as the model complexity increases fromM1 to M5, the fits to training

data improve monotonically (Figures 5K and 5L, S5F, and S5G, red), but the validation errors should reach a

minimum when using the model structure that is most predictive given the available data (Figures 5K and

5L, S5F, and S5G, non-red markers). When training data consist of steps, simpler models (M1 and M2) fit

well to the simulated data, therefore it is not possible to distinguish the true model using only steps

data (Figure 5L). By quantifying predictions of each model upon all kinetic inputs (Figure 5J), it is possible

on average to identify the true model (M3), but the certainty of structure identification depends heavily on

the type of validation data (compare different colors in Figure 5L). In comparison, similar to diverse training

data (Figure 5K), when using optimal experiments suggested by the FIM analysis, the over-simplified

models fit less well to training data (Figures S5F and S5G), and validation data allowed for more certain se-

lection of the true model. These results demonstrate that different kinetic cell stimulations can improve

predictability in the process of complex model structure identification.

Figure 5. Kinetically Diverse Stimulation Profiles Enable Unprecedented Model Predictions

(A–I) Predictions enable identification of the true model among models of increasing complexities. (A–C) Three models with increasing complexity from left

to right (M1 in A,M3 in B, andM5 in C) each are trained with six diverse kinetics datasets that are simulated fromM3 (see TransparentMethods). Model fits are

shown in red and compared with training data in gray. (D–I) Model predictions (examples of Predictions1 in blue, Predictions2 in yellow, Predictions3 in

green, and Predictions4 in purple) are compared with their corresponding test data (gray) indicated with stars in the table of train/test data in (J). Thick lines

and shaded areas in gray show themeans and the standard deviations of synthetic data, respectively. Thick lines and shaded areas in red, blue, yellow, green,

and purple show 10, 50, and 90 percentiles out of independent MLE fits of each model and their corresponding predictions over time.

(J) An overview of sets of training and testing data that are used for fits and predictions. Red, blue, yellow, green, and purple squares indicate the datasets

used in (K), and stars indicate predictions that are presented in (D–I). (K) Quantification (boxplots) of fit and prediction errors for five models of increasing

complexity after training each model with six diverse kinetics (see Transparent Methods and Figure S5 for model definitions and further analysis). Horizontal

dotted black line denotes the standard deviation of the simulated data. Fit errors (FE) statistics are drawn from six train datasets over multiple independent

trainings. Similarly, PE1, PE2, PE3, and PE4 are drawn from prediction errors of testdata1 (30 datasets, blue in J), testdata2 (12 datasets, yellow in J), testdata3

(6 datasets, green in J), and testdata4 (4 datasets, purple in J with stimulation profiles given in Figures S3E–S3H), respectively, each collected over multiple

independent fits. Predictions for M4 and M5 are all specifically collected from MLEs that have objective of at least as low as that of converged M3 MLEs.

(L) Quantification of fit and prediction errors for five models of increasing complexity after training each model with six step kinetics. See also Figure S5.
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Diverse Kinetic Stimulations Improve Predictions of Mutant Responses

Finally, we examined how diverse kinetic stimulations affect predictive performance for other in silico bio-

logically realistic mutations to specific signaling proteins in signal transduction pathways (Figures 6A and

S6) (Hohmann et al., 2007; Mattison and Ota, 2000; O’Rourke and Herskowitz, 1998; Westfall and Thorner,

2006; Young et al., 2002). Sensitivity analysis of the wild-type (WT) model that was trained with diverse ki-

netics allowed us to categorize model parameters into two main groups of insensitive (sensitivity = 0) and

sensitive (sensitivity = 1) parameters that we then use to predict putativemutations (Figures 6A, 6B, and S6).

To determine whether diverse kinetic cell stimulations can identify biological mechanisms, we computa-

tionally introduced six mutations in our true model (Transparent Methods). These include three knockout

mutants that remove basal deactivators on x1 (Db1, blue cross), x2 (Db2, red cross), or x3 (Db3, teal cross).

Mutants Db1 and Db2 can be interpreted as removing the constitutive deactivation of SLN1 or SHO1

branches, respectively, which could change the half-life of their active states. Mutant Db3 could represent

regulation of Pbs2 through deletion of Ptc1/2/3 phosphatases. The node x4 can be mutated by removing

kinase activity of x4 (DK, purple cross, e.g., kinase dead or kinase activity inhibited) and can be regulated

through overexpression (b4, OE, orange), and underexpression (b4, UE, brown) of the basal deactivator

on x4 such as the Ptp2/3 phosphatases (Figure 6A).

We simulated corresponding synthetic pathway activations from all six mutants upon all 54 kinetic stimu-

lations (Transparent Methods). Pathway activations upon a representative kinetic stimulation input of t9

are shown for all six mutants compared with the WT in Figure 6C. To quantify the differences in signaling

dynamics between normal and mutant cells, we define severity as the difference in the activation dynamics

of a mutant compared with that of the WT (Figure 6D and Transparent Methods). We observed that

pathway activation in some mutant strains shows no difference from WT under all kinetic inputs (Db1

and Db3, mutation ‘‘severity’’ = 0), whereas other mutants with non-zero severity (Db2, DK, UE, and OE)

are different from WT (Figure 6C). Comparing the sensitivity with respect to specific parameters in the

model (Figure 6B) with the severity of the corresponding mutants’ effect on signaling dynamics (Figure 6E)

highlights that sensitive parameters are indicators of how much specific mutations will affect signaling un-

der different kinetics of specific types (Figure S6). Furthermore, constraining the parameters of WT model

on its synthetic data under diverse kinetic stimulations enabled us to accurately predict the activation re-

sponses of all the six mutants over time under all 54 kinetic inputs tested (Figures 7 and S7). These results

are quantitatively summarized in Figure 7E, showing that the prediction errors for simulated mutations are

comparable to prediction errors of non-mutated WT cells.

DISCUSSION

Our experimental and simulation results demonstrate that different kinetic cell stimulations of a pathway

give rise to distinct signaling activation dynamics (Figure 1). When compared with the same amount of

Figure 6. Kinetically Diverse Stimulations Elucidate Dynamic Effects of Mutants

Training the WT true model (M3 in Figure 5B) on its signaling dynamics upon diverse kinetics (red in Figure 5J) reveals insights into the response of several

mutated models under all tested kinetic inputs. (A) The six mutants of the WT model correspond to deletions of basal regulators (e.g., phosphatases) on x1
(Db1, blue), x2 (Db2, red), or x3 (Db3, teal); removal of the kinase activity (e.g., kinase dead or inhibited MAPK) of x4 (DK, purple); and under- or overexpressing

b4 (e.g. phosphatase) that regulates x4 (UE in orange and OE in brown). (B) Sensitivity analysis of WT model with respect to model parameters around their

best value from the fits predicts insensitive (e.g., l3 and l4 corresponding to Db1) and sensitive (l15 and l16 corresponding to DK) mutants (see Figure S6). (C)

Comparing the activation dynamics of mutants (simulated usingL0 in Table S1) withWT under a representative kinetic input (t9 to 0.2 M, inset). Thick line and

shaded area (colors) show the mean and the standard deviation of synthetic data for the corresponding strains. (D) Mutation severity, defined as the

difference in activation dynamics of a mutant from that of theWT (Transparent Methods). (E) Mutation severity is shown for two representative mutant strains,

Db1 (insensitive) and DK (sensitive) over all kinetic types summed over all their final concentrations. See also Figure S6.
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any type of homogeneous kinetics, kinetically diverse cell stimulations perform much better to constrain

complex model parameter sets and result in substantially reduced predictions errors (Figures 3 and 4).

The FIM analysis approach provides a rigorous and clear mathematical interpretation of this effect. Specif-

ically, the eigenvector of the FIM corresponding to the greatest eigenvalue indicates the parameter com-

bination that is most likely to be accurately identified using a given kinetic stimulation (Figure S4O). By

comparing eigenvectors corresponding to large FIM eigenvalues, it is easy to see which kinetic type

may bemost effective to constrain specific parameters of a complex regulatory network. Similarly, by exam-

ining eigenvectors corresponding to small FIM eigenvalues, it becomes apparent which parameter combi-

nations cannot be precisely identified using a specific kinetic input. By choosing diverse and complemen-

tary input kinetics, such that the full parameter space is spanned by high-eigenvalue FIM eigenvectors from

one or multiple kinetic inputs, it becomes possible to constrain the entire parameter set (Figures 4F, 4G,

and S4L–S4O).

Better constrained parameters make it easier to identify predictive models of signal transduction (Figures 5

and S5). This also enables improved predictions of pathway activation dynamics for protein mutant strains

upon kinetic stimulations (Figures 6, S6, and S7). To illustrate these predictions, we revisited the HOG

pathway as an example (Figure 6). We predicted that mutations that alter the SLN1 branch (b1) will not

impact Hog1 signaling dynamics, which is consistent with previously published observation that changes

in Ypd1 do not alter Hog1 signaling (Mukherji, 2010). Next we focused on the node x2 that describes the

SHO1 branch in which mutating b2 could result in an increase or decrease in Hog1 signaling. We predicted

that Db2 results in increased Hog1 signaling amplitude. In addition, the SHO1 branch can be altered in its

activity by the feedback regulation from Hog1 kinase. In our model, we predicted that removing Hog1 ki-

nase activity or inhibiting Hog1 kinase activity (DK) results in increased and prolonged Hog1 activation,

which is consistent with previous published experimental work on small molecule inhibition of Hog1 activity

(Muzzey et al., 2009; Westfall and Thorner, 2006). Next, we focused on the node x3, which represents Pbs2.

Our model predicted that deletions of individual phosphatases such as Ptc1/2/3 would not alter Hog1

Figure 7. Kinetically Diverse Stimulations Enable to Predict Mutants’ Response Dynamics

Training the WT true model on its signaling dynamics upon diverse kinetics enables predictions for the response of mutants upon all tested kinetic inputs.

(A) A mutant where the kinase activity of x4 is eliminated (e.g., kinase dead or inhibited MAPK, purple cross) leads to a loss of feedback regulation from x4 on

x2.

(B) Extracellular stimulation of the models results in elongated response adaptation in DK mutant compared with WT.

(C and D) Example pathway activation predictions (predictions3 in green) are compared with their corresponding synthetic data for WT (C, gray) and DK (D,

purple) under representative t9 kinetic inputs.

(E) Prediction errors (PE1, PE2, PE3) are quantified over all 54 kinetics (Figure 1H) for each of the six mutants (Figure 6A) compared withWT. These predictions

are made using parameters constrained from five independent fits of WT model tarined on its signaling dynamics upon six diverse kinetics in Figure 5J.

See also Figure S7.
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signaling dynamics through changed Pbs2 activity (Db3) (Mapes and Ota, 2004; Warmka et al., 2001). Last,

x4 represents the terminal kinase Hog1 that can be deactivated through phosphatases Ptc1/2/3 and Ptp2/3

(b4) (Martı́n et al., 2005; Murakami et al., 2008; Warmka et al., 2001; Young et al., 2002). Themodel predicted

that changing the value of b4 through over- or underexpression has a strong impact on Hog1 signaling in-

tensity. The experimental observations of the effect of above-mentioned mutants on the HOG pathway dy-

namics under step profiles qualitatively aligns with our simulated data for all mutants validating our

modeling approach for mutants (Figure 6) (O’Rourke and Herskowitz, 1998; Saito and Posas, 2012; Tate-

bayashi et al., 2015; Warmka et al., 2001). Using simulated data, we verified our mutant findings by quan-

titatively comparing predictions from each mutant to their corresponding synthetic data (Figure 7).

These results demonstrate that kinetic cell stimulations are ideally suited to discover novel regulatory in-

teractions, reveal key functional proteins, identify predictive and biologically meaningful models, and

help to gain novel insights to cell function or dysfunction. The potential for generality of kinetic stimulations

is supported by emerging studies in many pathways and in different cell types. Examples are differential

cellular responses upon step, pulsatile, or linear stimulations of EGF (Akt pathway, PC12 cells, Fujita

et al., 2010), TGF-b (TGF-b pathways, myoblast progenitor C2C12 cell line, Sorre et al., 2014), cytokines

IL-6 (STAT1/3, lymphocytes, Twohig et al., 2019) and TNF (NF-kB signaling, HeLa/neuroblastoma cells,

Ashall et al., 2009; Mokashi et al., 2019), insulin (Akt/S6K pathway, rat hepatoma Fao cells, Kubota et al.,

2012), H2O2 (Yap1 signaling, yeast cells (Goulev et al., 2017), or diacetyl in tetramisole hydrochloride (C.

elegans AWA neurons, Rahi et al., 2017). We believe that implementing diverse kinetic stimulations may

provide new opportunities in constraining complex model parameters in situations where experimental

design methods based on instantaneous changes in the environment such as steps or pulses of varying

heights or frequencies have not provided great success (Billings, 2013; Isermann and Münchhof, 2011).

Given the complexity of signal transduction networks (Akhurst and Hata, 2012; Cildir et al., 2016; Hanahan

and Weinberg, 2000; Hata and Chen, 2016; Hotamisligil and Davis, 2016) and their limited response band-

widths (Hersen et al., 2008), steps or pulsatile stimulations of even varying intensities or frequenciesmay not

provide enough kinetics to efficiently probe the rich dynamics underlying these networks (Billings, 2013;

Isermann and Münchhof, 2011). Our approach on the other hand is widely applicable to many biological

pathways that respond to a kinetic cell stimulation with a dynamic signaling response, and our approach

may have far-reaching implications for predicting pathway response upon specific mutations or drugs

(Akhurst and Hata, 2012; Cildir et al., 2016; Hanahan and Weinberg, 2000; Handly et al., 2016; Hata and

Chen, 2016; Hotamisligil and Davis, 2016; Janes and Lauffenburger, 2013; Rowland et al., 2011; Vanhaelen

et al., 2017; Lim and Bruce Mayer, 2017). Being able to predict the pathway activation dynamics upon mu-

tations or upon environmental changes may help design better drug treatment regimes. In addition, these

results could benefit our understanding of human biology, particularly in areas such as optogenetics, gene

regulatory networks, or synthetic biology, where predictive understanding of the system behavior with

respect to extracellular kinetics or intercellular genetic perturbations is of immense interest (Aoki et al.,

2019; Bashor et al., 2019; Gardner, 2013; Harrigan et al., 2018).

Limitations of the Study

The basic requirement for applying this framework to other systems is (1) that different environmental gra-

dients can be generated, (2) that the pathway response changes over time, (3) that the pathway response

time is homogeneous from cell to cell, and (4) that the central limit theorem is fulfilled in single cells.
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Figure S1. Signaling pathway, modeled as a dynamic ODE system, is parametrized using a custom optimization 
algorithm with Hog1 nuclear localization data. Related to Figure 1.  (A) The signaling pathway is represented as a 

network topology diagram and is modeled as an enzymatic regulatory network described by a dynamic ordinary 

differential equations (ODE) system represented in (B) matrix form or (C) equation form. (D) A representative positive 
regulation in the model, where the active form of x3 converts x4 from its inactive to its active form (orange box in B and C) 

through a Michaelis-Menten function consisting of two parameters, the Michaelis-Menten constant (𝐾!!) and catalytic rate 

constant (𝑘"#$).  (E) The model is simulated with the initial and boundary conditions (𝒃	and 𝑿𝟎) and Gaussian noise is 

added to the ODE solutions for 𝑥&(𝑡) resulting in single cell pathway activation trajectories, 𝑂'"(𝑡), under model 

parameters (𝚲𝟎) given in Table S1. Biological replicates are averaged from 10 simulated single cell trajectories. A 

signaling activation dynamic (e.g., each solid line and its shaded area in Figure S2) is calculated as the mean and the 

standard deviation of 5 simulated biological replicates.  For convenience, we arrange the vector of parameters Λ such that 

even entries correspond to MM constants and odd entries correspond to catalytic rate constants.  (F) Optimization 

algorithm. A combinatorial optimization algorithm using a customized Genetic Algorithm (GA) combined with fminsearch. 

The algorithm takes a model and a set of train data and returns a set of best parameter sets (𝜦*) that best fit the training 

data. See Transparent Methods. (G-J) Fitting-prediction method. (G) For every condition presented in the manuscript, 30 

independent fits are performed, each taking one of the 30 “synthetic replicates” of the simulated data along an 

independent random parameter initiation and resampling through the algorithm shown in (F). Each dotted box in (G) is 

equivalent to (F). (H) From resulted 30 fits, either 10 or 5 best converged optimizations (as indicated in each figure in the 

manuscript) are kept (each red line), and from the (I) resulted best parameter sets, (J) their corresponding predictions 
(each green line) are made upon any kinetic stimulation input (Transparent Methods). Here, the examples of fits (H, 10 

red lines) and their corresponding predictions (J, 10 green lines) are shown from Figures 5A and 5C. In addition, at each 

best parameter set (I), upon each kinetic stimulation input, FIM (used to estimate parameter uncertainties) as well as 

sensitivity of the objective function with respect to parameters are also computed (Transparent Methods). This method 

was used for all results throughout this manuscript. (K,L) Ten independent fits (reds) of model in (K) to measured Hog1 

nuclear localization data (black) upon steps of 0.2M (left) and 0.4M (right) applied to the cells at 0 min. Solid black line is 

mean and shaded area the standard deviations out of multiple biological replicates (Transparent Methods). (M) Ten best 
pairs of simultaneous fits to 0.2M and 0.4M Hog1 data out of 20 independent fits (dark and light reds) of model in (K). 

Constrained parameters of the model (K) under this fit that result in best predictions are given in Table S1 (𝚲𝟎).  This 

parameter set is used to simulate all synthetic data for the WT (Figure S2) and mutants (Figure S7) upon kinetic stimuli.   



 

  



 

Figure S2. Kinetic stimulations of signaling pathways result in dynamic pathway activation responses over a 
wide range of stimuli type and intensities. Related to Figures 1 and 2. Synthetic pathway responses simulated from 

WT model shown in Figure S1A upon diverse kinetic stimulations (inserts) as step (𝑡(, A), root (√𝑡, B), linear (𝑡), C), 

quadratic (𝑡*, D), quints (𝑡+, E), heptic (𝑡,, F), and nonic (𝑡-, G)  functions over time each to final concentrations of 0.050, 

0.10, 0.20, 0.30, 0.50, 0.70M. All kinetic stimulations start at 0 min, all except steps reach their final concentrations at 25 

min, then keep constant from 25 min to 50 min (insets). (H) Data from diverse kinetic inputs (𝑡(, √𝑡, 𝑡), 𝑡*, 𝑡+, 𝑡,) all to 
1.00M final concentration. 30 “synthetic replicates” (Transparent Methods) of each data is simulated under independent 

single cell noise (independent 𝜉 = 	𝒩(0,1) Gaussian noise). Solid black lines and shaded area represent the mean and 

the standard deviation of each data. (I) Red, blue, yellow, and green stars indicate each dataset belong to traindata, 
testdata1, testdata2, and testdata3, respectively (as in Figure 1H), to be used to train the model or to test model 

predictions.   



   



 

Figure S3. Same kinetic type data fail to provide meaningful predictions regardless of amount of training data 

used. Related to Figure 3. (A) Model fits (red) simultaneously to all six root (√𝑡) kinetics (gray) and predictions (blue, 

yellow, and green) are compared to their corresponding test data (gray): Predictions1 (blue) to testdata1 (step kinetics, 

gray), Predictions2 (yellow) to testdata2 (0.9M diverse kinetics, gray), and Predictions3 (green) to testdata3 (t9 kinetics, 
gray). Right: quantifications of fit and prediction errors when increasing number of root data are used to train the model. 

(B) Similar to (A) this time instead of all six root (√𝑡) kinetics data, all six linear (𝑡)) kinetics data are simultaneously used 

to train the model. Fits (red) are compared to their corresponding train data (gray). (C) All six quadratic (𝑡*) kinetics data 

are simultaneously used to train the model. (D) Six diverse kinetics data are simultaneously used to train the model. In (B-
D) predictions (blue, yellow, and green) are compared to their corresponding testdata in gray (similar to A). Thick line and 

shaded area in gray show the mean and the standard deviation of synthetic pathway activation data. Thick line and 

shaded area in red, blue, yellow, and greens show median and interquartile range of 10 independent fits and their 

corresponding predictions, respectively. Quantifications of model errors are similar to Figure 3 (upon all 54 kinetics over 

10 independent model fits for each condition). (E-H) Alternating stimulations including (E) a staircase, (F) pulse series of 

constant amplitude, (G) pulse series of increasing amplitude, and (H) a sinusoidal oscillatory stimulation input. (I-K) Model 

predictions of pathway activation upon each of the alternating stimulations under (I) six step kinetics training data, (J) six 

quint (𝑡+) kinetics training data, or (K) six diverse kinetics (0.70M) training data. Each of the alternating stimulations are 

independently used as training data in different experiments. For results see Movie S1 for a comprehensive presentation 

of model performance over all 58 kinetics under different training sets. In (I-K), shaded plots (purple) over time present 10, 
50, and 90 percentiles out of 10 predictions4 corresponding to 10 independent fits of model for each condition.   



 



 

Figure S4. Kinetically diverse stimulations constrain all model parameters while same kinetic type data are best 
effective on constraining some parameters but not others. Related to Figure 4.  (A-I) Prediction errors increase by 

moving away from kinetically similar training data. (A-C) Quantification of prediction errors of each kinetic type when all six 

of steps (A), linears (B), or quadratics (C) are used to train the model.  Kinetically similar data are best predictable, while 
by moving away from the kinetically similar train data predictions worsens quickly and dramatically. (D-I) Increasing the 

number of data (indicated with red boxes) from each type kinetics that is used to train the model (indicated on the x axis), 

and the predictions of each type of the kinetics (y axis) are quantified. Principal diagonals correspond to predicting test 

data that is kinetically similar to the train data (different final concentrations), which results in the best quality of 

predictions. All quantifications are from 10 independent fits for each condition. The prediction errors in (H, five training 

data) is as low as in (I, six training data) indicating that five training data are enough. This point is also reflected in the 

error quantifications given in Figure S3.  (J-K) Verification of FIM using MLEs. Under (J) six step versus (K) six diverse 

0.7M kinetics training, 95% confidence interval of model parameters uncertainty of pair (l13, l15) from FIM (black 

ellipses) is compared to that of MLEs (golden ellipses and dots). Each golden dot denotes one independent MLE (see 

Transparent Methods). (L-O) Using the same amount of data, kinetically diverse stimulations constrain model parameters 

substantially better than same kinetic types. Parameter uncertainty (magnitude) estimated via different optimalities of FIM 

under different kinetic stimulations. Under five different sets of traindata including six steps, six linears, six quadratics, six 

diverse kinetics of 0.30M or six diverse kinetics of 0.70M, FIM and FIM-1 are calculated upon all test data. The estimates 
of the model parameters uncertainty using each of A-Optimality, E-Optimality, T-Optimality, D-Optimality, and W-

Optimality summed over for all of testdata1 (L), testdata2 (M), or testdata3 (N) kinetics and their boxplots out of 10 

independent fits are shown for each condition. The fits are from Figures 3, S3 and S4I. W-Opt is defined as a weighted 

sum over the uncertainties (∆.) estimated by FIM-1 for individual parameters of the model (Transparent Methods). (O) 

Ellipses as eigenvectors representing 95% confidence intervals estimated from FIM-1 for few representative pairs of 

parameters. To clarify, similar results are obtained for all the model parameters. Under five different sets of traindata 
presented in L-O, as five different experiment designs, corresponding example ellipses are shown as indicated in the 

legend.   



   



 

Figure S5. Upon diverse kinetics, predictions enable identification of a true model among models of increasing 
complexities. Related to Figure 5. (A-E) Five models, with increasing complexities from left to right, are compared on 

the quality of their fits and predictions under data (gray) that are simulated from the true model (M3). From M3 to M2 and 

to M1, at each step one regulation is removed to generate simpler models. These could represent mutants of M3 where 
the corresponding kinase activities are removed resulting in loss of feedbacks regulations. From M3 to M4 two extra 

regulations are added to generate a complex 4-node model. This could represent potential hidden (yet undiscovered) 

regulations. Finally, M5 is generated by adding a whole new signaling branch (consisting of a sensor node and three 

regulations) to M3. Second row show MLE fits (reds) of each model compared to the train data (gray). See STAR Method. 

Under parameters constrained for each model from these fits, next rows show model predictions. Mean model errors over 

each class of data (6 training data in red, 30 testdata1 in blue, 12 testdata2 in yellow, 6 testdata3 in green, 4 testdata4 in 

purple, as shown in Figure 5J) over all MLEs are given in each panel. The errors correspond to the mean absolute (|Δ|) or 

the mean squared (Δ*) difference between the model and data over time. Third row shows models’ predictions (examples 

of P1 in blue) compared to their corresponding testdata1 (steps, gray), and in forth row for linear inputs (blue). Fifth row 

shows models predictions (examples of P2 in yellow) compared to testdata2 (gray). Sixth row shows models predictions 

(examples of P3 in green) compared to testdata3 (gray). Seventh row shows models predictions (examples of P4 in 

purple) compared to testdata4 (gray) upon a sinusoidal oscillatory stimulation that is given in Figure S3H. Shaded plots 

(red, blue, yellow, green, purple) present 10, 50, and 90 percentiles out of 5 independent fits of each model and their 

corresponding predictions over time. Quantifications of errors are given in Figure 5.  (F-G) Quantification (boxplots) of fit 

and prediction errors for five models of increasing complexity after training each model with (F) six D-Optimal kinetics and 

(G) four D-Optimal kinetics that are determined by minimizing the determinant of FIM-1 (see Transparent Methods). 
Horizontal dotted black line denotes the standard deviation of the simulated data, and fit/predictions errors (FE/PE) 

statistics are drawn from training and testing data similar to Figure 5J-5L. For each condition, the mean objective values 

over training data (red) and over all testing data (gray) are provided in each panel. 



  



 

Figure S6. Sensitivity analysis of parameters of the WT model trained upon diverse kinetics allows to screen for 
mutant responses. Related to Figure 6.  (A-D) Sensitivity analysis of WT model with respect to parameters categorizes 

model parameters into two main groups of insensitive (e.g.,  𝜆3 and 𝜆4 in A) or sensitive (𝜆15 and 𝜆16 in B). In (A and B), the 

vertical black dotted line indicates the fit value of the corresponding parameter (𝜆*), and objective function (Equation S1) 

is calculated around 𝜆* upon all kinetic inputs (C). For this analysis, five independent fits are used where WT model (D) is 

trained with six kinetic input data (indicated with stars in C, similar to training data in Figure 5J). (E) Sensitivity (𝑠), defined 

as the sum of curvature (𝜅) and change (derivative, 𝜑) of the objective function with respective to the parameter each 

integrated around 𝜆* within 20%. Sensitivity for each model parameter is quantified over 5 independent fits (E) upon all 

kinetic inputs. It is then marginalized (summed over all final concentrations of each kinetic type) and normalized to the 

largest sensitivity. (F) For representative parameters, 𝜆3 and 𝜆4 (corresponding to 𝝙b1, blue) and 𝜆15 and 𝜆16 

(corresponding to 𝝙K, purple), sensitivity analysis predicts insensitive and sensitive mutants, respectfully. (G-H) An 

analysis of sensitivity over 5 independent fits indicate that the results are independent of the fits. (G) An example of 

insensitive parameter (𝜆3) preserves this characteristic over all minima while 𝜆3* are different across them. (H) Similar 

result for sensitive parameters (𝜆15). In (G-H), thick lines are median and shaded area are the interquartile range of all 

final concentrations for each kinetic type.  Colors are according to the bar in (C). This result is consistent for all model 

parameters across independent fits.  

  



 

  



 

Figure S7. Kinetically diverse stimuli enable to predict mutants’ response dynamics. Related to Figure 7. (A-F) 

Synthetic signaling data simulated from mutated models upon kinetic inputs. Upon diverse kinetics (inset in A) and using 

parameter set 𝜦0 (Table S1), signaling activations are simulated from six mutants (given in Figure 6A) and each are 

compared to activation dynamics of WT strain (in gray) (Transparent Methods). Some mutations are insensitive that’s 

indistinguishable from the WT (A,C, 𝝙b1 and 𝝙b3) and others are sensitive (B,D-F, 𝝙b2, 𝝙K, UE, and OE). Sensitivity 

analysis of WT model with respect to its parameters predicted insensitive (e.g., 𝝙b1) versus sensitive (e.g., 𝝙K) mutants 

(Figure 6S). (G-L) Training the WT model on its responses to diverse kinetics enable to accurately predict its mutants’ 

responses. Example pathway activation predictions (predictions3 in green) are compared to their corresponding synthetic 

data for 𝝙b1 (G, blue), 𝝙b2 (H, red), 𝝙b1 (I, teal), WT (J, gray), UE (K, orange), OE (L, brown) under representative 𝑡- kinetic 

inputs. Mutant predictions (green) are generated under 𝜦* (5 independent best parameter sets constrained by fitting WT 

model to its kinetically diverse data, Figures 5B and 5J) while mutants synthetic data (blue, red, teal, orange, brown) are 

simulated under 𝜦0 (Table S1; Transparent Methods). Same comparison for the mutant 𝝙K is given in Figure 7D.  

Quantification of prediction (P1, P2, P3) errors over all 54 kinetics (Figure 1H) for each of the six mutants is given in 

Figure 7E.   



 

SUPPLMENTAL TABLES 
Table S1. Constrained parameter set that was used to simulate all the synthetic data in this paper from WT or 
mutant models. Related to Figure 1. 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

These parameters are resulted from fitting the WT model shown in Figure S1K to Hog1 nuclear localization data of two 
steps of 0.2M and 0.4M simultaneously (Figure S1M). Among 10 fits shown in Figure S1M, this parameter set is chosen 

based on the quality of the predictions of model for pathway activation dynamics.  

TRANSPARENT METHODS  
Modeling pathway as a dynamic ODE system.  
A dynamic Ordinary Differential Equations (ODE) system is used to model the pathway as an enzymatic regulatory 

network (Figure S1).  We developed a general framework that maps any arbitrary regulatory network to their 

corresponding ODE models implemented in MATLAB 2018a (Figures S1A-S1E).  The framework dynamically takes 

arbitrary number of regulatory nodes in any topology and generates all possible ODE models corresponding to all the 
possible permutations of the regulations in the network.  A convention used in Ref. (Ma et al., 2009) was adopted to 

formulate the rate equations of the model.  Each node in our model represents a protein (or group of proteins) that has a 

fixed total concentration that can be interconverted between active and inactive states via regulations from either of the 

kinetic inputs, fixed basal regulators, or other nodes of the network (Figure S1A-S1C).  All the regulations that a node 

receives are summed (Figure S1C), and each regulation (link) is modeled as a Michaelis-Menten function (Figure S1D).  

In the model, different numbers of nodes could act as sensors to receive extracellular stimulation and these regulators 

converge on a downstream node which in turn regulate a last node as the readout of the pathway. Each node receives a 
basal regulation from a source of a fixed concentration. This takes the opposite sign of the overall regulation the node 

receives from the input or internodes. Such regulation is considered for the role of constitutively active phosphatases and 

the autoregulation.  Finally, feedforward/feedback loop (FFL/FBL) regulations are considered in the most general form in 

our model, such that complex dynamic behaviors like adaptation are possible.  Any realization of such a network with 

basal regulations and internode regulations (including FFL or FFL regulation) can then be posed as a candidate model for 

fitting and predicting signaling data (see Figures 5 and S5 as an example).  



 

Despite the apparent topological complexity of signal transduction networks, we focus on a general 4-node topology for 

the following reasons: i) it is well supported that there might only be a limited number of recurrent network topologies 

(“circuit motifs”) that are capable of robustly executing biological functions (Milo et al., 2002; Shen-Orr et al., 2002; 

Wagner, 2005). ii) Despite a large number of proteins involved in the signaling networks, multiple of these proteins can be 
grouped together and considered a virtual node without losing significant generality on the overall pathway activation 

dynamics and cellular response. Indeed, model reduction methods have been of interest to simplify complex biological 

systems by exploiting system properties such as signaling activation time scales or parameters sensitivity analysis (Huang 

et al., 2010; Jeong et al., 2018). iii) Many signaling pathways are branched where two (or more) upstream multi-

component branches (consisting of the sensors, their phosphorelays, or kinases) are receiving (either the same or 

different) stimulations through different mechanisms, then converge at a common component, which in turn regulate a 

terminal signaling protein to trigger proper cellular response. This class of branched pathways in their core could be most 

broadly modeled as a 4-node topology. For example, in the Hog1 MAPK signaling pathway in S. cerevisiae, either of the 
SLN1 or SHO1 branches could be grouped into one virtual node given their fast (millisecond) activation dynamics before 

they converge on Pbs2 compared to the longer activation dynamics of the Hog1 kinase (that is in the order of 5 minutes) 

(Saito and Posas, 2012; Tatebayashi et al., 2015).  

Simulating synthetic pathway activation dynamics.  
To validate the modeling framework and more importantly to establish how model identification depends on the amount 

and the type of data, synthetic signaling activation dynamics was simulated from a known model in response to different 

kinetic stimulation profiles. The reason we simulate synthetic data for the part of this paper, in comparison to fully relying 

on  experimentally measured data, is that synthetic data enables to explore how diverse kinetic cell stimulations impacts 

model identifiability and predictive power, without the obfuscation and potential unknowns that come from modeling 

experimental data. Challenges in using experimental data could come due to uncertainties in the model, the data, the 
integration of both, or simply undiscovered biology. Even in the rare cases where both model and measurements may be 

available, there is still a lack of understanding on how to integrate modeling frameworks with available experimental data 

such that meaningful new predictions could be made. This is often mainly due to a lack of richness in the collected data 

that are used to constrain the models. On the other hand, three main reasons make simulating synthetic data ideal for our 

purpose; i) To study how model predictions depend on data features relies on availability of signaling dynamics over a 

wide range of kinetics and turning to synthetic data allows to simulate responses upon a wide range of perturbations. ii) 

Simulating data from a known model provides a ground truth to quantitatively benchmark the performance of a model 

identification framework while by using experimental data we don’t have an underlying known model to cross-check the 
results. iii) Similar to (ii) simulating synthetic data from a known model with known parameter values provides a reference 

point to fully parametrize the model. In addition, model performance could be tested in a wide range of parameter space. 

For these reasons we simulate signaling data under conditions that are biologically inspired and resemble experimental 

observations.  

 Among many models that equally fit and predict our Hog1 observation dynamics, a known network topology was 

chosen that could most broadly represent the class of ubiquitous branched signaling pathways and is parametrized 

through best fit to our available experimental Hog1 activation dynamics upon 0.2M and 0.4M NaCl (Figures S1A, and 

S1K-S1M). Using the resulting parameters (Table S1), synthetic pathway activation dynamics were generated that 
qualitatively and quantitatively recapitulate the experimental Hog1 pathway activation dynamics, such as activation levels, 

measurement noise, onset of activation, maximum activation time and perfect adaptation time (Figures S1 and S2). Upon 

each stimulation input, single cell trajectories with experimentally realistic noise (to capture cell to cell variability and 



 

measurement noise) were simulated (Figure S1E). We simulated 30 independent synthetic data sets for each condition 

under independent single-cell noise (Figure S2). We refer to these as 30 “synthetic replicates” of the same data that will 

be used to initiate 30 independent fits for each condition.  

 Data for a wider range of stimulations (20 different kinetics to 20 different final concentrations) was performed and 
conditions shown in Figure 1H were selected under the following criteria: i) to have a stimulation input profile that is 

physiologically feasible such that it could be generated and delivered to the cells in an experimental setup. Specifically, 

the solubility of the stimulus in the cell culture media and the operational rates range and precision of the syringe pumps 

determine the feasibility of generating a desired profile. All the cell stimulation profiles in this manuscript are 

physiologically feasible and experimentally achievable using the method presented in (Thiemicke et al., 2019). ii) To have 

a detectable pathway activation response (lower bound on the final concentration), and that the activation shows 

adaptation and does not saturate (higher bound on the final concentration). iii)  To have mutually exclusive (independent) 

data so that not any pair are overlapping over time for both stimulation inputs and the corresponding pathway responses. 
This ensures each implemented profile input stimulates the pathway uniquely over time. These criteria guide the 

generation of biologically inspired synthetic data sets that enable the quantitative investigation of whether and how the 

type and the amount of data affect model predictions and model identifiability.  

Fitting model to pathway activation data.  
We developed a customized optimization algorithm (implemented in MATLAB 2018a) to robustly and rigorously fit a given 

model to (any number of) pathway activation data to constrain the model parameters. One of the main challenges in 

parameter optimization is the quality and quantity of available experimental data (Figures 1 and S1). To deal with these 

limitations, we developed a combinatorial Genetic Algorithm (GA) that efficiently samples a large parameter space, 

combined with MATLAB’s built in routine fminsearch for finer tuning of the parameters at each minimum (Figure S1F). The 

algorithm dynamically takes a model and a set of training data (𝐷 = {𝑂)(𝑡), 𝑂*(𝑡)…	𝑂/(𝑡)}) and returns a set of parameter 

sets (𝜦*) that best fit the training data set (see next section in Transparent Methods). For every condition presented, 30 

independent fits were performed, each taking one of the 30 “synthetic replicates” of the simulated data along an 

independent random parameter initiation and resampling through the algorithm (Figure S1G-S1J). This ensures that 

results are statistically reproducible, that they are not artifacts of noise in the simulated data, and that they are 

independent of initial parameter guesses. All 30 fit optimizations converged as shown in Figure S1H (objective 

converges). Fit errors were calculated by comparing each of 30 fits to their corresponding “synthetic replicate” data. These 

errors were normalized with respect to the number of train data (𝑑) and the number of time points in each data set.  

Optimization algorithm.  
The algorithm is given in Figure S1F and runs for 21 iterations (𝑖 = {1,2, …21}), which is determined based on fits 

convergences similar to other algorithm parameters. Each iteration goes through two Genetic Algorithm (GA) calls each 

followed by a fminsearch (light blue boxes). The first GA and its following fminsearch uses only 25% (selected randomly) 

of timepoints of each dataset in the train data using (𝑂𝐵𝐽25%), which helps to escape the potential local minima. Then the 

second GA and its consequent fminsearch use all timepoints of the train data. We use an objective function as the sum 

squared errors between the model and data  

𝑂𝐵𝐽	 = 	∑ ∑ 01!($)45!($)6
"

*7!($)"
8
$9)

/
:9) ,       Equation (S1) 

where N is the number of timepoints in each dataset, d is the total number of datasets in the training data, Xn(t) is the 

model, On(t) is the mean, and sn(t) is the additive noise in the simulated data for dataset n. At the first 4 iterations (𝑖 ≤ 4) 

as well as at every 4th, the 1st GA takes 200 parameter sets sampled uniformly in [-3,+3] in the logarithmic scale (base 



 

10), and returns a parameter set, which feeds into its following fminsearch. The best parameter sets after the second 

fminsearch are collected through the iterations, and they are used to resample the 200 parameter sets for the 2nd GA, as 

well as for the 1st GA for 𝑖 > 4 that’s not every 4th (Figure S1F, purple boxes).  Each GA runs for 20 generations, passes 

on 1 elite parameter set at each generation, and uses a custom mutation function that uses the best sets from the last 

generation (parents) to guess some new parameter sets. Objective values are updated during the 2nd fminsearch if their 

value is improved. In total, 168,042 (= 2×21×20×200 + 2×21) number of parameter sets are evaluated for each model fit. 

Predicting pathway activation dynamics.  
From the best parameter sets resulted from fitting the model to a training dataset, the model was solved for 𝑥&(𝑡)	(Figure 

S1E) to simulate the pathway activation prediction under any given stimulation kinetic input.  All 30 independent 
predictions corresponding to 30 independent fits were computed using their corresponding best parameters sets (each of 

30 𝜦*s, Figures S1I and S1J). Prediction errors were quantified by comparing each of 30 predictions to their corresponding 

“synthetic replicate” data. Prediction errors were normalized with respect to the number of time points.  

Simulating synthetic data from mutant pathways.  
To evaluate the quality of the predictions upon different extracellular kinetic inputs in the presence of intracellular network 

perturbations, synthetic data was simulated under all kinetic stimulations from three main classes of mutations in the 
pathway for the true model, which are i) knockout mutations, ii) varying expression levels, and iii) inhibiting the activity of a 

protein (Figure 6A). Mutation data was simulated using the same set of parameters (𝜦0, Table S1) with which the WT 

pathway activation data was simulated. Three different knockout mutations were generated by eliminating each of the 

basal regulators (𝑏), 𝑏*, and	𝑏;) acting on 𝑥), 𝑥*, and	𝑥; nodes. Knockouts are done be setting their corresponding 

parameters values in the model to zero.  Another mutation (e.g., kinase dead) was generated where the activity of the last 

node (𝑥&) and thus its regulatory function in terms of feedback on the upstream node 𝑥* was eliminated by setting their 

corresponding parameters values in the model to zero. This mutation was expected to show elongated perfect adaptation 

compared to WT. Finally, overexpression (OE) and underexpression (UE) mutations were generated by changing the 

concentration of the basal regulator (𝑏&) acting on 𝑥&. Here 𝑏& was set to 0.05 (in UE) and 0.20 (in OE) compared to 𝑏& 

=0.10 of WT (a two-fold change for each). From each of the 6 mutated pathways of the true model, their corresponding 

activation dynamics, 𝑂(𝑡) 	∝ 𝑥&(𝑡), was simulated under all the kinetic stimulation inputs (shown in Figure 1H), and 

representative activation dynamics for each mutant are shown in Figures S7A-S7F.  

Predicting pathway activation dynamics for mutated pathways.  
For each of the 6 mutants, the best parameter sets (𝜦*) after training the WT model were used to generate the mutants’ 

corresponding predictions under each extracellular kinetic input (Figures 6A and S7). For this task, the 5 lowest objective 

𝜦* resulting from the 30 independent fits using GA-fminsearch given in Figure S1F-S1J are used. For all results presented 

in this study on mutants, all 𝜦*s are obtained by only training the WT pathway with its six dynamically different signaling 

responses; no mutant models or data were used for fitting. The WT model is given in Figure 5B and the training data is 

given in Figure 5J. 

Fisher Information Matrix (FIM) analysis to estimate parameter uncertainties.  
The Fisher information matrix (FIM) analysis was used to estimate expected parameter uncertainty for different 

experiment designs (Apgar et al., 2010; Fox and Munsky, 2019; Hagen et al., 2013; Jetka et al., 2018; Komorowski et al., 

2011). The FIM provides the amount of information an observable could provide around an unknown parameter, and it 
has been extensively used to estimate how well potential experiments will constrain model parameters (Apgar et al., 2008; 

Bandara et al., 2009; Fox and Munsky, 2019; Sinkoe and Hahn, 2017; Stewart-Ornstein et al., 2017). The FIM-1, the 



 

inverse of the FIM, known as the Cramer-Rao bound (CRB), is in particular useful as it provides a lower bound on the 

variance for any unbiased estimator of model parameters (Aitkin, 2010). 

 

For any given model (Equation S2, Figure S1C), sensitivity equations for all model parameters (Equation S3) are 

formulated and are solved along the model ODEs (Equation S4) using Jacobian matrix of the rate functions under the 

initial and boundary conditions given in Figure S1E. Logarithmic parametrization of FIM is then computed to estimate the 

relative sensitivity of the parameters.  

 From each model fit (to any set of train data), around each resulting best parameter set (𝜦*, Figure S1I) the FIM and 

its inverse, FIM-1, are computed upon all stimulation inputs. For each test data, standard deviation of the simulated 

activation dynamics over time, resulted from additive Gaussian noise that is independent of the mean activation (Figure 

S1E), is used to build the diagonal covariance matrix (Σ), which is used along computed sensitivities to calculate FIM 

(Equation S5). Several different metrics of the FIM, known as Optimality analysis, that are standard in model-guided 

experiment design are used to evaluate uncertainties (Fox and Munsky, 2019). These include A-Optimality, E-Optimality, 

T-Optimality, and D-Optimality, where the choice of the specific criteria depends on the application under the study. For 

example, E-Optimality corresponds to the smallest eigenvalue of the FIM, therefore gives a measure on how well an 

experiment design constrains the principle direction of parameter space that has the highest uncertainty.  D-optimality, 
which corresponds to the determinant of the FIM provides a measure of the volume of the uncertainty in parameter space, 

therefore is best suited for our purpose to compare different experiments in their ability to constrain the model parameters. 



 

We defined a custom optimality “W-Optimality” as a weighted sum over the uncertainties (∆.) estimated by FIM-1 for 

individual parameters of the model (Figures S4L-S4O). In particular, this optimality gives more weight to better 

constrained parameters and less weight to insensitive ones, therefore it could provide a more accurate estimate of a 

specific experiment design in constraining the parameters that matters most by excluding the contribution of the sloppy 

parameters.  

 Under models fit to five different experiment designs that have the same amount of data (six steps, six linears, six 

quadratics, six diverse kinetics of 0.30M or six diverse kinetics of 0.70M), the FIM is calculated upon all test data. Then, 
the resulted FIM or FIM-1 was used to estimate the uncertainty of the model parameters using optimality metrics described 

above. Uncertainty estimated by each optimality is summed over all of testdata1, testdata2, or testdata3 kinetic 

stimulations and the results for 10 independent fits are shown in Figures 4F, 4G and S4L-S4O.  The estimates of the 

model uncertainty for five different experiment designs computed using a representative kinetic input (t9, 0.7M) from 10 

independent fits are shown in Figures 4F-4G for D-Optimality. A comprehensive analysis of the model uncertainty for all 

optimality criteria described above and using all kinetic stimulations are given in Figures S4L-S4N.  

Maximum Likelihood Estimates (MLEs).  
We employed a Maximum Likelihood Estimate (MLE) to verify our FIM approach. For computational tractability of solving 

the model ODEs and the fact that the MLEs are difficult to converge at higher dimensions, we limited the FIM verification 

to four free parameters (the remaining parameters were fixed to their true values). 1000 trajectories were simulated for 
each experimental design (each training datasets) and Gaussian noise was added. For these 1000 simulated trajectories, 

1000 MLE fits (one MLE per trajectory) were initiated from a multivariate distribution centered at the true parameters and 

distributed with a covariance matrix equal to the inverse FIM. For MLEs, we employed the MATLAB built-in fminsearch 

with the objective function as the log-likelihood function (i.e., the sum of squared deviations) between the model and data 

(Equation S1). For each data set, the corresponding MLEs search was verified for convergence by checking that its final 

objective value was lower than that using either the true parameter set or any other parameter set found by fitting a 

different simulated data set.  MLE fits that did not converge were discarded. The MLE results are compared against FIM in 

Figures 4C-4E and S4J, S4K.  

Bayesian analysis.  
We employed a Bayesian analysis to quantify the posterior uncertainty of parameters for the homogenous inputs 

compared to those of the diverse input signals. The algorithm is as follows; under each training dataset, 10 parallel chains 
were initiated each sampling 5000 parameters sets with a uniform prior [-3, +3] in logarithmic space (base 10) under a 

randomized rng seed in MATALB. Using MATLAB parpool, the model ODEs (Figures S1A-S1E) were solved for the 

signaling activation upon training data inputs for all sampled parameters sets, and their corresponding objective values 

were quantified as the mean squared errors between the model and data (Equation S1). All parameter sets were weighted 

by their likelihoods and their weighted means and covariance were quantified. The likelihood function L(L) is defined as:  

𝐿(Λ) = 	 <=>	(45@A(B)/D)∑ <=>	(45@A(B)/D)
,         (Equation S6) 

where OBJ is given in Equation S1. The OBJ is divided by a constant factor (𝛼 = 300) to scale the likelihood function to 

avoid the dominance of few parameter sets.  From a multivariate distribution centered at the weighted mean parameters 
with weighted covariance matrix, 5000 parameters sets were resampled. Each chain was then evolved through 1000 

iterations of this procedure until the total objective and parameters statistics had converged. As an inertia in updating fit 

search, at each iteration (i), the mean (𝜇.) and the covariance matrix (Σ.) were weighted with their values from the 

previous iteration according to  

𝜇. = 0.5 ∗ 𝜇. + 0.5 ∗ 𝜇.4)               (Equation S7) 



 

	Σ. = 0.5 ∗ Σ. + 0.5 ∗ Σ.4),  

and during the first 500 iterations, a small term (equal to 0.001 for Figure 4E and 0.01 for Figures 4J-4L) was added to the 

diagonal of the covariance to help to explore the parameter space. From converged chains, prediction errors on novel 

input signals were then quantified using 100 parameters sets sampled according to the posterior distribution for each 

chain. The chains are kept under convergence criteria of <FE> <= d_std, where <FE> is the average fit error under all 

sampled parameters from the posterior upon all training data sets and d_std is the standard deviation of the data. The 

results are provided in Figures 4J-4L.  

Model Identification.  
Model identification was performed around a set of parameters set (Λ'$#F$) that was determined as following; Λ'$#F$ was 

obtained for simple models (M1 and M2) by parametrizing these models using the GA-fminsearch optimization algorithm 

in Figure S1F (Λ'$#F$ =	Λ∗	of lowest objective value out of 30 independent fits), while for the true and the more complex 

models (M3-M5), Λ'$#F$ was set to the true parameters (Λ() with small values (-3 in log10 scale) for the nested parameters 

in M4 and M5. For each condition, 60 MLEs were performed starting from parameter sets that were sampled from a 

multivariate distribution centered at Λ'$#F$ and distributed with a covariance matrix equal to the inverse FIM for that model. 

For computational tractability, this analysis was performed under odd free model parameters for both FIM calculations and 

MLEs (the remaining parameters were fixed to their true values). For MLEs of M1-M3, the goal objective was set as that 

of the true parameters in M3, and for MLEs of M4-M5, the goal objective was set as that of M3 MLEs. For M1-M2, the 
best 15 MLEs are kept, for M3 the converged parameter sets by checking that their final objective values were lower than 

that using the true parameter set. For M4-M5 the parameter sets with objective values at least as low as that of M3 MLEs 

that are converged were kept. From each model using the resulting parameter sets, predictions on novel input signals 

were then made. The results are provided in Figures 5 and S5.  

Mutation severity.  
For each mutant, mutation severity is computed as the sum of absolute difference in activation dynamics of a mutant from 

that of the WT over time upon all kinetic stimulations (Figure 6D). The mutation severity was marginalized for each kinetic 

type (summed over all final concentrations for each type kinetics), then normalized to the largest severity. 

Experiments, image processing, and data analysis to measure Hog1 dynamics.  
Yeast Saccharomyces cerevisiae BY4741 was used for time-lapse microscopy.  To assay the nuclear enrichment of Hog1 

in single cells over time in response to NaCl osmotic stress, a yellow-fluorescent protein (YFP) was tagged to the C-

terminus of endogenous Hog1 in BY4741 cells through homologous DNA recombination. A computer programmed 

syringe pump is used to control the osmatic stress over cells using a flowchamber (Thiemicke et al., 2019). The number of 
biological replicates (BR) and single cells presented in Figures 1B and 1C are as following; control has 6 BRs that have 6, 

22, 5, 21, 9, and 9 cells; step 0.2M has 3 BRs that have 22, 53, and 67 cells; step 0.4M has 3 BRs that have 23, 25, and 

42 cells; linear 0.4M 10min has 3 BRs that have 25, 9 and 45 single cells;  quadratic 0.4M 10min has 3 BRs that have 67, 

53 and 61 single cells.   
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