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Abstract. Monitoring programs are an essential tool for assessing and informing conserva-
tion efforts but the methods used to gather monitoring data directly influence results. This pre-
sents a challenge to conservation professionals when deciding on existing data to inform a
given question. We illustrate the challenges of using monitoring data by comparing population
trends from two large-scale avian monitoring programs in the western United States: the
Breeding Bird Survey and Integrated Monitoring in Bird Conservation Regions programs. We
used publicly available data to compare trend trajectory between 2008 and 2015 for 148 species
across Colorado, Montana, and Wyoming. Trends were inconsistent for 62% of the compar-
isons, with species having opposite trends in 21 cases. The inconsistencies found within our spe-
cies comparisons reflect the inherent differences between program sampling design and
analytical approach. Periodically revisiting how and why we monitor natural resources is neces-
sary to advance conservation and management as the lessons learned from long-standing pro-
grams guide the development of more recent efforts. Our results emphasize that prior to
management actions and policy decisions, managers must be aware of both the sampling
design and appropriate ecological inference of any monitoring program.

Key words: adaptive management; decision-making; imperfect detection; monitoring; population trend;
sampling frame.

INTRODUCTION

Monitoring programs are often used by managers to
inform conservation. In addition to providing popula-
tion assessments, the challenges incurred in early moni-
toring efforts led to advancements in design and
methodology. For example, contemporary occupancy
models were developed to account for the imperfect
detection of elusive amphibians during surveys
(MacKenzie et al. 2002). These methods have subse-
quently been applied to many other taxa. Monitoring
can now support management hypotheses across spatial
scales by tracking species distributions and changes in
occupancy or abundance through time (hereafter

referred to as trends). However, all monitoring programs
are not equal with respect to their contributions to either
resolve scientific uncertainty or inform conservation
decisions. Before deriving biological inferences, it is
important to consider how the unique characteristics of
any monitoring program influence results.
Two multi-species monitoring programs provide infor-

mation on the population status of breeding landbirds
across the western United States. The North American
Breeding Bird Survey (BBS, 1966–present) is a United
States-wide federally supported effort that relies on an
extensive volunteer network (Sauer et al. 2013). A
recently initiated monitoring program, the Integrated
Monitoring in Bird Conservation Regions program
(IMBCR, 2008–present) employs trained observers to
monitor breeding landbirds across 13 states in the west-
ern United States (Pavlacky et al. 2017). Breeding Bird
Survey and IMBCR can provide information on bird
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populations at similar spatial scales, (Sauer et al. 2013,
Pavlacky et al. 2017), and one might expect changes in
bird populations to be measured comparably between
programs. However, each program employs distinct sam-
pling methods and analytical approaches, which could
predispose inconsistent results.

Distinguishing between sampling frame and analytical
methods

How sampling locations are selected across a survey
area affects trend estimates. For instance, a random
placement of surveys with respect to ecological bound-
aries, can by chance produce aggregated surveys and an
unbalanced sampling of a population across habitats. A
spatially balanced design can limit bias by ensuring, with
a large sample size, the full range of conditions experi-
enced by a species is sampled. Spatial balance can be
achieved when survey locations are dispersed evenly over
the extent of a static resource or jurisdiction (Stevens
and Olsen 2004). BBS employs a grid-based sampling
frame, with each grid cell covering a one degree latitude
by one degree longitude area (Bled et al. 2013). Within
each grid cell, the starting location and traveling direc-
tion of surveys are selected at random using road infras-
tructure and consist of 50 sampling points spaced 800 m
apart (Sauer et al. 2013). IMBCR uses a Generalized
Random Tessellation Stratified (GRTS) sampling frame
supporting the selection of sampling locations in a spa-
tially balanced manner across multiple management
boundaries (Pavlacky et al. 2017). A sampling location
is a 1-km2 plot containing 16 equally spaced survey
points (Pavlacky et al. 2017). The GRTS sampling frame
allows the number of sampling locations to vary across
years within a management boundary of interest, such
as a state, while maintaining spatial balance across the
boundary (Stevens and Olsen 2004).
Each program also approaches the analysis of popula-

tion counts differently. A central difference is how these
programs address the imperfect detection of individuals
or species during surveys. Imperfect detection occurs
when individuals or species are present during a survey
but not detected, creating bias that can obscure our abil-
ity to measure changes in a population or convey
changes where none occur (Thompson 2002). BBS uses
count data to estimate the annual population status of a
species calculated as an index, a description of a popula-
tion based on the raw number of observed individuals of
a species (Sauer et al. 2013). BBS population indices are
modeled to account for survey and year-specific varia-
tion in abundances, though without specifically model-
ing the detection rates of species across surveys (Sauer
et al. 2013). Population trends are estimated by BBS as
the ratio of abundance indices between the first and last
year of a time interval of interest (Sauer et al. 2013).
IMBCR provides population densities (birds per 1 km2)
across a range of geographic extents (Pavlacky et al.
2017). Available IMBCR abundance products are

estimated using conventional distance sampling (Tho-
mas et al. 2010), accounting for the imperfect detection
of species on an annual basis (details in Pavlacky et al.
2017). The annual abundance products currently avail-
able from IMBCR can be used to estimate population
trend (see Methods: Trend estimation).
In this paper, we illustrate how the inherent differences

between these two programs can generate differing pop-
ulation trends and highlight the complexities of wildlife
monitoring data used to support decision-making for
natural resource management. To mirror the decision
process of a wildlife manager, we use the current publicly
available products of BBS and IMBCR. We compare
population trends obtainable from BBS to trends we
estimate using annual abundance estimates provided by
IMBCR across three U.S. states: Colorado, Wyoming,
and Montana. We also examine the land cover composi-
tion of each program within each state to determine if
any categories of land cover and subsequently types of
bird species are surveyed disproportionately.

METHODS

Trend estimation

We compared statewide population trends, based on
trend direction and mean annual percent change,
between BBS and IMBCR for 148 species across three
states: Colorado (2008–2015, N = 132 species), Wyom-
ing (2009–2015, N = 112 species), and Montana (2010–
2015, N = 119 species). Length of trend interval varied
across states due to variation in the state-to-state imple-
mentation of IMBCR, which has expanded from Color-
ado since 2008. We also categorized bird species by their
preferred habitat (e.g., forest, grassland, and shrubland;
Rodewald 2015) and summarized trend comparisons for
those habitat groups.

BBS.—We obtained statewide BBS trend estimates read-
ily available from the U.S. Geological Survey Patuxent
Migratory Bird Research online trend analysis program
(Sauer et al. 2015). BBS trends are provided as an inter-
val-specific geometric mean, calculated as a ratio of two
annual abundance indices and expressed as a percentage
change per year with a 95% Bayesian credible interval
(Link and Sauer 2002, Sauer and Link 2011).

IMBCR.—We applied a state-space modeling approach
to assess population trends using publicly available
IMBCR annual abundance data available through the
Rocky Mountain Avian Data Center web interface (Bird
Conservancy of the Rockies 2018). We chose to use a
hierarchal state-space model to account for both obser-
vation error and temporal environmental stochasticity
as sources of variability in our trend estimates (Humbert
et al. 2009). We modeled trend as the mean instanta-
neous population growth rate using Markov chain
Monte Carlo in a Bayesian framework. By taking one
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minus the exponentiated instantaneous growth rate we
obtained the mean annual percentage change for each
species–state trend estimate. Specific details on model
structure and fitting can be found in Appendix S1.

Uncertainty and trend

Every resource manager or agency sets their own stan-
dards of acceptable levels of uncertainty for a given situ-
ation. In situations involving presently abundant or
widespread species, managers may wait for reduced
levels of uncertainty before initiating additional manage-
ment actions. For species of concern where any evidence
of a decline might prompt action, tolerance of uncer-
tainty may be higher as managers approach conserva-
tion decisions more cautiously. We evaluated the
uncertainty for each species trend using the posterior
distributions from our analysis of IMBCR data, and we
used the trend mean and credible intervals provided by
the BBS program to draw the BBS posteriors with the
assumption BBS trends were normally disturbed. We
made this assumption because mean BBS trend values
were centered within the credible intervals, which we
argue is evidence of a symmetrical distribution.
For each trend estimate, we determined sufficient evi-

dence for a trend occurred if ≥70% of the posterior dis-
tribution fell above or below zero. We chose our trend
acceptance cutoff of ≥70% support to illustrate a conser-
vation scenario where marginal evidence of a change in
population status would warrant further investigation
(e.g., a species of concern).

Hypotheses and predictions

Determining whether trends from BBS or IMBCR
more accurately reflect truth is a considerable challenge
because we do not know the true population changes.
However, the characteristics of BBS and IMBCRand sub-
sequent trend analyses provide an opportunity to test
specific hypotheses about how trend estimates from these
programs differ. We hypothesized the precision of
IMBCR trend estimates would be lower than BBS
because IMBCR explicitly accounts for the imperfect
detection of species in its abundance estimation. We pre-
dicted less precise IMBCR trend estimates would yield a
larger number of species with insufficient evidence for a
trend. For species with nonzero trends, we also predicted
the magnitude of the IMBCR trend estimates to be
greater than BBS estimates. This occurs because the
hypothesized wider posterior distributions (less precise
trend estimates) of IMBCR necessitates IMBCR trends to
be larger in absolute value to be a nonzero trend. In addi-
tion, species may differ in their detectability depending
upon the habitats they occupy. For example, tall or dense
vegetation can reduce the accuracy of observers during
surveying. Since BBS and IMBCR approach the handling
of imperfect detection differently, we predicted higher pro-
portion of trend inconsistencies between programs for

forest bird species in contrast to species associated with
more open habitats such as grassland and shrubland.

RESULTS

Spatial differences in program-level habitat coverage

We used Landfire existing vegetation type land cover
data (Landfire 2014) to categorize the land surveyed by
each program into three habitat categories: forest, grass-
land, and shrubland. Landfire data were sampled within
a 400-m buffer around each route (BBS) and sampling
plot (IMBCR). Specifically, we focused on surveys from
each program that consisted of a majority for a given
land cover category (e.g., ≥50% forest). We mapped the
extent of each program across habitats using a one
degree latitude by one degree longitude grid, as this is
the smallest spatial scale by which BBS is stratified (Bled
et al. 2013; Fig. 1). While some overlap between BBS
and IMBCR occurs across grassland, forest, and shrub-
land, IMBCR surveys a broader spatial extent within
each state across land cover categories (Fig. 1).

How do trends differ?

We considered trends between programs to differ
when species–state comparisons disagreed in direction
(increasing, decreasing, or no change). We detected 214
BBS trends and 114 IMBCR trends out of 363 trend
comparisons. Overall, 61% (223/363) of the species–state
combinations had trend inconsistencies between moni-
toring programs (Table 1). Most of the differences we
observed, 91% (202/223), occurred when one program
had a detectable trend while no trend was detected in the
other program (Table 1). When trends were detected in
both programs, estimates conflicting in direction (e.g.,
one positive and one negative) 33% of the time (21/63,
Table 1). Montana had the largest number of trend
differences (70%, 83/119) followed by Colorado (61%,
80/132), and Wyoming (54%, 60/112).
Across all states, species associated with forest habitat

had the highest degree of disagreement in trends (61%,
122/199), followed by shrubland (56%, 22/39), and grass-
land species (56%, 35/62). In Colorado, the largest
number of differences were found for forest birds (63%,
46/73) compared to grassland (45%, 9/20) shrubland spe-
cies (41%, 7/17). In Wyoming shrubland birds exhibited
the most trend inconsistencies (60%, 6/10) but inconsis-
tencies were also present at higher degrees for grassland
(58%, 11/19) and forest species (51%, 31/61). Of the three
states we examined, rates of trend differences in Mon-
tana were consistently higher across all habitat types
(shrubland 75%, 9/12; forest 69%, 45/65; grassland 65%,
15/23). For a full accounting of population trends for all
species–state combinations analyzed see Appendix S2:
Table S1.
We also found consistent variation between programs

in the estimated size of the proportional changes per
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year, hereafter trend magnitude. When comparing the
change in populations for species with detected trends,
we found a unimodal distribution of magnitudes from
BBS with most species exhibiting changes to their popu-
lations of �10% per year (Fig. 2). In contrast, the mag-
nitude of trends from IMBCR was bimodal and
typically more positive or more negative than BBS trend
counterparts (Fig. 2).

DISCUSSION

Fundamental program differences drive trend
inconsistencies

We found several inconsistencies in statewide trends
between BBS and IMBCR. Most trend differences
occurred when a trend was detected in one program but
not the other and we found more nonzero trends from

BBS. Supporting our initial predictions, IMBCR trend
estimates were more variable, resulting in fewer trends
detected while IMBCR trend estimates were generally
larger in magnitude than BBS trends (Fig. 2).
We compared changes in populations over short time

periods (at most 8 years) in which stochastic population
fluctuations could reduce the probability of detecting a
trend. It is also important to note, failing to detect a
trend can result from the accurate assessments of stable
populations or a lack of information. Nonetheless, when
trends were detected in both programs, one in three

TABLE 1. Trend comparison summaries for the North
American Breeding Bird Survey (BBS) and Integrated
Monitoring in Bird Conservation Regions (IMBCR)
programs.

BBS trend direction

IMBCR trend direction

Decreasing No trend Increasing

Decreasing 16 (4.4%) 58 (16.0%) 12 (3.3%)
No Trend 20 (5.5%) 98 (27.0%) 31 (8.5%)
Increasing 09 (2.5%) 93 (25.6%) 26 (7.2%)

Notes: Results are summarized over all 363 species trend
comparisons across Colorado, Montana, and Wyoming, USA.
Counts represent the number of species trend comparisons in
each trend category. The proportion of trends within each cate-
gory are shown in parentheses. Boldface type shows instances
where monitoring programs had opposite trends for species.

FIG. 2. Variation in trend magnitudes, represented as pro-
portional change per year, between North American Breeding
Bird Survey (BBS) and Integrated Monitoring in Bird Conser-
vation Regions (IMBCR) programs for all species with detected
trends.

FIG. 1. The sampling extent for surveys conducted by each monitoring program over the study period by three land cover types.
Plotted are 1° latitude by 1° longitude grid cells that contain surveys with coverage area consisting of a majority for the given land
cover category (e.g., surveys with ≥50% of sampled area consisting of forest).
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species comparisons resulted in opposite trends
(Table 2). The majority of comparisons in direct conflict
(13 of 21) were forest birds and these species had the
highest rate of trend inconsistencies overall (compared
to grassland and shrubland species). These findings sup-
port our prediction that, given that programs differ in
their handling of imperfect detection, trends would
diverge greatest for species occurring in habitats of more
complex vegetation structure.
Although both monitoring programs employ point-

based sampling to monitor bird populations, BBS sam-
pling is constrained to roadside surveys while IMBCR
is not (Sauer et al. 2013, Pavlacky et al. 2017). The
potential influence of roadside sampling on population
estimates has been a critique of BBS. A recent study in
Alaska compared short-term abundance-based BBS
trends (2003–2015) for 31 species to population trends
from off-road surveys and found concordant trends in
58% of the comparisons (25/43; Handel and Sauer
2017). Other research has shown that BBS surveys
along roads with more vehicular traffic can be associ-
ated with lower bird counts (Griffith et al. 2010), high-
lighting among other issues the problem of traffic noise
reducing an observer’s ability to accurately survey. Mis-
counting birds is an issue for observers of all skill levels.
Over-confident or untrained observers may count more
birds than are present (Campbell and Francis 2011),
resulting in buffered decline rates or overstated popula-
tion increases. Equally problematic is the issue of
undercounting, where failing to detect present species

can lead to exaggerated declines (Thompson 2002).
IMBCR explicitly incorporates the detection rates of
species on an annual basis when making population
estimates (Pavlacky et al. 2017). In contrast, BBS does
not model the detection rate for species, though BBS
does account for components of the detection process
(e.g., observer experience; Sauer et al. 2013). However,
we argue without explicitly accounting for imperfect
detection, the potential for bias in population estimates
remains (K�ery et al. 2009, Nichols et al. 2009, Schmidt
et al. 2013).
Before applying data from either BBS or IMBCR,

users should be aware that the spatial overlap between
these two programs is variable (Fig. 1). The IMBCR
program samples across a larger extent of the broad
habitat categories we examined: forest, grassland, and
shrubland (Fig. 1). Both programs attempt to account
for spatial variation in sampling via stratification to
inform state-level population estimates. To calculate a
state-level estimate, IMBCR sums stratum-level abun-
dance estimates weighted by the survey effort within
each stratum (Pavlacky et al. 2017). In contrast, the BBS
state-level composite abundance indices are sums of
unweighted stratum indices (Sauer et al. 2013), which
we argue may provide an avenue for spatial bias in
sampling to persist and influence composite estimates at
larger spatial scales. These findings coupled with the
potential of detection bias and roadside influences in
BBS highlight several plausible explanations for why
trend inconsistencies were found.

TABLE 2. Population trends represented as the mean annual proportional change for species with opposite trends between
monitoring programs.

Species Habitat association State BBS trend IMBCR trend

American Redstart (Setophaga ruticilla) F MT �0.03 (0.73) 0.77 (0.71)
Black-capped Chickadee (Poecile atricapillus) F CO 0.03 (0.78) �0.08 (0.74)
Cassin’s Finch (Carpodacus cassinii) F CO �0.03 (0.80) 0.17 (0.83)
Clark’s Nutcracker (Nucifraga columbiana) F MT 0.07 (0.78) �0.09 (0.74)
Common Grackle (Quiscalus quiscula) F CO 0.01 (0.74) �0.08 (0.70)
House Finch (Haemorhous mexicanus) O CO 0.01 (0.71) �0.06 (0.71)
House Wren (Troglodytes aedon) F MT 0.04 (0.97) �0.12 (0.75)
Least Flycatcher (Empidonax minimus) F WY �0.07 (0.88) 1.54 (0.79)
Mourning Dove (Zenaida macroura) F WY �0.01 (0.76) 0.13 (0.89)
Northern Rough-winged Swallow (Stelgidopteryx serripennis) O WY �0.04 (0.74) 1.18 (0.90)
Pine Grosbeak (Pinicola enucleator) F CO 0.03 (0.74) �0.09 (0.78)
Pinyon Jay (Gymnorhinus cyanocephalus) F CO �0.03 (0.85) 0.30 (0.70)
Ring-Necked Pheasant (Phasianus colchicus) G WY �0.02 (0.78) 0.53 (0.91)
Rock Wren (Salpinctes obsoletus) O CO �0.02 (0.83) 0.09 (0.86)
Savannah Sparrow (Passerculus sandwichensis) G CO 0.03 (0.91) �0.16 (0.76)
Turkey Vulture (Cathartes aura) O WY 0.06 (0.98) �0.12 (0.76)
Warbling Vireo (Vireo gilvus) F CO �0.01 (0.72) 0.09 (0.79)
White-breasted Nuthatch (Sitta carolinensis) F MT 0.06 (0.71) �0.26 (0.84)
Yellow Warbler (Setophaga petechia) F WY �0.01 (0.85) 0.22 (0.72)

Notes: Trend support, our measure of uncertainty, is calculated as the proportion of the trend posterior distribution that is the
same sign as the mean trend value and is listed in parentheses. Species habitat associations are also listed as forest (F), grassland
(G), and other (O, which includes species associated with more urban environments or with very narrow habitat requirements).
States are MT, Montana; CO, Colorado; and WY, Wyoming.

July 2019 DISENTANGLINGMONITORING PROGRAMS Article e01922; page 5
C
om

m
u
n
ica

tion



CONCLUSIONS

This is the first study to evaluate population trends
using IMBCR products and to our knowledge the first
comparison of trends from a large-scale multi-state
monitoring program to BBS trends. Although we exam-
ined aspects of BBS and IMBCR monitoring programs
specific to the states of Montana, Wyoming, and Color-
ado, we posit the lessons from this comparison are trans-
ferable to other monitoring programs. For example,
recent studies have also found trend inconsistencies
between BBS and eBird, an online-based citizen science
program (Walker and Taylor 2017, Horns et al. 2018).
Ultimately, we contend monitoring programs should

be developed precisely for the management programs
they support (Nichols and Williams 2006). BBS was cre-
ated with the goal to estimate population trends over
long periods of time and this type of data can identify
species in need of conservation measures. More research
is needed to investigate the influence of detection bias in
population trends provided by BBS, especially for use in
evaluating short-term changes to populations. Neverthe-
less, BBS has considerable value in the platform it deliv-
ers for public engagement for bird conservation as well
as a half-century of data providing an avenue to address
questions at substantial temporal and spatial scales
(Rosenberg et al. 2017).
On the other hand, IMBCR can address conservation

objectives across multiple management boundaries by
using a robust spatial design that allows for the compar-
ison of annual population estimates across spatial scales
(Pavlacky et al. 2017). This type of data is especially use-
ful when identifying how species respond to landscape
change via land management practices or natural distur-
bances like wildfire. Importantly, changes to habitat can
influence the abundance as well as the detection rates of
species. This underscores the strength of the IMBCR
design, which supports the explicit incorporation of
imperfect detection across species, management bound-
aries, and time (Pavlacky et al. 2017). As the longevity
of IMBCR increases, the program can also provide long-
term trend estimates. To conclude, our study emphasizes
the importance for monitoring programs to be continu-
ally evaluated in the context of sampling frame and sur-
vey methodology, as well as the analytical methods used.
Only through continued refinement and revisiting of
methods and analytical approaches, are we able to main-
tain the reliability of the information used to inform con-
servation and management.
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