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Abstract

Background. Increasing demand for provision of care to stroke survivors creates challenges for health care planners.
A key concern is the optimal alignment of health care resources between provision of acute care, rehabilitation, and
among different segments of rehabilitation, including inpatient rehabilitation, early supported discharge (ESD), and
outpatient rehabilitation (OPR). We propose a novel application of discrete event simulation (DES) combined with a
genetic algorithm (GA) to identify the optimal configuration of rehabilitation that maximizes patient benefits subject
to finite health care resources. Design. Our stroke rehabilitation optimal model (sROM) combines DES and GA to
identify an optimal solution that minimizes wait time for each segment of rehabilitation by changing care capacity
across different segments. sROM is initiated by generating parameters for DES. GA is used to evaluate wait time
from DES. If wait time meets specified stopping criteria, the search process stops at a point at which optimal capacity
is reached. If not, capacity estimates are updated, and an additional iteration of the DES is run. To parameterize the
model, we standardized real-world data from medical records by fitting them into probability distributions. A meta-
analysis was conducted to determine the likelihood of stroke survivors flowing across rehabilitation segments.
Results. We predict that rehabilitation planners in Alberta, Canada, have the potential to improve services by increas-
ing capacity from 75 to 113 patients per day for ESD and from 101 to 143 patients per day for OPR. Compared with
the status quo, optimal capacity would provide ESD to 138 (s = 29.5) more survivors and OPR to 262 (s = 45.5)
more annually while having an estimated net annual cost savings of $25.45 (s = 15.02) million. Conclusions. The
combination of DES and GA can be used to estimate optimal service capacity.

Highlights

� We created a hybrid model combining a genetic algorithm and discrete event simulation to search for the
optimal configuration of health care service capacity that maximizes patient outcomes subject to finite health
system resources.

� We applied a probability distribution fitting process to standardize real-world data to probability
distributions. The process consists of choosing the distribution type and estimating the parameters of that
distribution that best reflects the data. Standardizing real-word data to a best-fitted distribution can increase
model generalizability.
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� In an illustrative study of stroke rehabilitation care, resource allocation to stroke rehabilitation services
under an optimal configuration allows provision of care to more stroke survivors who need services while
reducing wait time.

� Resources needed to expand rehabilitation services could be reallocated from the savings due to reduced wait
time in acute care units. In general, the predicted optimal configuration of stroke rehabilitation services is
associated with a net cost savings to the health care system.
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Improvements in stroke prevention and treatment
strategies have led to a decrease in stroke-related
mortality in recent decades.1,2 While improvements in
stroke survival are to be welcomed, there are knock-on
effects that health systems must address to ensure
surviving patients receive adequate care. With the
increasing number of stroke survivors now living at home
or in supportive living communities comes an increase in
years lived with disability1,3 and the corresponding
demand on poststroke care.4 Stroke is currently the
second leading contributing condition to disability-
adjusted life-years globally.2 Projected population growth
and a demographic transition to an aging population will
only exacerbate stroke’s relative impact on the population
and pressure on health systems to meet the need.

The rehabilitation care for stroke survivors typically
includes 1 or more of the following: inpatient reha-
bilitation (IPR), early supported discharge (ESD), and

outpatient rehabilitation (OPR). IPR is typically used
for patients with moderate functional deficits following
stroke. IPR typically involves 2 to 4 h of daily therapy
(physical therapy, occupational therapy, speech language
therapy). The inpatient duration of IPR varies substan-
tially around the world. In Alberta, an interdisciplinary
in-hospital rehabilitation program lasts approximately 6
to 8 wk. ESD is a program targeted at individuals with
mild stroke as defined by the Functional Independence
Measure (FIM)/alpha FIM with ongoing deficits.
Patients participating in ESD must have appropriate
home supports (often, a spouse/family member who can
support/supervise) as ESD involves interdisciplinary
rehabilitation 1 to 3 h per day within the home for a
time-limited period (often 4–8 wk) after a stroke. OPR is
an outpatient program in which patients attend a rehabi-
litation facility a few (2–3) days per week for 1 to 2 h to
receive therapy. Patients may attend this program after
an acute hospital admission if they have a very mild
stroke or after completion of an IPR or ESD program.

The increasing need for poststroke care has created
challenges for health care planners. There is a need to
develop and manage proper stroke care delivery models
that improve patient outcomes, within the resource con-
straints faced by decision makers. While the evidence
supports the clinical effectiveness of multidisciplinary
stroke rehabilitation care in abridging stroke-related dis-
ability,5–8 there are barriers to providing satisfactory
stroke rehabilitation.9,10 One of the most pertinent bar-
riers is the optimal alignment between the provisions of
acute care and stroke rehabilitation as well as among seg-
ments of rehabilitation care including IPR, ESD, and
OPR. Poor alignment can further stress already scarce
health resources. An obvious example is how the
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shortage of rehabilitation services often results in delays
in discharge causing longer-duration stays and occupa-
tion of hospital beds. In addition, limited out-of-hospital
rehabilitation services may mean that some patients who
have been discharged may be unable to access appropri-
ate care.11,12

Coping with these challenges requires health care
resource reallocation facilitated through informed deci-
sion making. While many health jurisdictions and
evidence-based guidelines give best practices in the provi-
sion of satisfactory stroke care,13–18 an appropriate ana-
lytic model is needed to determine an optimal resource
allocation. In this study, we develop a stroke rehabilita-
tion optimal model (sROM), integrating a genetic search
algorithm (GA) with a discrete event simulation (DES)
approach to identify stroke rehabilitation services config-
urations that maximize patient outcomes subject to finite
resources in a publicly funded health system. The opti-
mal problem is solved with GA and DES works as a tool
to determine patient flow across the rehabilitation care
segments and to evaluate the performance of the config-
uration determined by GA.

Our model was motivated by a need for service deliv-
ery reform of stroke rehabilitation in a single Canadian
province where we benefit from a publicly funded health
system, a structured stroke system of 17 hospitals around
the province, and a vertically integrated strategic clinical
network. This reform needs to better understand access,
efficiency, and flow to rehabilitation programs across the
province. We needed to ascertain what is currently avail-
able to stroke survivors and where the gaps in services
are in relation to the Canadian Stroke Best Practice
Recommendations.14 The service gaps will cause an
upstream effect, with patients waiting longer in costly
acute care beds, where they cannot receive intensive
stroke rehabilitation. There is a need to explore the opti-
mal balance between new investments and current prac-
tice for IPR, ESD, and OPR to inform and support
operational decisions. Our analysis offers a health eco-
nomic rationale for the policy requirement.

Although DES modeling has been extensively used to
support integrative planning for stroke care services19–22

and other health care sectors,23 to our knowledge, there
are limited publications regarding the use of hybridizing
simulation and optimization processes to search for an
optimal resource allocation in stroke care. A similar
example was the outpatient clinic layout problem in
which the authors proposed a hybrid framework for the
large-scale clinic layout problem by applying particle
swarm optimization, a metaheuristic algorithm, and
simulation.24 In the manufacturing setting, a study

applied the combination of GA and simulation to the
optimal problem.25

We developed sROM to address health policy con-
cerns of adding system value through informed, appro-
priate allocation of care delivery and considering the
tradeoff between patient outcomes and costs. The model
simulates the trajectory of care for poststroke patients
distributed across all available modes of rehabilitation
service and identifies the optimal rehabilitation config-
uration to maximize patient benefits subject to finite
health system resources. In this regard, the optimal solu-
tion minimizes the wait times for rehabilitation care and
the tradeoff between patient outcomes and additional
health system costs.

Methods

Analytic Approach

Patient flow. The patient flow across care segments is
presented in Figure 1. We used administrative data to
identify patients who had experienced an acute stroke
based on Heart and Stroke Foundation of Canada rec-
ommendations.26 We describe the patient flow as below.
Starting from the time of admission to acute stroke care,
the figure indicates the flow of the resulting cohort of stroke
survivors through rehabilitation care. Dependent upon dis-
ease severity, the stroke survivors receive a prescription of
IPR, ESD, or OPR at discharge from acute care. In this
mode, rehabilitation accessibility depends on the availabil-
ity of the care. If care is available, patients have immediate
access to the prescribed rehabilitation care; otherwise, they
are put on a wait list, during which the health system incurs
costs according to their current place and intensity of care.
All patients completing rehabilitation care end up at home
and have a likelihood of being readmitted to acute stroke
care or rehabilitation care.

Objective and decision variables. The sROM in nature is
an unconstraint optimization problem. We developed the
model that combined a GA with a DES to identify an
optimal capacity of rehabilitation care for patients who
received each care type alone or in combination. The
decision variables of the model are the capacities of each
type of service (IPR is defined as the number of beds;
both ESD and OPR are defined as patients per day).
With optimal capacity, the model will achieve its objec-
tive that minimizes the wait time for IPR, ESD, and
OPR. Note that we did not add a constraint (e.g., a bud-
get constraint) to the optimization problem, as the model
is intended to assess the implications of optimal
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configuration in health care delivery and the cost transfer
among acute care and rehabilitation segments without a
constraint. Given that the intention of the analysis is to
search for an optimal capacity that maximize patients’
access to rehabilitation care, the model objective is the
minimum wait time. The cost savings realized from the
model arise out of reduced length of stay (LOS) in expen-
sive acute care units.

Optimization process and model computation. The DES
acts as an objective function that maps the capacity and
control variables (e.g., probabilities of transitioning from
one care type to another) to wait time being minimized.
It was constructed to assess individual patients receiving
IPR, ESD, and/or OPR and the associated wait time
and health resources used. The DES is a stochastic com-
puter simulation that imitates real-world patient flow in
the therapeutic process from acute stroke care to IPR,
ESD, and/or OPR.27,28 This type of simulation provides
a broad capacity to follow individual patients in a partic-
ular time frame (in this analysis, 1 y). DES makes it pos-
sible to estimate wait times for stroke rehabilitation care,
LOS (for IPR) or therapeutic duration (for ESD and
OPR), and the associated cost for each patient entering
the rehabilitation care system. Clinically, doctors use the

severity of stroke to make decisions about who should
go where in the system (i.e., IPR v. ESD v. OPR). The
DES imitates the clinical decisions by applying data from
clinical studies to determine the transition probabilities.

The DES was designed and implemented following
recommendations of ISPOR-SMDM best practices.27

The process flow required by DES was patient flow
through rehabilitation segments (Figure 1). We created
subtrajectory modules for each segment of IPR, ESD,
and OPR that may facilitate model transparency. Key
model input parameters such as interarrival time; thera-
peutic times staying in IPR, ESD, or OPR; and likeli-
hood to each segment were collected from medical
records and the literature, as described in the ‘‘Model
Inputs’’ section below. The running time of the model is
365 d, with 200 replications. This running time period is
consistent with the yearly basis under which the medical
data were recorded and the model results are reported.
The health system under simulation has been running for
years, and this is the case that often requires the model
to run some time to stabilize the simulation process,
known as the warm-up period. We applied an alternative
way that preloads the entities with their existing charac-
teristics and event history. We applied the preloading
approach as it is appropriate for empirical data-based
input parameters.27

Figure 1 Flow chart of patients through rehabilitation care. assess:, assessment; dest, destination; ESD, early supported

discharge; IPR, inpatient rehabilitation; OPR, outpatient rehabilitation; rehab, rehabilitation. Patients who survive their stroke
are discharged from acute care to either IPR, ESD, or OPR, or to home without rehabilitation care, according to disease
severity. After the end of IPR or ESD, they could receive OPR prescription or are discharge to home.
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The GA is an evolutionary search algorithm.29 Designed
in the 1970s, the algorithm has been applied to solve a wide
range of complex optimization problems in engineering and
health system planning.30–35 As a computational method,
GA is a subset of machine learning and is a heuristic pro-
cess, identifying the top-ranked combinations to produce
‘‘offspring,’’ that is, a subset of capacity combinations, for
the next iteration. Each iteration will generate a capacity
combination ‘‘better’’ than the preceding one.

Figure 2 illustrates the optimization, a double-loop
simulation process. It initiates from the inner loop by
inputting parameters into DES based on assigned distri-
butions, such as the number of patients admitted to
acute stroke care, LOS, and therapeutic duration at each
type of care. The DES is conducted, with each model
run using values drawn from the distributions that define
each parameter. In the next step (i.e., outer loop), the
GA arbitrates outcomes from the DES; if the outcomes
meet specified stopping criteria (defined here as a wait
time of less than 1 d across all 3 care types), the GA
search process stops; otherwise, GA simultaneously
updates the capacities of IPR, ESD, and OPR and sends
them to DES to run the next iteration. Note that there
could be infinite combinations of capacity in theory that
minimize the wait time. We set GA to generate the low-
est capacity that achieves targeted wait time.

Features of sROM. Note that the DES models a rea-
listic health system in which there is limited space and
resources in each of the segments of rehabilitation care,
meaning a change in the capacity of any one segment
influences the surplus capacity and therefore wait times
of the other segments. This nature of mutual effect
requires a simultaneous update of the capacity for all 3
care segments in each iteration; in other words, the
model must search for a combination of capacity values

that would minimize the wait time of all 3 care types.
The search for such a combination, along with the time-
consuming DES, requires significant computing resources.
GA speeds up the search process and provides powerful
capacity for this type of optimization problem.36

We collected real-world data from medical administra-
tive records and fit the data to probability distributions.
This process generates fitted distributions of demand
parameters including the time to the patient’s arrival at
the acute care site and LOS. Patient factors, such as
stroke severity, which affect clinical judgment on the dis-
charge destination and rehabilitation type could not be
obtained from the administrative data. We therefore con-
ducted a meta-analysis to determine the likelihood for
stroke survivors in acute care units being discharged to
each rehabilitation segment. This information along with
the fitted probability distributions forms the basis of the
demand estimates.

The logic basis behind the model is that the optimal
configuration of rehabilitation care should be determined
by the supply and demand for the type of rehabilitation
care to achieve a targeted wait time. The analysis starts
from assessing the determinants of how the demand is
formed and then builds up to the relation between
demand determinants and capacity. The demand for
IPR, ESD, and OPR is determined by patients’ charac-
teristics such as disease severity at discharge from acute
care, along with the duration of time they stay in each
segment of rehabilitation care. The main demand deter-
minants include the number of patients with stroke, the
likelihood of their flow across each segment of rehabilita-
tion care, and the duration of time they stay in each type
of care. In this sense, the model produces an optimal
configuration of rehabilitation supply and predicted the
number of patients who can receive the care under the
optimal capacity.

Figure 2 Implementation chart of the optimization process. DES, discrete event simulation; ESD, early supported discharge;
IPR, inpatient rehabilitation; LOS, length of stay; OPR, outpatient rehabilitation.
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Model Validation

We developed the model following the best practice rec-
ommendations by ISPOR-SMDM.27 Although the
model is relatively complicated and difficult to validate
comprehensively, we conducted the model validation on
some aspects of AdViSHE criteria for validation of
health economic decision models.37 An expert panel con-
sisting of experts in stroke rehabilitation, health service
planning, health economics, and health administrative
data provided consultations during and after the model
development. Interactive discussions were held with the
panel who guided the model development and evaluated
the model in relation to conceptual design, assumption,
model construction, and input data validation. In addi-
tion to the evaluation, the panel reviewed the model
outcomes and assessed whether the outcomes are compa-
rable with real-world practices and the panel’s experi-
ences. The process of simulation and optimal search was
evaluated by a senior health economist at the authors’
institute.

Model Assumptions

The model was developed with the following
assumptions:

1. Stroke survivors discharged from acute stroke care
units and the LOS/therapeutic durations of IPR,
ESD, and/or OPR are the primary determinants of
demand for rehabilitation care.

2. The flow of stroke survivors across IPR, ESD, OPR,
or resident home without rehabilitation is judged by
clinical professionals based on medical need and
expected benefit from that type of care, with the elig-
ibility for the care type governed by clinical evidence.
This assumption rules out the influence of capacity
constraints on clinical judgement.

3. There is no capacity limitation for acute stroke care;
that is, all stroke patients entering the rehabilitation
model received full care leading up to model entry at
discharge.

4. Patients who have no access to rehabilitation care at
the time of prescription wait in queues, as the model
considers capacity limitation explicitly for each seg-
ment of rehabilitation care.

5. Patients on the wait list for IPR and ESD as well as
some on the wait list for OPR wait for rehabilitation
care in acute stroke care and therefore consume
acute care resources while waiting for transfer.

Model Inputs

Data sources. The analysis investigated data from the
Discharge Abstract Database (DAD) and the National
Rehabilitation Reporting System (NRS) for patients
admitted to acute stroke care and IPR for the four fiscal
years between April 1, 2014, and March 31, 2018, to
obtain estimates of the demand determinants. The NRS
records the medical information for patients receiving
IPR, and the DAD provides information on patients
admitted to acute stroke inpatient stay. Provincial medi-
cal records were used to estimate the supply of services
of ESD and OPR. Model inputs were estimated from the
described databases and are presented in Table 1.

Costs. Cost items considered in the model were of the
stroke acute care hospital stay and the rehabilitation case
of IPR, ESD, and OPR. The costs of IPR, ESD, and
OPR as well as the associated LOS or therapeutic dura-
tion (that is, the number of appointment-days a patient
uses OPR/ESD services) were collected from an internal
financial analysis and from the Canadian guidelines.14

The cost of acute care was based data from DAD. All
costs were converted to 2019 Canadian dollars using the
Consumer Price Index.

Study population and patient flow across rehabilitation
care types. The study population consists of patients
with acute stroke in the province of Alberta between fis-
cal years 2014/15 and 2017/18. We identified stroke
patients using the approach recommended by the Heart
and Stroke Foundation of Canada.38 Patients were
excluded if there were invalid admission or discharge
dates. Patients who died in acute stroke care and those
discharged to a long-term care facility from acute care
were also not included in the analysis.

The probabilities describing the flow of stroke survi-
vors across the types of rehabilitation care were esti-
mated using data from administrative data sources and
literature. We conducted a meta-analysis and generated
pooled data for the proportions of the survivors who
required IPR, ESD, or OPR at discharge from acute
stroke care. Estimates using data from DAD and NRS
indicated that, over the fiscal years between 2014/15 and
2017/18, there were 18,832 patients with stroke admitted
to acute stroke care; 3211 died in the hospital, leaving
15,621 who survived the acute care period. Among the
survivors, approximately 7244 were discharged to home,
without receiving rehabilitation prescription at discharge.
We assumed the remaining 8377 would have received a
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referral for rehabilitation care, and we broke down these
survivors into the IPR, ESD, or OPR groups by multi-
plying 8377 by the proportions calculated from the meta-
analysis. Table 2 presents the survivors discharged to
each type of rehabilitation care and the probabilities of
their flow.

It is worth noting that the survivors transferred to
each rehabilitation destination at the time of acute care

discharge are deemed to represent the theoretical need
for rehabilitation care for the following reasons. First,
the proportions of survivors in each segment of rehabili-
tation care over all survivors eligible for rehabilitation
care were derived from our meta-analysis that pooled
published studies,39–46 while survivors who were dis-
charged to home were identified from administrative medi-
cal records. Types of the identified published studies were

Table 1 Model Inputs Derived from Databases

Statistical Description of Patients with Stroke Admitted to Acute Care and IPR (FY 2014/15–2017/18)

Na
Min Median x Max s Distribution

Acute stroke care LOS (in days)
16,940 1 6 8.63 35 7.92 Negative binomial
Acute stroke care interarrival time (in days)
15,080 0 0.06 0.1 1.09 0.11 Exponential
Acute stroke care hospital cost per day
10,936 $246 $1,675 $1,980 $5,604 $1,072 Gamma
Acute stroke care physician cost per day
7,507 $ 0 $120 $143 $475 $101 Gamma
IPR LOS (in days)
2,562 1 42 46 114 23.09 Negative binomial
IPR interarrival time (in days)
2,835 0 0 0.51 6 0.91 Negative binomial

Summary Statistics of Visits and Time per Visit of OPR and ESD (2017/18)

Visits per Patient Minutes per Visit

Care Type Total Visits No. of Patients Min x Max Min x Max

OP 25,075 1,158 1 22 236 1 66 560
ESD 24,006 491 1 38 232 1 67 901

Therapeutic Intensity and Costs

LOS or Therapeutic Durationb Costc

Care Type Status Quo Canadian Guidelines x s

IPRd 46 $646.03 455.07
IPR therapiste $211.85 149.23
ESDf 38 20 $431.22 303.76
OPRg 22 50 $416.87 293.65
Community care $104.05 73.29

ESD, early supported discharge; FY, fiscal year; IPR, inpatient rehabilitation; LOS, length of stay; NRS, National Rehabilitation Reporting

System; OPR, outpatient rehabilitation; s, standard deviation; x, mean.
aThese are numbers of patients from whom the statistics were calculated.
bAlberta models: estimated from databases; Canadian guidelines:
cCost assumptions are based on a 2015 Calgary model and adjusted to 2019 prices.
dThe Alberta IPR LOS is from NRS (see above), and there was not an explicit recommendation for IPR LOS in the Canadian guidelines; the

analysis used the IPR LOS from NRS. The cost is per patient-day.
eIPR therapist cost is per day, at 60 min each day. This cost was calculated to include direct therapy and associated support services.
fThe Canadian guidelines suggested 2 to 5 d/wk for 4 to 5 wk (1); the analysis used 4 d for 5 wk, for a total of 20 visits. The cost is per visit, and

an ESD visit included 30 min of driving time.
gThe Canadian guidelines suggested 2 to 5 d/wk for 8 to 12 wk. The analysis used 5 d for 10 wks, for a total of 50 visits. The cost is per visit, and

an OPR or community care visit included 60 min of therapeutic time each visit.
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meta-analysis,44 systematic review of literature,43,45 and
observation study of health administrative data.39–42,46

Readers are referred to our report of health technology
assessment for a detailed review.47 The survivors included
in these studies may be clinically meaningful representa-
tives of those who can be expected to meet the eligibility
criteria for the relevant segments of rehabilitation care.
Second, patients with stroke were identified using a widely
accepted approach,26 and data were obtained from a high-
quality database (DAD).48,49 Therefore, we are confident
that the retrieved cohort represented the majority, if not
all, of stroke survivors who could benefit from rehabilita-
tion care.

Model Uncertainty

To enable decision makers to evaluate the credible range
of potential costs and outcomes, it is important to pro-
vide information regarding the degree of variability in
the potential costs and effectiveness. As discussed above,
the optimization model applied DES as an objective
function. A unique feature of the simulation is that it is
a stochastic process that mimics the impact of patient
flow across all therapeutic segments on the outputs.

Uncertainties in inputs were considered through random
draws from predetermined distributions.

The baseline analysis was conducted using inputs (see
Tables 1 and 2) and capacity values generated using the
GA. There was a discrepancy between existing and pre-
dicted optimal capacity as well as in the therapeutic
durations between current provincial practices and
Canadian stroke best practice recommendations.14 To
address the impact of the discrepancy on wait time and
system costs, the sensitivity analysis looked at 3 scenar-
ios: (1) optimal capacity: the GA was used to search
for the optimal capacity for each type of rehabilitation
care, based on existing LOS and therapeutic intensity
measures (that is, for IPR, the time a therapeutic pro-
fessional stayed with a patient in each therapy type and
LOS, or, for ESD/OPR, the therapeutic duration); 2)
status quo: existing capacity for IPR, ESD, and OPR
care and therapeutic intensity were applied as model
inputs; and 3) Canadian guidelines: existing provincial
capacity was applied but with LOS and therapeutic
intensity that followed the recommendations by the
Canadian guidelines.14 Note that the guidelines change
over time, and here we were working from recommen-
dations in the 2015 update.

Table 2 Probability of Patient Flow across Rehabilitation Care Types (FY 2014/15–2017/18)a

Referral from

To

Gestination

No. of

Patients to

Destination
a

Proportion of Total

No. of Acute

Care Survivors
b

Proportion of

Total No. of

Patients Eligible for

Rehab [95% CI] Source(s)

Acute stroke care IPR 3703 23.70% 44.20% [44.10, 44.30] (39–46) and

provincial

data

ESD 2262 14.48% 27.00% [26.10, 27.80]

OPR 2413 15.44% 31.20% [29.10, 33.40]

Home without

support

7244 46.37%

IPR ESD 40.48%

OPR 59.52% 59.52% [57.00, 62.00]

ESD OPR/community

rehabilitation

100.00% Provincial

data

OPR/community rehabilitation Home 100.00%

Readmission to

Acute care 5.1% Provincial

data

Rehabilitation care 4.00% 4.00% [1.50, 8.50] (42)

CI, confidence interval; ESD, early supported discharge; FY, fiscal year; IPR, inpatient rehabilitation; OPR, outpatient rehabilitation.
aThis table indicates patient flow from acute care to either IPR, ESD, or OPR and from IPR to either ESD or OPR, and so forth. The total

number of stroke survivors (i.e., 8377) was estimated based on health administrative data, whereas the proportion discharged to each

rehabilitation segment was estimated, based on disease severity, from published clinical evidence.
bDerived by multiplying the total number of patients needing rehabilitation care (i.e., 8377) by the proportion in each type of care (fifth column).
cThe proportions referred from acute stroke care to the relevant destinations were derived by dividing the number of patients discharged to each

type of care (third column) by the total number of acute care survivors (i.e., 15,621). Other proportion values were obtained from Alberta data

or the literature.
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The cost savings predicted in the model highly rely on
the assumption that patients on the waitlist for rehabili-
tation care incur the same costs as acute stroke care
patients. To test the impact of the assumption, we con-
ducted a sensitivity analysis by varying the wait time
cost.

Distribution Fitting

Patients’ interarrivals (numbers and times) to a hospital,
LOS, and associated costs all change in a random fash-
ion, and therefore, for the purposes of our analysis,
within our model we deemed each to be a ‘‘random
walk’’ that introduces uncertainty into health care deci-
sion making. Using probability distribution fitting on an
empirical data set is a scientific method of handling such
uncertainty. The aim of distribution fitting is to deter-
mine which probability distribution type best reflects the
empirical data sets (which, in this analysis, include
patient interarrival times, LOS, and associated costs).
More precisely, it is a process that consists of choosing
the distribution type and estimating the parameters of
that distribution so that the statistics of the empirical
data (for example, mean, variance) correspond as closely
as possible to those of the distribution. Using the R
package known as fitdistrplus, we first created the Cullen
and Frey graph,50 which presents a variety of candidate
distributions of a given data set, to visualize the distribu-
tion and to choose the candidates for further investiga-
tion. Next, we run the fit-distribution function that
generates distribution parameters and goodness-of-fit
measures of Akaike information criterion (AIC) and
Bayesian information criterion (BIC) and creates 4 plots
of Q-Q plot, P-P plot, distribution density, and cumula-
tive distribution function for visual assessment of good-
ness of fit. By considering the values of AIC and BIC
alongside the visual assessment, we determined, among
the candidate distributions, the distributions that best fit
the data sets.

Standardizing data to a probability distribution also
has the benefit of allowing a model to be applied in other
jurisdictions.51,52

Summary of Model Inputs

As shown in Table 1, acute stroke care LOS during the
examined period ranged from 1 to 35 d, with a mean
value of 8.63 (s = 7.92) d, and the mean costs per day for
acute stroke care hospital stay and associated physician
services were $1980 (s = $1072) and $143 (s = $101),
respectively. The frequency of patients arriving at acute

stroke care hospitals was described using interarrival
times, defined as the time (in days) between successive
arrivals. The 4-y data indicated a mean interarrival time
of approximately 0.10 (s = 0.11) d, meaning there was a
patient arrival at an acute care unit every 2.4 h.

The LOS for IPR during the examined period ranged
from 1 to 114 d, with a mean value of 45.64 (s = 23.09)
d. The 4-y data indicated a mean interarrival time of
approximately 0.515 (s = 0.91) d, meaning there was a
patient arrival at an IPR facility every 12.35 h (Table 1).
The summary of ESD and OPR services is also presented
in the table. On average, each patient had 38 ESD and
22 OPR visits and spent 66.8 and 66.2 min per visit,
respectively.

Our analysis indicated that the distributions of best fit
to the LOS, interarrival times, and cost data were, respec-
tively, the negative binomial distribution, the exponential
distribution, and the gamma distribution (see Table 1 for
fitted distribution parameters). The empirical density and
the histogram are presented in Supplementary Material,
Figures A.1 to A.5.

We used an R package known as fitdistrplus53 to fit
the distributions to the empirical data sets in our analy-
sis, simmer for DES,54 and GA for GA.55

Results

sROM generated an optimal combination of capacity
among 3 rehabilitation segments. The wait time for each
form of rehabilitation care would be close to zero if the
capacity at the optimal level was from an existing 75 to
113 patients per day for ESD and from an existing 101 to
143 patients per day for OPR. For IPR, there was limited
change between the number of existing and optimal beds;
for ESD and OPR, this implies an increase of 38 and 42
patients per day, respectively. The projected results from
the model under the 3 scenarios are presented in Table 3.

Figure 3 shows the number of patients predicted to
receive each type of rehabilitation care per year under
the 3 scenarios. For IPR, a small difference (less than 10)
in the number of patients who would receive the services
was predicted between the 3 scenarios. For ESD, the
model predicted that the optimal capacity scenario
would provide care to 138 (s = 29.05) more patients
than the status quo scenario. While the optimal capacity
scenario included more patients for each type of care
compared with the status quo, OPR had the largest dif-
ference of 262 (s = 44.65) more. The predicted wait
times for IPR, ESD, and OPR under the 3 scenarios are
shown in Figure 4. The optimal capacity scenario was
associated with the least amount of wait time (zero or

Yan et al. 9



T
a
b
le
3

P
ro
je
ct
ed

R
es
u
lt
s
fr
o
m

D
is
cr
et
e
E
v
en
t
S
im

u
la
ti
o
n
,
b
y
S
ce
n
a
ri
o

T
y
p
e
o
f
C
a
re

N
o
.
o
f
P
a
ti
en
ts

C
a
p
a
ci
ty

a

L
O
S

W
a
it
T
im

e
C
o
st
p
er

P
a
ti
en
t

S
u
m

(M
il
li
o
n
)

N
o
.
E
x
p
er
ie
n
ce
d

W
a
it
T
im

e

C
o
st
p
er

P
a
ti
en
t
d
u
e

to
W
a
it
T
im

eb
S
u
m

(M
il
li
o
n
)

d
u
e
to

W
a
it
T
im

e

x
s

x
s

x
s

x
s

x
s

x
s

x
s

S
ta
tu
s
q
u
o
(e
x
is
ti
n
g
ca
p
a
ci
ty
,
L
O
S
,
a
n
d
th
er
a
p
eu
ti
c
in
te
n
si
ty
)

A
cu
te

ca
re

3
6
8
1

5
9

In
fc

8
.4
8

7
.3
5

0
.0
0

0
.0
0

$
1
9
,0
4
2

$
3
3
5

$
7
0
.0
9

$
7
2
.8
7

E
S
D

(p
a
ti
en
t-
d
a
y
)

6
1
3

1
5

7
5

3
6
.7
4

1
9
.1
8

2
1
.6
0

1
8
.0
2

$
1
5
,8
2
4

$
5
9
1

$
9
.7
0

$
9
.1
8

4
7
7

$
5
8
,8
6
4

$
4
7
,8
6
9

$
2
8
.0
8

$
2
2
.8
3

In
p
a
ti
en
t
re
h
a
b
(b
ed
s)

8
1
8

2
6

1
4
0

4
3
.8
5

2
2
.6
8

0
.0
6

0
.2
1

$
3
7
,6
7
1

$
1
0
6
6

$
3
0
.8
1

$
2
5
.1
2

5
6

$
2
3
5
6

$
2
1
7
2

$
0
.1
3

$
0
.1
2

O
u
tp
a
ti
en
t
re
h
a
b
(p
a
ti
en
t-
d
a
y
)

1
4
4
2

2
4

1
0
1

2
1
.1
9

1
1
.4
5

1
0
.1
4

8
.4
4

$
6
1
9
2

$
1
6
1

$
8
.9
3

$
8
.6
3

1
1
2
3

$
2
7
,5
4
3

$
2
2
,5
1
9

$
1
.5
5

$
2
5
.2
9

O
p
ti
m
a
l
ca
p
a
ci
ty

(b
a
se
d
o
n
ex
is
ti
n
g
L
O
S
a
n
d
th
er
a
p
eu
ti
c
in
te
n
si
ty
)

A
cu
te

ca
re

in
cl
u
d
in
g
re
a
d
m
is
si
o
n

3
6
8
1

5
9

In
fc

8
.4
8

7
.3
5

0
.0
0

0
.0
0

$
1
9
,0
6
9

$
3
4
2

$
7
0
.3
3

$
7
3
.1
9

E
S
D

(p
a
ti
en
t-
d
a
y
)

7
5
1

2
5

1
1
3

3
6
.7
2

1
9
.2
1

0
.0
4
3

0
.1
6

$
1
5
,8
3
9

$
5
7
6

$
1
1
.9
0

$
1
1
.3
4

3
6

$
1
9
6
4

$
1
7
9
5

$
0
.0
7

$
0
.0
6

In
p
a
ti
en
t
re
h
a
b
(b
ed
s)

8
2
3

2
8

1
4
0

4
3
.7
7

2
2
.6
5

0
.0
7

0
.2
4

$
3
7
,5
3
4

$
1
1
5
1

$
3
0
.8
9

$
2
5
.0
7

5
0

$
2
4
0
7

$
2
0
8
0

$
0
.1
2

$
0
.1
0

O
u
tp
a
ti
en
t
re
h
a
b
(p
a
ti
en
t-
d
a
y
)

1
7
0
4

3
8

1
4
3

2
1
.1
7

1
1
.4
8

0
.0
3

0
.1
3

$
6
8
3

$
1
5
0

$
1
0
.5
4

$
1
0
.1
8

7
8

$
1
2
2
2

$
1
1
3
0

$
0
.0
0

$
0
.0
9

E
x
is
ti
n
g
ca
p
a
ci
ty

(b
a
se
d
o
n
re
co
m
m
en
d
ed

L
O
S
a
n
d
th
er
a
p
eu
ti
c
in
te
n
si
ty
)

A
cu
te

ca
re

3
6
8
1

5
9

In
fc

8
.4
9

7
.3
6

0
.0
0

—
$
1
9
,0
3
7

$
3
2
9

$
7
0
.0
7

$
7
2
.8
6

E
S
D

(p
a
ti
en
t-
d
a
y
)

7
8
8

2
8

7
5

1
9
.6
2

1
0
.7
3

0
.0
0

0
.0
0

$
8
4
6
0

$
3
0
2

$
6
.6
7

$
6
.4
6

6
$
6
3
8

$
5
2
0

$
0
.0
0

$
0
.0
0

In
p
a
ti
en
t
re
h
a
b
(b
ed
s)

8
1
4

3
1

1
4
0

4
3
.7
4

2
2
.7
0

0
.0
4
6

0
.1
6

$
3
7
,5
4
8

$
1
1
3
9

$
3
0
.5
6

$
2
4
.8
6

4
2

$
2
1
5
6

$
1
9
4
4

$
0
.0
9

$
0
.0
8

O
u
tp
a
ti
en
t
re
h
a
b
(p
a
ti
en
t-
d
a
y
)

6
3
7

1
4

1
0
1

4
7
.8
2

2
4
.6
6

6
7
.9
2

5
3
.6
6

$
1
4
,0
1
5

$
5
2
0

$
8
.9
3

$
8
.4
1

5
2
2

$
1
7
5
,5
4
6

$
1
4
4
,3
7
0

$
4
.5
8

$
7
5
.3
6

E
S
D
,
ea
rl
y
su
p
p
o
rt
ed

d
is
ch
a
rg
e;
In
f,
in
fi
n
it
e;
IP
R
,
in
p
a
ti
en
t
re
h
a
b
il
it
a
ti
o
n
;
L
O
S
,
le
n
g
th

o
f
st
a
y
;
N
,
n
u
m
b
er

o
f
p
a
ti
en
ts
;
O
P
R

o
u
tp
a
ti
en
t
re
h
a
b
il
it
a
ti
o
n
;
s,
st
a
n
d
a
rd

d
ev
ia
ti
o
n
;
x
,

m
ea
n
.

a
C
a
p
a
ci
ty

is
m
ea
su
re
d
in

th
e
n
u
m
b
er

o
f
b
ed
s
fo
r
IP
R

a
n
d
th
e
n
u
m
b
er

o
f
p
a
ti
en
ts
p
er

d
a
y
fo
r
E
S
D

a
n
d
O
P
R
.

b
P
a
ti
en
ts
w
a
it
in
g
fo
r
IP
R

a
n
d
E
S
D

a
re

a
ss
u
m
ed

to
st
a
y
in

a
cu
te

ca
re

b
ed
s,
a
n
d
th
er
ef
o
re
,
a
cu
te

ca
re

b
ea
rs

th
e
co
st
.
W
a
it
in
g
fo
r
O
P
R

is
n
o
t
co
st
le
ss
;
w
e
a
ss
u
m
ed

th
a
t
5
%

o
f
O
P
R

p
a
ti
en
ts
w
o
u
ld

w
a
it
fo
r
th
e
se
rv
ic
es

in
a
cu
te

ca
re

b
ed
s,
a
n
d
th
ei
r
co
st
s
w
er
e
in
cl
u
d
ed
.

c
B
ec
a
u
se

th
e
a
n
a
ly
si
s
fo
cu
se
s
o
n
re
h
a
b
il
it
a
ti
o
n
ca
re

o
f
st
ro
k
e,
it
is
a
ss
u
m
ed

th
er
e
is
en
o
u
g
h
ca
p
a
ci
ty

to
a
cc
o
m
m
o
d
a
te

a
ll
p
a
ti
en
ts
w
it
h
a
cu
te

st
ro
k
e.
T
h
e
a
n
a
ly
si
s
th
er
ef
o
re

a
ss
u
m
es

a
n
in
fi
n
it
e
n
u
m
b
er

o
f
b
ed
s
in

a
cu
te

st
ro
k
e
ca
re
.

10



close to zero days) for all 3 rehabilitation care segments,
while there was wait time for all 3 types under the status
quo scenario.

Figure 5 shows the predicted costs in millions under
the 3 scenarios. Because more patients would receive care
under the optimal capacity scenario, the annual costs
under this scenario were higher than the status quo sce-
nario, with a difference of $ 0.08 (s = 1.91) million,
$2.20 (s = 0.66) million, and $1.61 (s = 0.41) million
yearly for IPR, ESD, and OPR, respectively. These costs
can be interpreted as the investment of expanding the
rehabilitation care capacity. However, the cost specifi-
cally due to waiting for rehabilitation care was much
higher under the status quo scenario than under the opti-
mal capacity scenario, that is, $29.76 (s = 10.06) versus
0.20 (s = 0.14) million. After considering the cost of wait
time, in total, the cost was the lowest under the optimal
capacity scenario. When compared with the status quo
scenario, this suggests that increasing rehabilitation care
capacity would result in better outcomes (that is, more
patients receiving rehabilitation care) while having an
estimated annual cost savings of $25.45 (s = 15.02)

million. Figure A.6 in the Supplementary Material pre-
sents the results of a sensitivity analysis assessing the
impact of the cost in patients on the wait list. As showed
in the figure, given the assumption that the cost of
patients on the wait list is 20% more than that in base-
case analysis, the savings in annual cost will increase
from $25.45 (s = 15.02) to 31.48 (s = 18.08) million.

Figure 6 shows the gaps between the service provision
of IPR, ESD, and OPR care in fiscal year 2017/18 and
the projected numbers of patients accessing rehabilita-
tion care if the system were running at optimal capacity.
When compared with these observed numbers of 707,
491, and 1158 for IPR, ESD, and OPR, respectively, it is
predicted that there will be 823 (s = 25.0), 751 (s =
28.3), and 1704 (s = 37.8) patients receiving the care at
optimal capacity.

Discussion

Summary and Interpretation

In our model, we applied a GA-based approach to search
for optimal capacities of stroke rehabilitation ser-
vices.29,33,34 The object function was created using a
DES, which is a stochastic modeling approach widely
used in decision-support tools for health care manage-
ment.27,56 The simulation imitated the patient flow in the
system at given time intervals and captured the therapeutic
durations of the rehabilitation care and associated resource
utilization for each patient. This modeling approach is
flexible in estimating with supply and demand for rehabili-
tation care resources and is preferred for making appropri-
ate resource allocation decisions.19,28,57

The analysis considered a minimum wait time for each
segment of rehabilitation care as the priority, and so the
capacity of delivering rehabilitation care was deemed as
optimal if it generated a minimum wait time for each type
of rehabilitation care. Under optimal capacity, the cost
of rehabilitation care to the health system would be mini-
mum, given the assumption that patients on wait lists
would occupy beds in acute stroke care units. In other
words, a reduction in the wait time for rehabilitation care
would release scarce acute care resources.

The rationale for this assumption is that an insuffi-
cient capacity of rehabilitation care would result in extra
disease burden. This extra disease burden could come
from several sources; for example, some patients may
stay in acute care units while waiting for transfer to reha-
bilitation care, candidates for IPR who do not have
access to IPR will have a higher overall cost to the health
system than those who have received the care, and the
health outcomes of patients for whom access to

Figure 3 Number of patients receiving each segment of
rehabilitation care, by scenario. The values of standard
deviation under the optimal capacity, Alberta status quo, and
Canadian guidelines scenarios are 25.0, 14.8, and 28.3 for IPR;
28.3, 26.4, and 31.0 for ESD; and 37.8, 23.8, and 14.1 for OPR
(see Table 3). Under the Canadian guidelines scenario, fewer
patients receive OPR compared with ESD or IPR care because
the therapeutic duration is much longer under the guidelines’
recommendation than the Alberta status quo (50 v. 22 visits;
see Table 1). Similarly, more patients receive ESD care under
the Canadian guidelines scenario, likely due to the shorter
therapeutic duration recommended (20 v. 38 visits; see Table
1). ESD, early supported discharge; guidelines, Canadian
guidelines scenario; IPR, inpatient rehabilitation; OPR,
outpatient rehabilitation; optimal, optimal capacity scenario;
status quo, Alberta status quo scenario.
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rehabilitation care is delayed or who have received no
rehabilitation care will be worse compared with those
who have received timely access to rehabilitation care.

Based on the available data, estimating precisely all the
sources of potential costs is unfeasible. To simplify the
estimation, the analysis assumed that the cost for

Figure 5 Annual cost (in millions) of rehabilitation care, by type of care and scenario. Because the optimal capacity scenario
serves more patients, the annual costs for IPR, ESD, and OPR under the scenario are higher than other scenarios. These costs
can be interpreted as the investment of expanding the rehabilitation care capacity. When taking the cost of wait time into
account, the optimal capacity scenario is less costly. The figure indicates that the total cost under the Canadian guidelines
scenario is lower than the optimal capacity scenario; this situation likely occurs because the model assumed that waiting for OPR
incurs costs for only 5% of the patients, and patients under the Canadian guidelines scenario would have a much longer wait
time. If raising the proportion to 10% of referred patients who incur costs waiting for OPR, the optimal capacity scenario would
be $1.64 million less costly than the Canadian guidelines scenario. The standard deviations for these cost items are presented in
Table 3. ESD, early supported discharge; guidelines, Canadian guidelines scenario; IPR, inpatient rehabilitation; OPR,
outpatient rehabilitation; optimal, optimal capacity scenario; status quo, Alberta status quo scenario.

Figure 4 Wait-time (in days) for each type of rehabilitation care, by scenario. The standard deviations under the optimal
capacity, Alberta status quo, and Canadian guidelines scenarios are 0.24, 0.21, and 0.16 for IPR; 0.16, 18.02, and 0 for ESD; and
0.13, 8.44, and 53.66 for OPR (see Table 3). ESD, early supported discharge; guidelines, Canadian guidelines scenario; IPR,
inpatient rehabilitation; OPR, outpatient rehabilitation; optimal, optimal capacity scenario; status quo, Alberta status quo
scenario.

12 MDM Policy & Practice 7(2)



patients on a wait list for IPR or early support discharge
equaled the cost of when they were in acute stroke care.

For any given capacities of IPR, ESD, and OPR care,
DES can generate wait times for each of the 3 types of
care. The optimization process searches for possible
capacity combinations, known as search space and iden-
tifies the one that generates the minimum wait times.
Search methods using conventional techniques were not
feasible for our analysis because of the model complex-
ity. First, the wait time for 1 segment of rehabilitation
care is dependent on the capacity of not only that seg-
ment itself, but also the other 2 segments; this nature of
mutual dependence means the search space is very large.
Second, the stochastic nature of DES means that it takes
a longer time to run than a deterministic modeling
approach; searching for an optimal solution is a highly
time-consuming process. As an alternative to conven-
tional techniques, the analysis used GA to search for
optimal capacities.29,33,34

In an illustrative case study, we applied the model to
search for the optimal configuration of rehabilitation
care services in a Canadian province. Our model pre-
dicted that, under optimal capacity, more patients would
receive rehabilitation care than under existing provincial
capacity. Although providing rehabilitation care to these
extra patients would require resource allocation to thera-
peutic teams, the resulting decrease in resource consump-
tion in acute stroke care units due to the reduced wait
time for rehabilitation care would compensate this

reinvestment. Our model predicted a net cost savings
under optimal capacity, compared with the existing
delivery model. Reinvestment in stroke rehabilitation
care capacity would therefore be cost-effective and
would improve system performance, in that it would
provide care to more patients who need the services
while resulting in net cost savings. Part of the savings
experienced in the acute care units could potentially off-
set the reinvestment in rehabilitation care, as resources
needed to expand rehabilitation care could be reallocated
from the savings in the acute care units.

In addition, sROM may be applicable to other health
care services, for example, telerehabilitation. In the era
of the COVID-19 global pandemic, access to rehabilita-
tion has been limited, and building up the capacity for
telerehabilitation is of critical importance for providing
outpatient and community rehabilitation services.8,58–60

Lack of sufficient evidence and experience on stoke tele-
rehabilitation services is a challenge for evidence-based
resource allocation decisions. Our model, with appropri-
ate model adjustments to patient flow, patient outcomes,
and patient eligibility for telerehabilitation, may help to
predict demand for telerehabilitation services from
patients switching from community or OPR.

In the NRS database, there is a field that looks at
when the patient is ‘‘rehab ready,’’ and this often gets
compared with what date they officially get admitted to
IPR. The problem is that that field is notoriously wrong.
It is affected, for instance, but who deems that a patient
is rehab ready. Whereas someone in acute care might
think someone is rehab ready, the patient is nowhere
near ready. Alternatively, the person from the rehab hos-
pital may go only to the acute care site once a week to
determine if people are rehab ready, so a patient may be
rehab ready for almost a week before they are officially
deemed rehab ready.

Strengths and Caveats

The ability of a model to generate appropriate estimates
is reliant on how robust its input parameters are. The
advantages of sROM include the use of high-quality
real-world data for estimating key model parameters and
our combination of DES and GA approaches. The 4-y
data from DAD (which, as mentioned above, is well
known for being a high-quality data source)61 were
applied to estimate the number of patients admitted to
acute stroke care units; using data from multiple years
ensures both that the sample size is large enough and
that the data set is reliable. We then conducted rigorous
statistical analysis and determined what distributions fit

Figure 6 Observed and projected numbers of patients who
received IPR, ESD, and OPR (fiscal year 2017/18). The

observed patients are deterministic variables, while the
projected patients have taken parameter uncertainty into
account. This figure presents mean values, and the associated
standard deviation is 25.0, 28.3, and 37.8 for IPR, ESD, and
OPR, respectively. IPR, inpatient rehabilitation; ESD, early
supported discharge; OPR, outpatient rehabilitation.
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the data best. Perhaps standardizing real-word data to a
best-fitted distribution can increase our model’s general-
izability, as users in other jurisdictions can apply the
model by simply altering the distribution parameters that
fit the context of the jurisdiction. Although the current
analysis was performed at a provincial level, our model is
flexible and can be applied at a local or community level
by a simple adjustment to input parameters. It is impor-
tant to note that the generalizability does not imply that
overall provincial capacity can be estimated from the esti-
mates at local or community level, because, for instance, it
is often infeasible to apply spare capacity in one geo-
graphic location for demand in others that may be distant.

Our model should be interpreted in the light of the
following caveats. First, clinically, not everyone with a
stroke can necessarily go home to ESD because they
have a moderate versus a mild stroke, which is too diffi-
cult for a caregiver to provide enough care for them at
home. Clinical decisions about the discharge destinations
in the rehabilitation system (i.e., IPR v. ESD v. OPR)
relies typically on the severity of stroke. The administra-
tive data we collected has limited information on stroke
severity, and we therefore estimated patient flow across
the rehabilitation types using data collected from pub-
lished studies. Further study with the data on referrals to
IPR, ESD, and OPR would be sufficient to inform the
investment in new rehabilitation capacity. Second, the
time period for this model was pre-COVID, and we did
not consider the virtual rehabilitation services. Since
COVID, the province has seen an increase in virtual
rehabilitation services, which could be a consideration
going forward for inclusion. Third, it assumed that
patients who have no access to rehabilitation care at the
time of prescription will have to wait in queues, that
patients on the wait list will wait for that care in acute
stroke care units, and that the cost during this wait time
would be equal to that of acute hospital stay. Based on
the data available, it is difficult to accurately estimate
the cost for patients on the wait list. Fourth, in addition
to longer wait time, studies have previously reported that
limited access to rehabilitation care is less cost-effective
and more costly than full access.15,40–43,46 Predicted cost
savings in the model were realized only from reduced
LOS in acute care units due to prompt access to rehabili-
tation. Due to limited data available on the causal rela-
tionship between rehabilitation access and poststroke
downstream resources used as well as patient outcomes,
the downstream costs poststroke (e.g., postdischarge
emergency department visits) were not included in the
model. Excluding this piece of cost may underestimate
the cost savings from prompt access to rehabilitation

care. Our sensitivity analysis indicated that, should the
cost of patients on the wait list be 20% more than that
in base-case analysis, the savings in annual costs will
increase from $25.45 to $31.48 million. Furthermore,
patient outcomes of stroke survivors were not explicitly
assessed. Fifth, most patients on the wait list for OPR
will wait for the care in their home and consume fewer
health resources, but experts have suggested that some
stay in acute care hospitals while waiting. Because of lim-
ited data availability, it is difficult to estimate accurately
the proportion of patients on the OPR wait list who
would stay in acute care. Alternatively, we estimated the
wait-time cost by assuming 2 scenarios (5% and 10% of
patients waiting in acute care beds), all of which may not
reflect the actual proportion. Sixth, our analysis did not
include infrastructure investments such as the equipment
and buildings for accommodating extra rehabilitation
users, which could affect decision making.

Conclusion

Optimal allocation of health care resources is a complex
health policy consideration concerned with the tradeoff
between care delivery alignment and cost containing. We
proposed an optimization model that applies multiple
analytic techniques including best distribution fit to stan-
dardize real-world data, DES to simulate resources used
and GA to search for optimal service capacity. We
demonstrated sROM is a potentially useful way to deter-
mine optimal service capacity in an illustrative case study
of configurating stroke rehabilitation services. The opti-
mal configuration of stroke rehabilitation services pro-
duced by the model can improve the system value of
stroke rehabilitation in that it serves more stroke survi-
vors who need the care while being associated with sig-
nificant net cost savings.
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