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Extended Bose-Hubbard Model 
with Cavity-Mediated Infinite-
Range Interactions at Finite 
Temperatures
Huang-Jie Chen1,2,3, Yan-Qiang Yu1,2,3, Dong-Chen Zheng1,2 & Renyuan Liao1,2 ✉

We consider the finite-temperature properties of the extended Bose-Hubbard model realized recently 
in an ETH experiment [Nature 532, 476 (2016)]. Competing short- and global-range interactions 
accommodate fascinating collective phenomena. We formulate a self-consistent mean-field theory 
to describe the behaviors of the system at finite temperatures. At a fixed chemical potential, we map 
out the distributions of the superfluid order parameters and number densities with respect to the 
temperatures. For a charge density wave, we find that the global-range interaction enhances the 
charge order by increasing the transition temperature at which the charge order melts out, while 
for a supersolid phase, we find that the disappearance of the charge order and the superfluid order 
occurs at different temperature. At a fixed number-density filling factor, we extract the temperature 
dependence of the thermodynamic functions such as internal energy, specific heat and entropy. Across 
the superfluid phase transition, the specific heat has a discontinuous jump.

The experimental progress in coupling degenerate quantum gases with light in high-Q cavities1–9 has opened a 
new avenue for creating and exploring novel many-body collective phenomena10–12. A paradigmatic example is 
the experimental realization of the Dicke model with a gas of ultracold quantum gases inside an optical cavity4,6, 
which allows for access to a superradiant phase transition associated with the breaking of a 2 symmetry13. In 
combination with an optical lattice14, recent experiment has realized competing short- and long-range interac-
tions7 between atoms, which accommodates a multitude of novel symmetry-broken phases, such as the charge 
density wave and supersolid phases. By trapping Bose-Einstein condensates inside the intersection of two 
high-finesse optical cavities and illuminating them by a transverse pump beam, the ETH group successfully 
observed supersolid formation breaking a continuous translation symmetry8,9.

All these exciting experimental achievements have sparked intense theoretical efforts15–23 concerning novel 
collective phenomena and dissipative dynamics arising from the cavity-mediated interactions. In particular, 
the extended Bose-Hubbard model realized in ETH experiment7,24,25 has attracted much theoretical attention. 
The model consists of a variation of the standard two-dimensional Bose-Hubbard model26–29 that includes a 
global-range interaction between atoms in the different checkerboard sublattices of a square lattice. It presents in 
total four quantum phases: superfluid (SF), supersolid (SS), Mott insulator (MI), and charge density wave (CDW). 
Previous theoretical studies30–38 mainly concentrate on the ground-state phase diagram and associated phase 
transitions of the model, leaving the finite-temperature physics which is experimentally relevant and interesting, 
largely intact.

In this work, we shall carry out a self-consistent mean-field study on the finite-temperature properties of the 
system, with the aim of providing qualitative predictions for future experimental investigation, as understanding 
even the finite-temperature properties of the conventional Bose-Hubbard model at quantitative level is a nontriv-
ial task39–45. The paper is structured as follows: In Sec. II, the model is introduced and the theoretical formalism 
is developed. In Sec. III, we present relevant calculation results. Finally, in Sec. IV, the conclusions are drawn.
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Model and Formalism
We consider the Hamiltonian realized in the recent ETH experiment7 which reads
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Here J is the hopping amplitude between neighboring sites, U is the repulsive on-site contact interaction, K 
denotes the strength of global-range interaction, (ix, iy) is the coordinate of lattice site i, and μ is the chemical 
potential. The summation over lattice sites carries over to the total number of lattice sites M. The global-range 
interaction favors imbalanced population of bosons between even lattice sites and odd lattice sites, competing 
with short-range contact interaction which tends to make bosons distribute evenly among lattice sites. The inter-
play of three energy scales is expected to cultivate a wealth of collective phenomena.

To decouple the off-site global-range interaction, we set ˆ θ− =+ n( 1)i i
i i

x y , then by neglecting the quadratic 
terms in fluctuations, we obtain
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We proceed to introduce a charge order parameter θΘ = ∑ M/i i , which describes the average atom popula-
tion difference between even and odd sites, then the term for global-range interaction becomes site-separable
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To decouple the kinetic part of the Hamiltonian, we follow the usual procedures46 of introducing superfluid 
order parameters ψ = b̂i i , resulting in a mean-field Hamiltonian for a supercell (with one even site and one odd 
site):
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where the coordination number is z = 2d with d being the dimension of the system, h.c. stands for a hermitian 
conjugate, and subindex e and o denotes even site and odd site, respectively.

We may diagonalize Ĥ
MF

 in the occupation number space spanned with ⊗n ne o  by simultaneously impos-
ing self-consistency conditions for the charge order parameter Θ = −ˆ ˆn n /2e o  and for the superfluid order 
parameters ψ = b̂e e  and ψ = b̂o o . It should be noted that the average of an operator Ô is defined as a 
thermal-statistical average:
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where εl is the l-th eigenvalue of HMF, |l〉 is the corresponding eigenvector, and the partition function of the system 
is given by βε= ∑ −Z exp( )l l  with β = 1/kBT being the inverse temperature.

The numerical procedures for self-consistent calculations proceed as follows: Suppose we are given a fixed 
chemical potential μ; Firstly, we initialize the Hamiltonian in Eq. (3) with initial distributions of the charge order 
parameter Θ and superfluid orders ψe and ψo; Secondly, we diagonalize the Hamiltonian to obtain eigenvalues 
and associated eigenfunctions which are expressed in terms of linear combinations of basis vectors n n,e o ; Finally, 
we compute the expectations values of operators be, bo, ne and no to obtain the values of the order parameters, so 
that a self-consistent calculation can be performed. For calculations with a fixed filling factor f, it is a little cum-
bersome as one needs to relax μ and to fixed +n ne o .

The internal energy of the supercell can be evaluated as μ= + +ˆ ˆ ˆ( )E H n n, , , ( , , )
MF

e o . The specific heat can 
be extracted from the numerical derivative of the internal energy with respect to the temperature 

= ∂ ∂ μC E T( / )V V, . For the entropy, it can be readily evaluated from the standard statistical relation 
= ∑S k p plnB l l l with = βε− Zp e /l

l .

Calculation and Results
Before embarking on a detailed study on finite-temperature properties of the system, we consider the system at 
zero temperature and at the atomic limit where zJ/U = 0. Since the superfluid order parameters vanish in this case, 
the mean-field Hamiltonian reduces to
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At zero temperature, with Θ = −n n( )/2e o  in mind, the eigenvalue corresponding to eigenvector n ne o  can 
be cast as
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Minimizing the eigenvalue ε(ne, no), one obtains the ground-state phase diagram at the atomic limit. We show 
the phase diagram in Fig. 1 for the parameter regime K/U ∈ [0, 1/2]. It features two types of incompressible 
phases: Mott insulating phases (MI) and charge density wave phases (CDW). The Mott phase MI(ne, no) is charac-
terized by equal population on even site and odd site with ne = no, while the CDW(ne, no) phase is characterized by 
unequal population on even site and odd site with ne ≠ no. We may always assume that ne ≥ no as the system enjoys 
a 2 symmetry.

The effects of finite temperatures on a charge density wave is shown in Fig. 2. In panel (a) where K/U = 0.2, 
at zero temperature the system is in the CDW(2,1) phase. As the temperature goes up, the density on even site ne 
decreases from an integer value, while the density on odd site no increases. There exists a critical temperature at 
which the density on both sites become equal with ne = no, indicating that the charge order parameter Θ vanishes. 
During the process, we have kept the chemical potential to be fixed at μ/U = 1.0, and the total density n = ne + no 
is almost a constant. In panel (b) where K/U = 0.3, the trend is similar as in panel (a), except that the critical 
temperature above which the charge order becomes zero increases from 10 U/kB to approximately 0.15 U/kB. This 
fact suggests that for a CDW phase increasing the global-range interaction strength enhances the charge order by 
increasing the critical temperature.

Now we take the effects of a finite hopping amplitude into account as well. At sufficient magnitude of hop-
ping parameter zJ/U, one expects that the system possesses superfluidity with a nonzero order parameter ψ. We 
show the behaviors of the order parameter ψ as a function of varying temperatures kBT/U for different hopping 
parameters zJ/U in Fig. 3. At zero temperature and μ/U = 1.5, the system is in the phase of MI(2,2) with a vanish-
ing charge order, as can be read from Fig. 1. Now a sufficiently large hopping amplitude (zJ/U = 0.15) gives rise 
to a homogeneous superfluid state with ψe = ψo. As the temperature increases, the superfluid order parameter 
decreases gradually, and eventually the superfluid order parameter ψe vanishes above the transition temperature 
Tc. It is evident that a larger hopping amplitude leads to a larger transition temperature. When the magnitude of 

Figure 1.  Ground-state phase diagram spanned by μ/U and K/U in the atomic limit where zJ/U = 0 and 
K/U ∈ [0, 1/2]. It accommodates two types of incompressible phases: Mott insulating (MI) phases and charge 
density wave (CDW) phases. The CDW phases are partially polarized in the sense that − =n n 1e o .

Figure 2.  The number densities at even lattice site ne and odd lattice site no as a function of varying 
temperatures for (a) K/U = 0.20 and (b) K/U = 0.30. At zero temperature, the system is in the CDW(2,1) phase 
with a charge order. There exists a critical temperature above which the charge order is melted out. Increasing 
the global-range interaction strength K/U tends to sustains the charge order against thermal fluctuations. The 
parameters used here are: zJ/U = 0 and μ/U = 1.0.
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the global-range interaction is changed to K/U = 0.3, our numerical results doesn’t get modified. This is expected 
as the effective Hamiltonian in Eq. (3) for Θ = 0 reduces to two decoupled conventional Bose-Hubbard models 
at even and odd sites.

We proceed to consider the effects of finite temperatures on the supersolid phase, where both superfluid order 
and charge order are present. As shown in Fig. 4(a), with the increasing of the temperature, both the superfluid 
order parameter ψe and ψo decrease. When the temperature reaches a certain value, the system becomes a con-
ventional superfluid with ψe = ψo. As the temperature is increased further to Tc1, the system enters into a CDW 
state with vanishing superfluid order parameter. Meanwhile, the number densities at both sites display striking 
behaviors in Fig. 4(b). The number density ne decreases as the temperature goes up, while the number density no 
increases correspondingly, demonstrating that the transferring of the particles from sites of high population to 
sites of low population due to the increasing of temperature. At the temperature rises to the superfluid transition 
temperature Tc1, there still exists some residual charge order, which is destroyed completely only after the temper-
ature is lifted to a higher critical temperature Tc2.

We turn our attention to the thermodynamics of the system at a fixed filling factor f = (ne + no)/2. We shall 
follow the sequences as we study the temperature dependence of the superfluid order parameters and number 
densities. For the charge density discussed in Fig. 2, its thermodynamic functions such as energy, specific heat, 
entropy and chemical potential are shown in Fig. 5. The energy per particle E/NU increases steadily with the 
temperature kBT/U. It is remarkable that a larger global-range interaction K/U leads to a lower energy below the 
transition temperature. At the transition point where the charge order is completely melted, the specific heat 
CV/NkB shows a characteristic cusp. The entropy per particle S/NkB starting from zero increases monotonically 
with the temperature, a sign of increasing disorder. Interestingly, the chemical potential decreases slightly with 
increasing temperatures and does not depend on the strength of global-range interaction. When the temperature 
is sufficiently high, the thermodynamics of the system is immune to the strength of global-range interaction K/U.

We continue to consider the thermodynamics of conventional superfluid state. The temperature dependence 
of relevant order parameters is revealed in Fig. 3. Here we show the behaviors of energy, specific heat, entropy 
and chemical potential in Fig. 6. As can be seen in panel (a), the energy per particle E/NU increases monotoni-
cally with the temperatures. It is intuitive to notice that a larger hopping amplitude zJ/U leads to a lower energy. 
However, it is consistent with the behavior of entropy per particle S/NkB shown in panel (c). The entropy increases 
as the temperature gets higher, with a larger hopping amplitude zJ/U corresponding to a smaller entropy. This is 
due to the fact that a larger hopping amplitude enhances superfluidity, leading to an ordered phase with a lower 
entropy. The specific heat per particle CV/NkB shows a nonmonotonic behavior. It exhibits a peak at the transition 
temperature, indicating the disappearance of the superfluid order. At low temperatures, the chemical potential 

Figure 3.  The superfluid order parameter ψ = ψe = ψo as a function of varying temperatures for different values 
of hopping parameter zJ/U. At zero temperature, the system is in the SF state with nonzero ψ and vanishing 
charge order. Across the transition temperature, the system undergoes a continuous phase transition from a 
superfluid state to a normal state. A larger hopping amplitude corresponds to a larger superfluid transition 
temperature. The parameters used here are: K/U = 0.2 and μ/U = 1.5.

Figure 4.  Temperature dependence of (a) the superfluid order parameters ψe and ψo and (b) the number 
densities ne and no. At zero temperature, the system is in the supersolid phase with both superfluid order and 
charge density order. By increasing the temperature, the superfluid order disappears at a critical temperature 
kBTc1/U = 0.209, while the charge order melts out at a higher temperature kBTc2/U = 0.219. The parameters used 
here are: μ/U = 1.0, K/U = 0.4 and zJ/U = 0.15.
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increases sharply until it reaches a maximum at the transition, with a larger hopping amplitude corresponding to 
a lower chemical potential. At sufficient high temperature, the thermodynamics of the system is immune to the 
strength of hopping amplitude zJ/U.

Finally, we turn our focus to the thermodynamics for a supersolid phase. As shown in Fig. 7, the supersolid 
phase only exists in a limited regime of phase space, which is zJ/U ∈ (0.13, 0.20) in our case. Our numerical solu-
tion indicates that for zJ/U = 0.25 and zJ/U = 0.35, the system is in the conventional superfluid phase absent of the 
charge order. The energy per particle E/NU follows a monotonically increasing trend for all three typical values of 
zJ/U. The specific heat per particle Cv/NkB exhibits a characteristic cusp at the transition temperature at which the 
superfluid order parameter vanishes. The entropy per particle S/NkB increases with temperature, indicating ten-
dency toward disorder. The chemical potential manifests a nonmonotonic behavior with the maximum occurring 
at the transition temperature, and drops gradually with increasing temperature.

Summary
To sum up, we have studied the extended Bose-Hubbard model with global-range interactions at finite temper-
atures. We formulated a self-consistent mean-field theory to describe the finite-temperature physics. We have 
obtained temperature dependence of superfluid order parameters and number densities on even and odd lat-
tice sites. Remarkably, we find that the melting of the charge order is gradually happened as the temperature is 
increased. For thermodynamic behaviors, we show the variations of energy, specific heat and entropy per particle 

Figure 5.  (a) Energy per particle E/NU (b) specific heat per particle CV/NkB (c) entropy per particle S/NkB and 
(d) chemical potential as a function of varying temperatures for different global-range interaction strength 
K/U. At zero temperature, the system is in the phase of CDW(2,1). The parameters used here are: zJ/U = 0 and the 
filling factor f = 1.5.

Figure 6.  (a) Energy per particle E/NU (b) specific heat per particle CV/NkB (c) entropy per particle S/NkB and 
(d) chemical potential as a function of varying temperatures for different hopping parameters zJ/U. At zero 
temperature, the system is in the superfluid state with Θ = 0. The parameters used here are: K/U = 0.2 and the 
filling factor f = 2.
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with the varying of the temperatures and some external tuning parameters. Interestingly, we demonstrate that 
specific heat show characteristic behaviors across the phase transition. Our results help to establish a qualitative 
picture for this system at finite temperatures, which are interesting from experimental point view. We expect that 
such study will stimulate further interesting works from both theoretical side and experimental side.
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