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In parallel to the uncontrolled use of antibiotics, the emergence of multidrug-resistant
bacteria, like Acinetobacter baumannii, has posed a severe threat. A. baumannii
predominates in the nosocomial setting due to its ability to persist in hospitals and
survive antibiotic treatment, thereby eventually leading to an increasing prevalence and
mortality due to its infection. With the increasing spectra of drug resistance and the
incessant collapse of newly discovered antibiotics, new therapeutic countermeasures
have been in high demand. Hence, recent research has shown favouritism towards the
long-term solution of designing vaccines. Therefore, being a realistic alternative strategy to
combat this pathogen, anti-A. Baumannii vaccines research has continued unearthing
various antigens with variable results over the last decade. Again, other approaches,
including pan-genomics, subtractive proteomics, and reverse vaccination strategies, have
shown promise for identifying promiscuous core vaccine candidates that resulted in
chimeric vaccine constructs. In addition, the integration of basic knowledge of the
pathobiology of this drug-resistant bacteria has also facilitated the development of
effective multiantigen vaccines. As opposed to the conventional trial-and-error
approach, incorporating the in silico methods in recent studies, particularly network
analysis, has manifested a great promise in unearthing novel vaccine candidates from the
A. baumannii proteome. Some studies have used multiple A. baumannii data sources to
build the co-functional networks and analyze them by k-shell decomposition. Additionally,
Whole Genomic Protein Interactome (GPIN) analysis has utilized a rational approach for
identifying essential proteins and presenting them as vaccines effective enough to combat
the deadly pathogenic threats posed by A. baumannii. Others have identified multiple
immune nodes using network-based centrality measurements for synergistic antigen
combinations for different vaccination strategies. Protein-protein interactions have also
been inferenced utilizing structural approaches, such as molecular docking and molecular
dynamics simulation. Similar workflows and technologies were employed to unveil novel
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A. baumannii drug targets, with a similar trend in the increasing influx of in silico
techniques. This review integrates the latest knowledge on the development of A.
baumannii vaccines while highlighting the in silico methods as the future of such
exploratory research. In parallel, we also briefly summarize recent advancements in A.
baumannii drug target research.
Keywords: Acinetobacter baumannii, vaccine candidate, chimeric vaccine, ghost vaccine, drug target, In silico
methods, bioinformatics, interactome analysis
INTRODUCTION

As one of the dreadful ESKAPE pathogens, A. baumannii has
become a worldwide threat due to its resistance to a broad
spectrum of currently available drugs, especially in the
nosocomial setting (1). This is evident from the enormous
mortalities of immunocompromised cases (2, 3) by this
opportunistic pathogen. For example, a systematic statistical
meta-analysis published in The Lancet reported A. baumannii as
one of the six leading pathogens causing mortalities due to drug
resistance, of which carbapenem-resistant A. baumannii has
caused at least 50,000 deaths globally in the year 2019 (4).
Moreover, the healthcare crisis caused by A. baumannii,
especially the carbapenem-resistant strains, has peaked in
intensive care units (ICU) synchronously with the COVID-19
pandemic (5, 6). Therefore, in parallel to the relentless drug
resistance acquisition in A. baumannii towards currently
available antibacterial drugs, biomedical research in discovering
novel vaccines and drug targets remains exigent (7, 8).

Novel vaccine and drug development often require decades or
even centuries (9, 10). Reportedly, there are no vaccine candidates
for A. baumannii that have stepped into clinical trials (11–14). For
vaccine candidates to step into clinical studies, assessing their in vivo
reactogenicity and immunogenicity in animal models becomes
mandatory (15). In addition, the pharmacological and
toxicological properties of the targeted vaccine candidates are
investigated along with the preclinical studies. Additionally, drug
target selection, serving as the first and the most crucial step into
drug development, is always supported by prior knowledge and
robust characterisation of the proteins of interest or their related
biological pathways from the scientific literature (16). The
preliminary tests of a drug target’s viability include knockout and
expression studies of the targeted gene under stress, both for in vivo
and in vitro models (16, 17).

In the light of the rapid development in multi-omic methods,
as well as databases curated thereof, the contribution of
bioinformatics based studies has been ubiquitous in research
efforts on combating multidrug-resistant bacteria (18–21). For
instance, by analysing the bacterial genome or proteome via in
silico approaches such as protein interactome analysis, one can
unveil novel crucial proteins in the bacteria of interest, which can
potentially be vaccine candidates (22–24). With the increasing
entries in experimentally validated 3D structure database, scilicet
Protein Data Bank (PDB), the strength of interactions between
small molecules and proteins, as well as protein-protein
org 2
interactions, can now be predicted via in silico approaches
(25–27). Such a technique has also been employed in vaccine
research by computationally inferring peptide-binding onto
immune cell receptors (28). Almost similar methods are seen
in the in silico drug target research. For example, virtual
screening of large chemical databases on drug-target of interest
can unearth novel antibacterial drugs to be repurposed or further
developed (29, 30).

Exploring novel vaccine candidates or streamlining antigenic
peptide regions through experimental screening on animal
models is tremendously cost and time expensive; therefore,
bioinformatics tools in aiding in silico vaccine design have
been numerous and extensive (31, 32). Linear B- and T-cell
epitope prediction tools, such as EpiJen, MHCPred, and
NetMHC, have been prevalent and well-recognised as
upstream exploratory research in vaccine design (33–35).
Moreover, researchers have also developed bioinformatic tools
to predict the allergenicity and toxicity of vaccine candidates,
such as AllergenFP and ToxinPred, respectively (36, 37).

Over the years, bacteria have gained resistance to the newly
developed drugs at a breakneck speed. Consequently, recent
exploration favours escalating vaccine research rather than
unveiling novel drug targets (38). This review summarizes the
recent advancements in A. baumannii vaccine design (Figure 1).
In concordance with the recent studies’ heavy use of
computational methods, we accentuate bioinformatics as the
future of exploratory research in shepherding drug target
selection and vaccine candidature and the multitudinous influx
of novel insights into its implication. Moreover, we also briefly
discuss A. baumannii drug target research, which acts as a
temporary coping while we wait for the new vaccines to arrive.
INFERRING NOVEL VACCINE
CANDIDATES FROM
LABORATORY MEANS

Conventional means of inferring novel vaccine candidates
require prior established knowledge of the proteins or
metabolic pathways of interest and often involve in-depth
characterisation of the potential proteins of interest. In
addition, deducing new vaccine candidates via laboratory
means often involves animal models; thus, initial molecular
characterisation is almost necessary (39).
May 2022 | Volume 13 | Article 900509
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Advancements in Vaccines Derived From
Whole-Cell or Anatomical Components
Live vaccines are the most immunologically representative units
in establishing vaccination despite posing a danger in regaining
infectivity (40). Sequential intraperitoneal immunisation, with
sub-lethal doses of different A. baumannii strains, has elicited
antibody responses towards antigens of multiple strains in CD1
mice (41). Furthermore, a study on virulence switch in A.
baumannii has highlighted the overexpression of a TetR-type
transcriptional regulator, ABUW_1645, that facilitated the
transformation of the cellular stage from virulent opaque
(VIR-O) to avirulent translucent (AV-T) while proposing the
potential of ABUW_1645-overexpressing A. baumannii to be
utilized as a live-attenuated vaccine (42).

Bacterial outer membrane vesicle (OMV) has been an
attractive vaccine candidate as it contains the outer membrane
proteins (43). As lipopolysaccharide (LPS) is abundant in OMV,
a study on the efficacy of OMV vaccine on LPS-deficit A.
baumannii has disproved the effect of LPS on OMV
production through electron microscopy (44, 45). In addition,
the study also reported similar immunisation strength between
OMV isolated from wild-type and purified LPS supplemented
LPS-deficit A. baumannii by conferring complete protection to
the C57BL/6 mouse model (44).

Like inactivated vaccines, bacterial ghosts are gram-negative
bacteria depleted of their cytoplasmic and genetic constituents
through E-mediated lysis, leaving only the cell envelopes (46). A
study on the effectiveness of A. baumannii ghosts in conferring
vaccinated protections in Sprague-Dawley rats has suggested
promising results in terms of effectiveness and safety on
Frontiers in Immunology | www.frontiersin.org 3
various administration methods, including subcutaneous,
intramuscular, and intraperitoneal injections (47).

The replicative ability of bacteria can be disabled through the
depletion of nucleic acids via gamma radiation exposure, with
the protection by a specific antioxidant cocktail, and hence
eventuating whole-cell inactivated vaccine with better
immunogenicity than chemically inactivated vaccines (48–50).
Studies showed that intranasal administration of radiation-
inactivated A. baumannii grown via either planktonic cultures
in rich media or biofilm cultures in static cultures underneath
M9 media had conferred good protection in both healthy and
neutropenic mouse models (51).

Novel Breakthroughs in Subunit
Vaccine Research
Due to their safety and stable nature in various conditions,
subunit vaccines have been ubiquitous in vaccine design
studies (52, 53). Due to the crucial role of Omp34 in
enhancing A. baumannii virulence and fitness, the Omp34
subunit vaccine has been proposed and reported to be
protective in the BALB/c mouse model (54). The 263 amino
acid long C-terminal end of an essential A. baumannii virulence
factor, Ata (rcAta263), has elicited immune protection via
subcutaneous, intraperitoneal, and intranasal challenge in the
BALB/c mouse model (55). The combination of two
recombinant pilus proteins, namely CsuA/B and FimA,
administered via subcutaneous injection, has been reported to
confer partial (62%) protection in the BALB/c mouse model (56).
The subcutaneous co-immunisation of two outer membrane
serum resistance factors, CipA and PBP-7/8, has also conferred
FIGURE 1 | Timeline of the development of vaccines and drug target research of A. baumannii.
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80% protection in the C57BL/6 mouse model from the lethal
dose A. baumannii challenge (39). Moreover, intramuscular
injection and passive immunisation of a 711-aa long C-
terminal fragment of A. baumannii Blp1 protein have
protected the lethal challenge in the BALB/c mouse model (57).

As a crucial component on bacterial surfaces, polysaccharides
serve as attractive targets for vaccine design. As polysaccharides
alone do not elicit an adequate immune response, the
conjugation of carrier proteins is often required (58). Upon
misuse of antibiotics, A. baumannii can produce capsular
polysaccharides (CPS) to enhance antibiotic resistance and
virulence (59). By introducing the O-glycosylation system from
Neisseria into A. baumannii, a resulting in vivo produced
bioconjugated vaccine, having A. baumannii CPS and
recombinant cholera toxin B subunit (CTB4573C) and
aluminium hydroxide adjuvant, was reported to manifest good
protection and safety in the BALB/c mouse model (60).

By injecting DNA coding for immunogenic antigens into the
host via a plasmid, immune protection from vaccination can be
expected through antigenic expression by host cells (61).
Intramuscular injection of DNA vaccine encoding A. baumannii
OmpA and Pal, adjuvanted by CpG oligodeoxynucleotides (CpG
ODN), into C57BL/6 mice exhibited immunological protection
against clinical strains of A. baumannii, driven by adaptive
immune response activation (62). Another study has also
designed and proposed the A. baumannii OmpA-derived DNA
vaccine, pBudCE4.1-ompA, as protective against lethal-dose
challenge in the BALB/c mouse model (63, 64). Intramuscular
injection of nlpA DNA vaccine into BALB/c mouse model has also
successfully elicited an immune response in a study by Hashemzehi
et al. (65). With the recently claimed success of the mRNA vaccine
in controlling the coronavirus disease 2019 (COVID-19) pandemic,
one can explore the feasibility of the A. baumannii mRNA vaccine
in the future (66).

Due to the high conservation of specific essential genes across
different bacterial species, cross-reactivity of subunit vaccines
derived from these genetic sections occurs. For example, a study
utilizing the Swiss albino mouse model showed the feasibility of
P. aeruginosa N-terminal OprF (OprF25-200) adjuvanted with
Bacillus Calmette-Guerin (BCG) and aluminium hydroxide in
conferring cross-reactive immunisation to both P. aeruginosa
and A. baumannii (67). Another study proposed recombinant A.
baumannii BamA (rAbBamA) protein as a potential vaccine
candidate via intramuscular challenge on C57/BL6 mouse model
adjuvanted by aluminium hydroxide, while reported potential
cross-reactivity across K. pneumoniae and E. coli via
immunoblot assay of anti-rAbBamA (68).
IN-SILICO METHODS IN DRIVING
EXPLORATORY RESEARCH
ON NOVEL VACCINES

With the rapid advancement of bioinformatics in extracting and
predicting multi-omic information, as well as the expansion of
proteomic and genomic databases, research attempts in
Frontiers in Immunology | www.frontiersin.org 4
unearthing vital proteins as novel vaccine candidates have
become meagre cost and increasingly prevalent (69–71). By
mapping small protein interactomes (SPIN) of virulent factors,
vaccine candidates, and key factors retrieved from literature onto
the whole genome protein interactome (GPIN), a study has
reported crucial proteins via co-functional network analysis
and k-shell decomposition, which can serve as potential
vaccine candidates (22). Besides, a theoretical study on
hypothetical proteins (HPs) in 30 multidrug-resistant A.
baumannii strains has proposed 4 HPs as potential vaccine
candidates via in silico immunological analyses (72). In
addition, utilizing in silico functional analysis, the authors also
proposed the druggability of 7 HPs. Upstream subtractive
proteomics, combined with linear T and B cell epitopes
prediction, structural screening with immune cell receptors,
and druggability analysis, have finalised a chimeric subunit
vaccine candidate derived from TolC and MrcB in A.
baumannii, as well as 13 potentially druggable proteins (73).

Immunoinformatics and Proteomics in
Vaccine Design
Bioinformatics approaches, especially proteomics, have been
extensively applied in recent studies by ushering the mining of
core protein candidates in downstream vaccine design and
modifications (Figure 2). For instance, applying pan genomics
in inferring gene conservation across species or strains (74),
predicting immunogenicity in proteins and inferring epitopes
through reverse vaccinology (75), and inferring essential proteins
involved during infection via proteomic interactomes (76, 77).
Furthermore, predicting effective T and B-cell epitopes has been
an essential step during vaccine design in ensuring that only the
specific immunogenic parts of the candidate proteins are
retained via peptide truncation due to cost and time efficiency
in laboratory or downstream bulk production (78).

A study has applied reverse vaccinology to 33 genomes of A.
baumannii strains, and downstream B-cell epitope analysis has
indicated the potential of two outer membrane proteins, scilicet a
DcaP-like protein and HP-2, a novel hypothetical protein, as
vaccine candidates (79). Moreover, Beiranvand et al. has
integrated the predicted protein and epitope topology on the
bacterial membrane surface to the usual vaccine design workflow,
namely B cell epitope, subcellular, antigenicity, and solubility
predictions, and finalised with CarO, OmpH, LptE, FimF, and
PfsR as top five A. baumannii vaccine candidates (80, 81).
Furthermore, linear prediction of epitopes and their properties
has also been conducted on GacS, a virulence modulator via
citrate metabolism pathway, resulting in five peptides being
proposed as A. baumannii vaccine candidates (82).

Genomic and proteomic sequence analyses have been employed
to search for the conserved sequence to serve as vaccine candidates.
Following transcriptional characterisation of A. baumanniiOmp33-
36 protein to highlight its role during the initial phase of infection,
phylogenetic analyses have revealed an 8-aa highly conserved motif
(PLAEAAFL), potential enough for vaccine development
processing (83). Moreover, comparative genomics on A.
baumannii OmpA of different strains, with downstream in silico
May 2022 | Volume 13 | Article 900509
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prediction of T and B cell epitopes, as well as in silico
characterisation and molecular docking with TLR-2, has derived a
25 amino acids long vaccine candidate by Sogasu et al. (84).
Furthermore, another study has demonstrated the integration of
pan genomic analysis of around 4200 genomes, T and B cell epitope
predictions, and network-based centrality methods in identifying
multiple immunologic nodes in A. baumannii, which can result in
the elucidation of combinatorial synergy in different antigens for
different vaccination strategies (85).

In addition to linear prediction of T and B cell epitopes,
structure-based downstream analysis, such as structure
modelling, molecular docking, and molecular dynamics (MD)
simulation, has been integrated to confer more robust
computational insights. For example, utilizing T and B cell
epitope prediction, immunological feature screening, molecular
docking with immune cell receptors, and downstream
integration of in silico gene cloning, a multi-epitope vaccine
design has been proposed computationally from A. baumannii
CarO, an outer membrane protein associated with carbapenem
resistance (86). Again, utilizing a similar approach, Khalid et al.
has also proposed an in silico designed vaccine derived from A.
baumannii DcaP protein (87).

More comprehensive in silico approaches have also been
conducted in vaccine design. For instance, upstream integration
Frontiers in Immunology | www.frontiersin.org 5
of pan genomics, subtractive proteomics, and reverse vaccinology
into T and B cell epitope prediction, pipelined with downstream in
silico immunological simulation and structure-based screening
onto immune cell receptors, two A. baumannii multi-epitope
vaccine constructs with good safety profiles have been designed
(88). Another study on Tigecycline-resistantA. baumannii utilized
subtractive proteomics, exoproteome and secretome predictions,
interactome analysis, as well as other physicochemical and
immunological predictions to propose a chimeric vaccine design.
The vaccine’s predicted T and B cell epitopes are from three
proteins, scilicet BamA, an outer membrane protein assembly
complex, FimD, an outer membrane usher protein, and Rhs, a
type IV secretion protein (89). An integrated approach of
extracting A. baumannii virulent factors from the VFDB
database, secretome and exoproteome analysis, subtractive
proteomics, B and T cell epitope prediction, as well as peptide
docking analysis, has resulted in two nine amino acid long
potential vaccine candidates derived from EpsA and CsuB,
respectively (90).

To facilitate ex silico robustness of computationally predicted
results, downstream in vitro and in vivo models have been
utilized. For example, predicted T and B cell epitopes of an A.
baumannii outer membrane protein, TolB, were verified to be
antigenic in vivo, by utilizing lymphocyte proliferation assay and
FIGURE 2 | A typical workflow of in silico vaccine design in recent studies on A. baumannii.
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ELISA, respectively, in a mouse model (91). In another study on
the feasibility of vaccine design based on VgrG, a type VI
secretion system (T6SS) component, the immunisation of two
peptides derived from A. baumannii VgrG conserved sequences
(vgrG1159-2196 and vgrG1159-1502) in BALB/c mice has conferred
protection from lethal-dose challenges (92). Again, ABAYE2132,
an A. baumannii fimbrial protein previously proposed via
reverse vaccinology, has been translated into an animal study,
and its protection capability towards subcutaneously injected
BALB/c mouse model was conferred via lethal-dose challenge
(93). Moreover, a study has proposed a novel synthetic peptide
derived from A. baumanniiOmpA protein using the overlapping
regions of predicted T and B cell epitopes, pipelined with three-
dose subcutaneous injection in C5BL/6 SPF mouse model, which
eventually observed spiked antibody production in the injected
mice (94). Another study on the A. baumannii OmpA protein
has proposed a 27 amino acid long peptide as a vaccine candidate
by manifesting protection towards the challenge in C5BL/6 mice
(95). Moreover, a recombinant multi-epitope protein has been
designed from predicted T and B cell epitopes of A. baumannii
outer membrane proteins, namely FilF and NucAb, which
conferred immunogenicity and protection in the BALB/c
mouse model (96). Similar approaches have been adopted by
Raoufi et al. on DcaP, a porin protein in A. baumannii, which has
manifested protection against the challenge in BALB/c mice (97).
Furthermore, Abdollahi et al. named a previously hypothetical
protein in A. baumannii, PcTPRs1, and derived a 101 amino acid
long subunit vaccine based on its in-silico predicted T and B cell
epitopes, subcellular locations, physiochemical properties, as well
as in vivo challenge on BALB/c mouse model supplemented by
Freund’s adjuvant via subcutaneous injection (98). Recently, the
A. baumannii recombinant multi-epitope Omp22 vaccine
derived from its predicted T and B cell epitopes, with chitosan
and poly lactic-co-glycolic acid (CS-PLGA) nanoparticles
encapsulation, has been proposed as a potential nanovaccine
candidate with reported protection towards lethal intratracheal
challenge on BALB/c mice (99).

In Silico Methodologies to Nominate
Vaccine Candidates
With the surfacing of more sophisticated bioinformatics tools over
the recent years, in silico approaches in unveiling potential vaccine
candidates within the A. baumannii proteome have become highly
diverse. However, it can be stratified into two major categories: the
upstream and the downstream analysis. The upstream analysis of
vaccine candidature aims to mine a subset of potential candidates
from a vast pool of proteins, usually the whole proteome, genome,
and pan-genome. Furthermore, the downstream analysis aims
either to shape the protein candidates into effective epitopes or to
validate the feasibility of the proposed vaccine candidates,
albeit computationally.

The upstream analysis of in silico vaccine candidature
includes protein interactome analysis, which rationally helps to
unearth the protein central to the interactome and thus, plays a
crucial role in the pathogenesis/pathophysiology of the disease
(22). Therein, the connectivity between each protein can be
Frontiers in Immunology | www.frontiersin.org 6
extracted from the protein interaction metadatabase like
STRING (100), while network visualisation software tools and
plugins l ike Cytoscape (101), CytoNCA (102), and
NetworkAnalyzer (103) help in the analysis. Other analyses,
such as k-core analysis, can be conducted externally using
MATLAB (104). The pan-genome analysis allows the analysis
of inter-species or -strain gene conservation, thus eventuating
vaccine candidates with a broad spectrum of targets and high
tolerance towards mutation. Such analysis can be done via the
Bacterial Pan Genome Analysis Tool (BPGA) (105) and PanRV
pipeline (106). Subtractive proteomics inspects the homology of
the target proteome of interest with the host proteome, for
example, the A. baumannii proteome and human proteome, to
avoid integration into the host genome. This can be achieved
using the BLASTp tool accelerated with in-house scripts (90).
Predictions on the properties of the proteins of interest, such as
subcellular localisation of proteins and signal peptides, can be
vital in reverse vaccinology. Protein subcellular localisation can
be predicted via PSORTb (107), CELLO (108), PSLpred (109),
and Gneg-mPLoc (110), while the signal peptides localisation
can be predicted via SignalP (111).

One significant component of the downstream analysis is T
and B cell epitope prediction; such bioinformatic tools include
ABCPred (112), ProPred (113), as well as IEDB tools such as
Discotope (114), ElliPro (115), and TepiTool (116). The
predicted epitopes are sometimes backed up by external
antigenicity prediction tools, such as Vaxign (117),
ANTIGENpro (118), and Vaxijen (119). Safety profiles
prediction, such as allergenicity of the predicted epitopes, can
be conducted using AllergenFP (36) and AlgPred (120). Besides,
ToxinPred (37) gives an idea of the related toxicity.
Physiochemical properties such as molecular weight, stability,
and hydropathicity, can be predicted using the Expasy
ProtParam server (121). The binding capabilities of epitopes to
immune cell receptors can also be predicted using the structural
method. For instance, the 3D structure of the epitopes can be
predicted using I-TASSER (122) and SWISS-MODEL (123).
Peptide docking tools such as HADDOCK (124), FireDock
(125), and PatchDock (126) can predict epitope binding
strength onto immune cell receptors. Eventually, the epitope
binding dynamics can be simulated through MD simulation
method via GROMACS (127).
RECENT RESEARCH ON VALIDATING
NOVEL DRUG TARGETS

Aside from all the hype on vaccine research, efforts in foraging
novel drug targets remain inevitable and in tremendous demand
prior to the approval, introduction, and global distribution of
new vaccines into the human population.

Unearthing Drug Targets Using
Conventional Means
Like vaccine research, unveiling novel drug targets via
conventional laboratory approaches requires extensive
May 2022 | Volume 13 | Article 900509
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molecular knowledge or characterisation of the protein of
interest or its biological pathway. Most frequently employed
approaches in inferring drug targets include knockout study and
chemical inactivation of protein function to inspect its
essentiality in ensuring bacterial survival (128, 129).

Instead of exploring novel direct bactericidal drug targets,
recent research has sought adjuvant therapy drug targets in the
molecular components that contribute to bacterial virulence and
drug resistance. For instance, colistin, or polymyxin E, has been a
prominent final resort for severe A. baumannii infection, and its
resistance is mediated by the pmrCAB operon, which codes for
phosphoethanolamine (PetN) and two-component system
(TCS), as well as PetN addition to the LPS lipid A (130).
Moreover, a knockout study on colistin resistance has
suggested PetN transferases, scilicet PmrC and EptA, as
promising drug targets in attenuating colistin resistance in A.
baumannii while disproving PmrA, a transcriptional regulator
mediating PmrC overexpression, as a drug target due to its
limited spectrum (131). Furthermore, utilizing a chemical
scaffold compound that inhibits the enzymatic activity of FabI,
FabI has manifested druggability in A. baumannii by enhancing
the bactericidal effect of colistin (129).

Aside from attenuating drug resistance, attempts to promote
bacterial susceptibility to the immune system have been observed
in research studies. Notably, copper has been an interesting
antibacterial molecule employed by the immune system to
facilitate pathogenic clearance upon infection, manifested by a
copper burst in macrophage phagosomes and blood (132–134).
In this regard, Williams et al. has reported 11 proteins that result
in A. baumannii sensitivity to copper upon loss-of-function
mutations, with two of them, scilicet CusR and CopD, being
validated in the BALB/c mouse model in causing less mortality
(135). These proteins rendering copper resistance could serve as
potential drug targets in weakening A. baumannii virulence.
Again, another study has proposed the druggability of OxyR, a
transcriptional regulator in hydrogen peroxide detoxification, via
a knockout study (128). Additionally, through in vivo imaging,
the authors have supplemented the finding that A. baumannii in
the lung suffers oxidative stress from hydrogen peroxide.

In-Silico Methods in Mining Novel Drug
Targets
With the enormous growth in the variety and size of biological
databases, different databases have been innovatively extracted in
inferring drug targets. Potentially bactericidal drug targets
burrowed in vast and complex datasets could be unearthed
with comprehensive analyses on annotated multi-omic
sequences (Figure 3) (136). For example, in synchronous to
the increasing attention towards the TCS in bacteria, pan-
genomics and sequence variation analysis on TCS proteins in
seven pathogen species, inclusive of A. baumannii, has been
conducted by Rajput et al., who have reported BaeSR, KdpDE,
EvgSA, RstBA, DcuSR, and TorSR as potentially druggable
targets (137). Moreover, the Toxin-Antitoxin database (TADB)
pipelined with comparative genomics and phylogenetic analysis,
as well as in vitro transcriptional analysis upon oxidative and
Frontiers in Immunology | www.frontiersin.org 7
antibiotic stress, has demonstrated the potential druggability of
A. baumannii CptBA Toxin-Antitoxin system in disrupting
intracellular toxin-antitoxin balance, hence eventuating cell
suicide (17). Furthermore, integrated analysis of metabolic
pathways and chokepoints via the KEGG database (138),
plasmid proteins, virulence factors via the VFDB database
(139), and drug resistance proteins via the CARD database
(140), pipelined with subtractive analysis of essentiality and
non-homology, Kaur et al. have presented 58 potentially
druggable proteins of which eighteen (18) existed or had their
homologs in DrugBank (141, 142). Additionally, utilizing KEGG
pathway analysis, essentiality analysis from the DEG database
(143), and subtractive proteomics, Uddin et al. have presented
eighty-six (86) potentially druggable proteins, with forty-five
(45) exhibiting high sequence similarity with the existing drug
targets in DrugBank (144).

Besides the above, bioinformatics approaches downstream of
drug target identification often include virtual screening via
molecular docking and MD simulation, and hence,
experimentally crystallised protein 3D structures have become
a godsend in recent research (29, 30, 145). In this regard, in a
study, researchers have crystallised the 3D structures of 29
essential proteins in A. baumannii and deposited them in
Protein Data Bank (PDB), fifteen (15) of which were
recommended to be druggable, based on active site features
and sequence homology (146).
OTHER PROTEOMICS-DRIVEN
STRATEGIES

Aside from the unveiling of novel vaccines and drug targets,
recent proteomics research on other strategies such as
antimicrobial peptides (AMPs) have been promising in
combating A. baumannii (147). In a study by Jung et al., in
vivo screening of AMPs in a mouse model has reported SMAP-
29 and TP4 to exhibit prophylactic properties, while dC4 and
dN4 exhibited potential therapeutic activity against A.
baumannii (148). Moreover, a hexahistidine-tagged AMP,
namely Lys AB2 P3-His, with a gold nanoparticle carrier,
AuNP-Apt, has conferred significant protection to mice against
lethal-dose A. baumannii challenge (149). Other than direct
antimicrobial activities, the additional capabilities of AMPs in
enhancing drug effects have been explored. Esc(1-21), a frog-skin
AMP derivative, has manifested synergistic membrane-
perturbing antibacterial activity with colistin on multidrug-
resistant A. baumannii clinical isolates (150). In silico study on
AMPs has been prevalent with the increasing availability of
peptide-peptide docking. A virtual screening study by He et al.
with a set of cyclic peptides against A. baumannii BamA,
pipelined with downstream in vivo mouse model challenge, has
proposed cyclo-RRWWRRW to be membrane-perturbing
bactericidal (151). Another study has demonstrated the in
silico screening of human proteome for encrypted AMPs to be
translatable into in vivo mouse models (152).
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CONCLUSION

The increased utilization of bioinformatic approaches in exploring
A. baumannii vaccines has invited a tremendous influx of passion
and novel research outputs in combating the notorious nosocomial
pathogen, mainly due to its immense cost and time efficiency. We
can unveil potential vaccine candidates by extracting and collating
information through different databases with statistical means. In
addition to employing bioinformatics tools with straightforward
outputs, supplementary approaches, such as comparative
genomics, subtractive proteomics, and interactome analyses, have
been conducted to strengthen or further streamline the shortlisted
vaccine candidates. Similar research trends andmethodologies can
be observed in unveiling novel drug targets. In the light of the rapid
expansion of drug resistance spectra in bacteria, scouring for novel
vaccine candidates seemed to be a more attractive choice than
tramping in the vicious cycle of bacteria rapidly acquiring drug
resistance.Nonetheless, due to the long timeline of vaccine research,
unearthingnovel drug targets remains crucialwhile waiting for new
Frontiers in Immunology | www.frontiersin.org 8
vaccines to be developed and distributed. As research progresses,
bioinformaticsdatabases andmethodologieswill continue to confer
valuable insights inpushing through the vaccine research to combat
the A. baumannii infection.
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Acinetobacter Spp. Porin Omp33-36: Classification and Transcriptional
Response to Carbapenems and Host Cells. PloS One (2018) 13(8):
e0201608. doi: 10.1371/journal.pone.0201608
May 2022 | Volume 13 | Article 900509

https://doi.org/10.1016/j.immuni.2006.05.013
https://doi.org/10.1016/j.chom.2012.05.011
https://doi.org/10.1016/j.chom.2012.05.011
https://doi.org/10.1016/j.vaccine.2017.05.016
https://doi.org/10.3390/vaccines9020096
https://doi.org/10.1093/occmed/kqm110
https://doi.org/10.3390/vaccines4020012
https://doi.org/10.1016/j.micpath.2021.105291
https://doi.org/10.1007/s00203-021-02343-1
https://doi.org/10.1016/j.vaccine.2020.06.052
https://doi.org/10.1186/s12866-019-1615-3
https://doi.org/10.1093/glycob/cwz031
https://doi.org/10.1371/journal.ppat.1004691
https://doi.org/10.1111/1751-7915.13770
https://doi.org/10.4049/jimmunol.1600893
https://doi.org/10.4049/jimmunol.1600893
https://doi.org/10.1007/s11033-019-04994-2
https://doi.org/10.1007/s12088-017-0705-x
https://doi.org/10.22038/ijbms.2019.30799.7427
https://doi.org/10.1007/s11033-018-4167-y
https://doi.org/10.1016/j.xcrm.2021.100486
https://doi.org/10.1016/j.ijmm.2020.151415
https://doi.org/10.1016/j.micinf.2021.104801
https://doi.org/10.1007/s12687-017-0331-7
https://doi.org/10.1016/j.jtbi.2014.08.013
https://doi.org/10.1016/j.jtbi.2014.08.013
https://doi.org/10.1001/jama.2020.19933
https://doi.org/10.1089/mdr.2019.0236
https://doi.org/10.1038/s41598-018-26689-7
https://doi.org/10.1038/s41598-018-26689-7
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1016/j.tibtech.2007.12.006
https://doi.org/10.1016/j.tibtech.2007.12.006
https://doi.org/10.5772/intechopen.95856
https://doi.org/10.5772/intechopen.95856
https://doi.org/10.1016/j.micpath.2018.05.037
https://doi.org/10.1007/s10989-019-09918-z
https://doi.org/10.1016/j.micpath.2020.104114
https://doi.org/10.1093/nar/gkh417
https://doi.org/10.1093/nar/gkh417
https://doi.org/10.1016/j.meegid.2021.105138
https://doi.org/10.1016/j.meegid.2021.105138
https://doi.org/10.3389/fmicb.2020.02078
https://doi.org/10.1371/journal.pone.0201608
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tan and Lahiri Vaccine Candidates of Acinetobacter baumannii
84. Sogasu D, Girija ASS, Gunasekaran S, Priyadharsini JV. Molecular
Characterisation and Epitope-Based Vaccine Predictions for ompA Gene
Associated With Biofilm Formation in Multidrug-Resistant Strains of
A.baumannii. In Silico Pharmacol (2021) 9(1):15. doi: 10.1007/s40203-
020-00074-7
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