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Photosynthetic microalgae have attracted significant attention as they can serve as
important sources for cosmetic, food and pharmaceutical products, industrial materials
and even biofuel biodiesels. However, current productivity of microalga-based processes
is still very low, which has restricted their scale-up application. In addition to various
efforts in strain improvement and cultivation optimization, it was proposed that the
productivity of microalga-based processes can also be increased using various chemicals
to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized
recent progresses in applying chemical triggers or enhancers to improve cell growth and
accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms,
these chemicals can be classified into four categories:chemicals regulating biosynthetic
pathways, chemicals inducing oxidative stress responses, phytohormones and analogs
regulating multiple aspects of microalgal metabolism, and chemicals directly as metabolic
precursors. Taken together, the early researches demonstrated that the use of chemical
stimulants could be a very effective and economical way to improve cell growth and
accumulation of high-value bioproducts in large-scale cultivation of microalgae.
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INTRODUCTION
Microalgae are autotrophic organisms, which utilize light energy,
and inorganic nutrients such as CO2, nitrogen and phosphorus,
to generate biomass and synthesize valuable metabolites. Some
algal species cultivated under stress conditions accumulate spe-
cific secondary metabolites (i.e., pigments, vitamins, or lipids),
which are high-value bioproducts that can be applied in the cos-
metic, food, or pharmaceutical sectors (Skjanes et al., 2013). In
contrast to higher plants that contain large amount of cellulose
and hemicellulose, larger portion of algal biomass can be directly
converted into biofuels or other high-value bioproducts via down-
stream processes (Wijffels et al., 2010; Vanthoor-Koopmans et al.,
2013; Yen et al., 2013). One well-known area of such applications is
microalgae-based biodiesel that has been proposed as good alter-
native to non-renewable fossil fuels (Sheehan et al., 1998), and
another area of commercial exploitation of microalgae is the pro-
duction of pharmaceutically and high-value industrial chemicals
(Leu and Boussiba, 2014).

Although microalgae are known to synthesize a variety of bio-
products with potential commercial values, only a few of them,
such as β-carotene and astaxanthin, have been produced at an
industry-scale (Ben-Amotz, 1995; Sheehan et al., 1998; Borow-
itzka, 2013), which may be due to the low productivity of these
products in the native microalgae and the difficulty in isolating
them by economically feasible means (Clarens et al., 2010; Norsker
et al., 2011; Razon and Tan, 2011; Soratana and Landis, 2011).
While significant efforts have been undertaken to select high-yield
strains, optimize cultivation and even modify the strains by genetic

engineering in the past decades (Suen et al., 1987; Cerón Garcìa
et al., 2005; Kilian et al., 2011), progress has yet to be fully satisfied.

As an alternative method to improve production or accu-
mulation of bioproducts, chemicals as metabolic triggers or
enhancers that are able to directly modulate cellular metabolism
have been proposed and applied in various commercially viable
microalgae. Unlike genetic modification, this approach relies
on phenotypic screening and does not require specific knowl-
edge of molecular targets in metabolic and catabolic pathways
involved in synthesis of bioproducts. In a recent study, Franz
et al. (2013) described a phenotypic screening of 42 chemi-
cals for their roles on lipid metabolism in microalgae, and
identified 12 chemicals that are capable of enhancing intra-
cellular lipid levels by >100%, with three compounds (i.e.,
epigallocatechin gallate, CDK2 inhibitor 2 and cycloheximide)
increasing intracellular lipids by 200–400% based on Nile Red
fluorescence intensity. In addition, the researchers took a fur-
ther step to verify these chemicals in large-scale cultures and
concluded that propyl gallate and butylated hydroxyanisole
could be used in large-scale applications considering the low
cost of the chemicals and the lipid content increases (Franz
et al., 2013), demonstrating that the application of chemi-
cal enhancer could be a valuable and practical approach in
addressing the low productivity issue with microalgae-based
processes. In this article, we review the recent progresses in
applying chemicals to improve cell growth and accumulation
of high-value bioproducts in microalgae (Table 1), with a
focus on the molecular mechanisms of their stimulatory roles.
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PHYTOHORMONES AND ANALOGS REGULATING MULTIPLE
ASPECTS OF METABOLISM
TARGETING ON BIOSYNTHETIC PATHWAYS OF HIGH-VALUE PRODUCTS
It has been established that plants have developed a broad
spectrum of molecular mechanisms to resist unfavorable envi-
ronmental perturbations (Ren et al., 2009). Microalgae that share
the evolutionary merits with plants also have mechanisms to
deal with various environmental stress. One well-studied exam-
ple is antioxidant pigment astaxanthin that plays a critical role in
response to various stress conditions, such as high light, salinity,
nutrient stress, and high carbon/nitrogen ratio, in chlorophyceae
Haematococcus pluvialis (Tripathi et al., 1999; Sarada et al., 2002).
The pathway of astaxanthin synthesis in H. pluvialis has been
deciphered (Grünewald et al., 2000; Vidhyavathi et al., 2008) and
several biosynthetic genes related to carotenoid have also been
cloned and characterized (Lotan and Hirschberg, 1995; Sun et al.,
1998; Linden, 1999; Steinbrenner and Linden, 2003; Huang
et al., 2006). To increase the astaxanthin productivity, chemicals
as metabolism enhancers were also evaluated recently. In one
study, Lu et al. (2010) reported that gibberellic acid (GA3) and
methyl jsmonate (MJ) played roles in regulating gene expres-
sion of bkts that catalyzes β-carotene to canthaxanthin in the
astaxanthin biosynthetic pathway (Lu et al., 2010). More recently,
Gao et al. (2012a,b, 2013a,b) found that chemicals jasmonic acid
(JA), salicylic acid (SA), GA3, and 2, 4-epibrassinolide (EBR)
can enhance astaxanthin production to 1.458 mg/L, 2.74 mg/L,
2.39 mg/L, 2.26 mg/L, respectively; and further analysis showed
that the enhancing mechanisms of chemicals were concentration-
dependent. For example, the results showed that 25 mg/L JA
up-regulated the transcriptional expression of pds, crtR-B, and lyc
of the astaxanthin biosynthetic pathway (>10-fold up-regulation)
the most, while 50 mg/L JA impacted the transcriptional expres-
sion of ipi-1, ipi-2, psy, crtR-B, and crtO than on pds, lyc, and
bkt2 more significantly (Gao et al., 2012b). Based on a correla-
tion analysis between their maximum mRNA transcripts of five
carotenoid genes and astaxanthin production, Li et al. (2010) pro-
posed that multiple regulatory mechanisms at transcriptional,
translational, and post-translational levels of astaxanthin biosyn-
thetic genes co-existed in controlling the overall carotenogenesis
process in H. pluvialis (Li et al., 2010). Interestingly, different
modes of regulation can be issued by the same chemical in H.
pluvialis, such as JA that up-regulated psy, pds, crtR-B, lyc, bkt,
and crtO genes at the transcriptional level, and up-regulated ipi-1
and ipi-2 genes at both transcriptional and post-transcriptional
levels, respectively; and SA up-regulated ipi-1, ipi-2, psy, crtR-
B, bkt, and crtO gene at the transcriptional level, and lyc at
the post-transcriptional level and pds at both levels, respectively
(Gao et al., 2012a,b).

INDUCING OXIDATIVE STRESS RESPONSES
Photosynthetic algae, like higher plants, generate reactive oxygen
species (ROS) through chloroplast photosynthesis and mitochon-
drial respiration under stress condition, and ROS will then to be
used as signal molecules to initiate production and accumula-
tion of many bioproducts (Asada, 1994). The effects of SA and
MJ on the antioxidant systems in H. pluvialis were investigated,
and the results showed that at low concentrations, 100 μM SA

increased astaxanthin content to 6.8-fold under low light (30 μmol
m−2 s−1), while 10 μM MJ showed marginal increase in astax-
anthin. However, at high concentration of 500 μM, both SA
and MJ reduced the growth of microalgae and inhibited astax-
anthin accumulation. Further mechanism analysis showed that
SA at high concentrations increased superoxide dismutase activity
to 4.5- and 3.3-fold and ascorbate peroxidase (APX) activity to
15.5- and 7.1-fold under low and high light, respectively, while
MJ increased catalase activity (1.4-fold) under high light and APX
activity (5.4-fold) under low light, suggesting the low astaxan-
thin accumulation may be due to the free radicals being scavenged
(Raman and Ravi, 2010).

REGULATING OTHER ASPECTS OF CELLULAR METABOLISM
Phytohormones are signal molecules synthetized by plants, and
capable of efficiently regulating cellular metabolism at very low
concentrations (Park et al., 2013). The application of phytohor-
mones to improve growth and productivity has been reported,
and the results with Chlorella species showed that use of natural
and synthetic auxins, as well as their precursors, have consider-
able stimulating effects on algal growth and biomass composition
(Czerpak et al., 1994, 1999; Czerpak and Bajguz, 1997; Hunt et al.,
2010). In addition, a combination of chemicals from within the
auxin family as well as with that of other families, such as 5 ppm
1-naphthaleneacetic acid (NAA) + 10 ppm GA3 + 1 ppm zeatin
(ZT), dramatically increased biomass productivity by 170% over
the control in Chlorella sorokiniana (Hunt et al., 2010). Another
study investigated the effects of phytohormones on microalgal
growth and oil accumulation for biodiesel production in Chlamy-
domonas reinhardtii. The results indicated that all five of the
tested phytohormones (i.e., indole-3-acetic acid, gibberellic acid,
kinetin, 1-triacontanol, and abscisic acid) promoted cell growth.
In particular, hormone treatment increased biomass production
by 54–69% relative to the control growth medium, demonstrating
their values in decreasing cost of commercial biodiesel production
(Park et al., 2013).

Brassinosteroids (BRs) are hydroxylated derivatives of 5-
cholestane and important plant growth regulators in multiple
developmental processes, such as cell division and cell elongation
(Bajguz and Czerpak, 1996; Bajguz and Tretyn, 2003). A recent
study found that BRs cooperated synergistically with auxins in
stimulating cell proliferation and endogenous accumulation of
proteins, chlorophylls, and monosaccharides in C. vulgaris (Bajguz
and Piotrowska-Niczyporuk, 2013).

In terms of the molecular mechanisms, auxins and their
analogs have been found to affect photosynthetic efficiency and
CO2 fixation in microalgae. For example, a study showed that
auxins had incentive effects on reactions of bonding CO2 to
1, 5-biphosphoribulose and photosynthetic phosphorylation. As
expected, the increase in intensity of photosynthesis reactions cor-
related well with higher contents of chlorophylls, pheophytins, and
total carotenoids in cells treated with indomethacin that shares
structural similarity with natural auxins (Piotrowska et al., 2008).
Other studies also indicated that low concentrations of synthetic
auxins, such as 2-(2,4-dichlorophenoxy) acetic acid (2,4-D), NAA
and 2-phenylacetic acid (PAA), stimulated the photosynthetic
rate and chlorophylls as well as carotenoids synthesis in green
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algae C. pyrenoidosa, Scenedesmus acuminatus, and S. qadricauda
(Czerpak et al., 1994, 1999, 2002; Wong, 2000).

Diamines and polyamines are polycation nitrogen compounds
presented in almost all prokaryotic and eukaryotic microorgan-
isms and belonged to specific cellular regulators of growth and
metabolism (Rayle and Cleland, 1992). The study showed that
in C. vulgaris treated with diamines and polyamines, the content
of monosaccharides, primary products of Calvin cycle were inten-
sively stimulated on 3 days of C. vulgaris culture, while chlorophyll
content was enhanced on 9 days of C. vulgaris culture, indicating
that the amines stimulated the dark phase of photosynthesis in the
young cells, and the light synthesis phase in aging cells, respectively
(Czerpak et al., 2003).

An acid growth theory has been proposed to explain the cell
elongation triggered by auxins in plant cells, which refers to the
auxin-induced acidification of free space in cell wall. The decrease
of pH enhances the plasticity of cell wall thus contributes to the
increased elongation rate of the plant tissues, and the phenomenon
is presumably related to the activation of membrane-binding pro-
ton pumps by auxin (Rayle and Cleland, 1992; Hobbie et al., 1994).
A study with algal C. vulgaris also showed that BR-stimulated cell
growth depended at least partly on acid growth theory (Bajguz
and Czerpak, 1996).

Cell phase and mitosis regulated by phytohormones was also
reported in microalgae. A recent study showed that NAA (30 ppm)
treatment stimulated higher biomass productivity between days 5
and 10 while PAA (5 ppm) treatment effected on the first 5 days in
in C. sorokiniana, suggesting that NAA might prolong exponential
phase and PAA might short initial lag phase before initiation of
cell division. The combination of NAA (5 ppm) + PAA (30 ppm)
showed 104% increase of biomass and demonstrated that auxins
enhanced biomass growth by reducing generation time thus con-
tributing to reducing generation time (Hunt et al., 2010). Another
study on the synchronous culture of C. pyrenoidosa showed that
the time to incipient cell division was reduced by GA and 6-
furfurylaminopurine, suggesting these two phytohormones had
played roles in eliminating the initial lag phase (Vance, 1987).
Similarly, the cell number and dry weight of C. vulgaris was also
significantly increased in response to optimal dose of IM (10−7

M) on a 5-day cultivation, suggesting that growth elicited by nat-
ural and synthetic auxins encompassed the stimulation of mitosis
(Piotrowska et al., 2008).

Chlorophyll pigment presents challenges to lipid extraction and
biodiesel conversion in downstream processing of algal biomass.
Hence, chemicals led to higher biomass and lower pigment pro-
duction will bring benefits. A study showed that the addition
of NAA (30 ppm) and PAA (5 ppm) significantly increased
biomass production, meanwhile decreased chlorophyll a synthesis
in C. sorokiniana (Hunt et al., 2010). In addition, auxins at high
concentrations can activate key regulatory enzyme in ethylene
biosynthesis (Grossmann, 2000), and large amount of ethylene
could then induce the degradation of photosynthetic pigments
(Sunohara and Matsumoto, 1997).

As for other regulatory functions, an exposure of C. vulgaris
cells to exogenous IM, synthetic analog of IAA, has been reported
to increase cellular DNA level up to 48% and 20–43% more
soluble proteins excreted to the environments (Piotrowska et al.,

2008); and cytokinins and allantoin (AT) were found to stimulate
carotenoids content by 185–190% and 124% in C. pyrenoidosa,
possibly due to their inhibition of oxidases and dehydrogenases
that are responsible for oxidation process and degradation of
chlorophylls and carotenoids (Czerpak and Bajguz, 1997).

OTHER CHEMICALS INDUCING OXIDATIVE STRESS
RESPONSES
Apart from phytohormones and analogs, other chemicals capable
of inducing oxidative response for enhanceing microalgal growth
and accumulation of high-value bioproducts were also investi-
gated. An early study showed that Fe2+, methylene blue (MB)
for singlet oxygen (1O2), methyl viologen (MV) for superoxide
anion radical (O2

−), H2O2, and 2,2′-azo-bis(2-amidinopropane)-
dihydrochloride (AAPH) for peroxy radical (AO2·), were capa-
ble of triggering astaxanthin biosynthesis in H. pluvialis, in
which Fe2+ possibly served as an HO· generator via an iron-
catalyzed Fenton reaction (Kobayashi et al., 1993). HO· or other
active oxygen species (1O2, O2

−, H2O2, and AO2·) might
then enhance carotenoid formation in algal cyst cells by par-
ticipating directly in the carotenogenic enzyme reactions as an
oxidizer or an H acceptor (Beyer and Kleinig, 1989). In a
recent study, Ip and Chen (2005) proposed sodium hypochlo-
rite (NaClO) as another oxygen species to enhance astaxanthin
production of C. zofingiensis in the heterotrophic cultivation
medium.

CHEMICALS AS METABOLIC PRECURSORS
An early study showed that an addition of 100 mM pyruvate into
the culture medium of C. zofingiensis enhanced the yield of astax-
anthin from 8.36 to 10.72 mg/L. In addition, citrate and malic
acid also had the similar stimulatory effects on the formation of
astaxanthin. Pyruvate might serve as a precursor for isopentenyl
pyrophosphate (IPP), the carotenoid precursor in C. zofingiensis
and H. pluvialis, while the stimulatory effects of citrate and malic
acid on astaxanthin biosynthesis in C. zofingiensis could be due to
their conversions to pyruvate (Chen et al., 2009). For docosahex-
aenoic acid (DHA) accumulation in Schizochytrium sp. HX-308,
an addition of 4 g/L malic acid to the culture medium at the rapid
lipid accumulation stage can increase DHA content of total fatty
acids from 35 to 60%. In addition to functioning as a possible
carbon precursor, it was speculated that malic acid added at rapid
lipid accumulation stage could activate malic enzyme activity and
enhance NADPH generating reaction from malic acid to pyruvate
(Ren et al., 2009). In addition, ethanol was also found to enhance
lipid content by 35% in Crypthecodinium cohnii, in which ethanol
can be converted to acetyl-CoA directly and in its metabolism
might generate additional reducing power NADPH for lipogenesis
(Lolke et al., 2005).

To aid in identifying metabolites associated with enhanced
production of bioproducts, metabolomics, a measurement, and
study of the small-molecule metabolites that constitute cel-
lular metabolic networks, has been recently applied. In one
study, Cheng et al. (2012) compared the metabolites between
two cyanobacteria Synechocystis sp. PCC6803 and Anabaena
sp. PCC 7120, and one microalga S. obliquus by gas chro-
matography coupled with time-of-flight mass spectrometry to
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detect important metabolites intricately tied to the lipid con-
tent in cyanobacteria and microalgae. The results showed that
nine metabolites including ethanolamine were associated with
the different lipid accumulation, and further study confirmed
that addition of exogenous ethanolamine (2 mmol/L) could
increase the lipid content by 22% in S. obliquus (Cheng et al.,
2012). In another study, Su et al. (2014) investigated mecha-
nism of astaxanthin induction under various stress conditions
using a metabolomics and network analysis, and found that sev-
eral metabolites, such as D-(+) altrose, D-ribose 5-phosphate,
L-glutamic acid, and α-ketoglutaric acid, were positively associ-
ated with the increased astaxanthin accumulation in H. pluvialis.
Although further confirmation is still needed, it was specu-
lated that the increased abundances of these metabolites might
contribute to the enhanced carbon flow into the astaxanthin
biosynthesis (Su et al., 2014). Taken together, these early stud-
ies demonstrated that metabolomics could be a valuable tool in

identifying potential metabolites for enhancing target production
in algae (Zhang et al., 2010). Effective mechanisms of the chemicals
were schemed in Figure 1.

CONCLUSION
To produce bioproducts form microalgae in an economically fea-
sible and sustainable way, one major hurdle that needs to be
overcome is the low productivity. To address the issues, efforts
have been undertaken to identify and apply chemical triggers
or enhancers to enhance cell growth and accumulation of bio-
products in microalgae, and the studies have demonstrated that
application of chemical triggers or enhancers could be a very
practical method in large-scale fermentation of microalgae. In
addition, the possible stimulatory mechanisms were also partially
deciphered for some of the chemicals. However, to uncover new
chemicals and expand the application, it is necessary to determine
more accurately the metabolic mechanisms related to cell growth,

FIGURE 1 | Scheme of enhancing mechanisms of chemicals on

microalgae. The major stimulatory mechanisms were indicted inside the cell.
(I) Chemicals targeting on biosynthetic pathways of high-value product, such
as JA, SA, GA, and EBR controlling the overall carotenogenesis process in H.
pluvialis; (II) Chemicals inducing oxidative stress responses, including direct
or indirect addition of active oxygen species and chemical triggers inducing
antioxidant production; (III) Phytohormones and analogs effecting on
photosynthetic efficiency, namely the light phase, including photosynthetic
phosphorylation, photosynthetic rate, and chlorophylls synthesis; (IV) Phyto-
hormones and analogs impacting CO2 fixation, namely the dark phase of

photosynthesis, such as diamines and polyamines stimulating production of
Calvin cycle; (V) Phytohormones and analogs encompassed acid growth
theory, alternating the plasticity of cell wall thus contributing to cell
elongation; (VI) Degradation of photosynthetic pigments due to large amount
of ethylene caused by high concentration of auxins; (VII) Phytohormones and
analogs regulating genome and protein expression, such as IM modulating
DNA and protein content in C. vulgaris; (VIII) Chemicals as metabolic
precursors, such as pyruvate serving as a precursor of carotenoid synthesis
thus stimulating the formation of astaxanthin and NADPH (led by malic acid)
acting as a precursor of fatty acid synthesis increasing DHA content.
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production and accumulation of bioproducts, and the modes
of action (MOA) of chemicals in microalgae. For this regard,
the application of various global-focused technologies, such as
genomics, proteomics, and metabolomics, could be valuable tools
in the future research.
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